-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqdrant_local.py
49 lines (42 loc) · 1.53 KB
/
qdrant_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct
from dotenv import load_dotenv
import time
import os
# Load our environment variables
load_dotenv()
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
# Create our Qdrant client
qdrant = QdrantClient(
url="https://059364f6-62c5-4f80-9f19-cf6d6394caae.us-east4-0.gcp.cloud.qdrant.io:6333",
api_key=QDRANT_API_KEY,
)
# Create our Qdrant collection
qdrant.recreate_collection(
collection_name="test",
vectors_config=VectorParams(size=384, distance=Distance.COSINE),
)
# Store some initial documents to retrieve
def upsert_data(documents, embeddings):
points = [
PointStruct(
id=int(document["id"]), vector=embedding, payload=document["metadata"]
)
for document, embedding in zip(documents, embeddings)
]
print("\tStarting Qdrant upsert")
tic = time.perf_counter()
qdrant.upsert(collection_name="test", points=points)
toc = time.perf_counter()
time_taken_to_upsert = toc - tic
print(f"\tDone Qdrant upsert: {time_taken_to_upsert:0.4f}")
return time_taken_to_upsert
# Do cosine similarity search over our Qdrant collection
def do_search(vector):
print("\tDoing cosine similarity search with Qdrant")
tic = time.perf_counter()
results = qdrant.search(collection_name="test", query_vector=vector, limit=1)
toc = time.perf_counter()
time_done = toc - tic
print(f"\tDone doing cosine similarity search: {time_done:0.4f}\n")
return (results, time_done)