|
| 1 | +use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion}; |
| 2 | +use linfa::traits::Fit; |
| 3 | +use linfa::Dataset; |
| 4 | +use linfa_datasets::generate::make_dataset; |
| 5 | +use linfa_pls::Algorithm; |
| 6 | +use linfa_pls::{PlsCanonical, PlsCca, PlsRegression}; |
| 7 | +use statrs::distribution::{DiscreteUniform, Laplace}; |
| 8 | + |
| 9 | +#[allow(unused_must_use)] |
| 10 | +fn pls_regression(dataset: &Dataset<f64, f64>, alg: Algorithm) { |
| 11 | + let model = PlsRegression::params(3) |
| 12 | + .scale(true) |
| 13 | + .max_iterations(200) |
| 14 | + .algorithm(alg); |
| 15 | + model.fit(&dataset); |
| 16 | +} |
| 17 | + |
| 18 | +#[allow(unused_must_use)] |
| 19 | +fn pls_canonical(dataset: &Dataset<f64, f64>, alg: Algorithm) { |
| 20 | + let model = PlsCanonical::params(3) |
| 21 | + .scale(true) |
| 22 | + .max_iterations(200) |
| 23 | + .algorithm(alg); |
| 24 | + model.fit(&dataset); |
| 25 | +} |
| 26 | +#[allow(unused_must_use)] |
| 27 | +fn pls_cca(dataset: &Dataset<f64, f64>, alg: Algorithm) { |
| 28 | + let model = PlsCca::params(3) |
| 29 | + .scale(true) |
| 30 | + .max_iterations(200) |
| 31 | + .algorithm(alg); |
| 32 | + model.fit(&dataset); |
| 33 | +} |
| 34 | + |
| 35 | +fn bench(c: &mut Criterion) { |
| 36 | + let mut group = c.benchmark_group("Linfa_pls"); |
| 37 | + let params: [(usize, usize); 4] = [(1_000, 5), (10_000, 5), (100_000, 5), (100_000, 10)]; |
| 38 | + |
| 39 | + for (alg, name) in [(Algorithm::Nipals, "Nipals-"), (Algorithm::Svd, "Svd-")] { |
| 40 | + let feat_distr = Laplace::new(0.5, 5.).unwrap(); |
| 41 | + let target_distr = DiscreteUniform::new(0, 5).unwrap(); |
| 42 | + |
| 43 | + let mut pls_regression_id = "Regression-".to_string(); |
| 44 | + pls_regression_id.push_str(name); |
| 45 | + let mut pls_canonical_id = "Canonical-".to_string(); |
| 46 | + pls_canonical_id.push_str(name); |
| 47 | + let mut pls_cca_id = "Cca-".to_string(); |
| 48 | + pls_cca_id.push_str(name); |
| 49 | + |
| 50 | + for (size, num_feat) in params { |
| 51 | + let suffix = format!("{}Feats", num_feat); |
| 52 | + let mut func_name = pls_regression_id.clone(); |
| 53 | + func_name.push_str(&suffix); |
| 54 | + let dataset = make_dataset(size, num_feat, 1, feat_distr, target_distr); |
| 55 | + let input = (dataset, alg); |
| 56 | + |
| 57 | + group.bench_with_input( |
| 58 | + BenchmarkId::new(&func_name, size), |
| 59 | + &input, |
| 60 | + |b, (dataset, alg)| { |
| 61 | + b.iter(|| pls_regression(dataset, *alg)); |
| 62 | + }, |
| 63 | + ); |
| 64 | + |
| 65 | + let mut func_name = pls_canonical_id.clone(); |
| 66 | + func_name.push_str(&suffix); |
| 67 | + group.bench_with_input( |
| 68 | + BenchmarkId::new(&func_name, size), |
| 69 | + &input, |
| 70 | + |b, (dataset, alg)| { |
| 71 | + b.iter(|| pls_canonical(dataset, *alg)); |
| 72 | + }, |
| 73 | + ); |
| 74 | + |
| 75 | + let mut func_name = pls_cca_id.clone(); |
| 76 | + func_name.push_str(&suffix); |
| 77 | + group.bench_with_input( |
| 78 | + BenchmarkId::new(&func_name, size), |
| 79 | + &input, |
| 80 | + |b, (dataset, alg)| { |
| 81 | + b.iter(|| pls_cca(dataset, *alg)); |
| 82 | + }, |
| 83 | + ); |
| 84 | + } |
| 85 | + } |
| 86 | + group.finish(); |
| 87 | +} |
| 88 | + |
| 89 | +criterion_group!(benches, bench); |
| 90 | +criterion_main!(benches); |
0 commit comments