-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzilliz_local.py
65 lines (58 loc) · 2.02 KB
/
zilliz_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import requests
from dotenv import load_dotenv
import time
import json
import os
# Load our environment variables
load_dotenv()
ZILLIZ_API_KEY = os.getenv("ZILLIZ_API_KEY")
# We created a simple zilliz collection called test with fields:
# primary_key - a int primary key
# vector - a vector of 384
# text a varchar
def upsert_data(documents, embeddings):
documents = [
{
"vector": embedding,
"primary_key": document["id"],
"text": document["metadata"]["text"],
}
for document, embedding in zip(documents, embeddings)
]
headers = {
"Authorization": f"Bearer {ZILLIZ_API_KEY}",
"Accept": "application/json",
"Content-Type": "application/json",
}
url = (
"https://in03-23659a0ce4651d6.api.gcp-us-west1.zillizcloud.com/v1/vector/insert"
)
payload = {
"collectionName": "test",
"data": documents,
}
print("\tStarting Zilliz upsert")
tic = time.perf_counter()
requests.post(url, data=json.dumps(payload), headers=headers)
toc = time.perf_counter()
time_taken_to_upsert = toc - tic
print(f"\tDone Zilliz upsert: {time_taken_to_upsert:0.4f}")
return time_taken_to_upsert
def do_search(vector):
print("\tDoing cosine similarity search with Zilliz")
url = (
"https://in03-23659a0ce4651d6.api.gcp-us-west1.zillizcloud.com/v1/vector/search"
)
payload = {"collectionName": "test", "vector": vector, "outputFields": ["text"]}
headers = {
"Authorization": "Bearer cf555e79d3c2b3404586bc698404bb4410e3f52e5267ae2fc5cb376de2f3196b62fb88246445bb5316b6dc53d47bf6c1ee770120",
"Accept": "application/json",
"Content-Type": "application/json",
}
tic = time.perf_counter()
results = requests.post(url, data=json.dumps(payload), headers=headers).json()
toc = time.perf_counter()
time_done = toc - tic
print(f"\tDone doing cosine similarity search: {time_done:0.4f}\n")
result = results["data"][0]["text"]
return (result, time_done)