Skip to content

Latest commit

 

History

History
317 lines (268 loc) · 8.88 KB

sliders.md

File metadata and controls

317 lines (268 loc) · 8.88 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.3
1.14.5
display_name language name
Python 3 (ipykernel)
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.8.16
description display_as language layout name order page_type permalink thumbnail
How to add slider controls to your plots in Python with Plotly.
controls
python
base
Sliders
1.5
example_index
python/sliders/
thumbnail/slider2017.gif

Simple Slider Control

Sliders can be used in Plotly to change the data displayed or style of a plot.

import plotly.graph_objects as go
import numpy as np

# Create figure
fig = go.Figure()

# Add traces, one for each slider step
for step in np.arange(0, 5, 0.1):
    fig.add_trace(
        go.Scatter(
            visible=False,
            line=dict(color="#00CED1", width=6),
            name="𝜈 = " + str(step),
            x=np.arange(0, 10, 0.01),
            y=np.sin(step * np.arange(0, 10, 0.01))))

# Make 10th trace visible
fig.data[10].visible = True

# Create and add slider
steps = []
for i in range(len(fig.data)):
    step = dict(
        method="update",
        args=[{"visible": [False] * len(fig.data)},
              {"title": "Slider switched to step: " + str(i)}],  # layout attribute
    )
    step["args"][0]["visible"][i] = True  # Toggle i'th trace to "visible"
    steps.append(step)

sliders = [dict(
    active=10,
    currentvalue={"prefix": "Frequency: "},
    pad={"t": 50},
    steps=steps
)]

fig.update_layout(
    sliders=sliders
)

fig.show()

Methods

The method determines which plotly.js function will be used to update the chart. Plotly can use several updatemenu methods to add the slider:

  • "update": modify data and layout attributes (as above)
  • "restyle": modify data attributes
  • "relayout": modify layout attributes
  • "animate": start or pause an animation

Update Method

The "update" method should be used when modifying the data and layout sections of the graph. This example demonstrates how to update the data displayed while simultaneously updating layout attributes such as the annotations.

import plotly.graph_objects as go
import numpy as np

# Create figure
fig = go.Figure()

min_val = 0
max_val = 0

# Add traces, one for each slider step
start = -1
for step in np.arange(start, 5, 0.1):
    x_vec=np.arange(0, 10, 0.01) #np.arange(start, 1, 0.1)
    y_vec=np.cos(step * np.arange(0, 10, 0.01))
    fig.add_trace(
        go.Scatter(
            visible=False,
            line=dict(color="#00CED1", width=4),
            name="𝜈 = " + str(step),
            x=x_vec,
            y=y_vec))
    if step == start:
        min_val = np.min(y_vec)
        max_val = np.max(y_vec)
    else:
        tmp_min = np.min(y_vec)
        tmp_max = np.max(y_vec)
        min_val = min(min_val, tmp_min)
        max_val = max(max_val, tmp_max)
    
# Make 10th trace visible
fig.data[10].visible = True

# Add Annotations
annotation_info = [dict(x=1,
                       y=0,
                       xref="paper", yref="paper",
                       text="Min value:<br> %.4f" % min_val,
                       ax=0, ay=40,
                       showarrow=False,
                       xanchor="left", yanchor="bottom"),
                  dict(x=1,
                       y=1,
                       xref="paper", yref="paper",
                       text="Max value:<br> %.4f" % max_val,
                       ax=0, ay=-40,
                       showarrow=False,
                       xanchor="left", yanchor="top")
                 ]
# Create and add slider
steps = []
for i in range(len(fig.data)):
    step = dict(
        method="update",
        label=str(i),
        args=[{"visible": [False] * len(fig.data)},
              {"title": "Slider switched to step: " + str(i), # layout attribute
              "annotations": annotation_info}],  # layout attribute
    )
    step["args"][0]["visible"][i] = True  # Toggle i'th trace to "visible"
    steps.append(step)

sliders = [dict(
    active=10,
    currentvalue={"prefix": "Slider value: "},
    pad={"t": 30},
    steps=steps
)]

fig.update_layout(
    sliders=sliders
)

fig.show()

This example demonstrates how sliders can be employed to data filtering. Here we show companies, represented with bars, when values of the outcome variable are above the threshold. The change in trace attributes is associated with the change in layout attribute. The title is updated when the value of the threshold is more than zero.

import plotly.graph_objects as go
import numpy as np
import math

companies = ['Company A','Company B','Company C','Company D','Company E','Company F','Company G','Company H']
outcomes = [7.8, 12.3, 20.4, 8.9, -5.7, -16.3, 10.2, -1.5]

# Create figure
fig = go.Figure()

# Add trace
fig.add_trace(go.Bar(
    x=companies,
    y=outcomes,
    marker=dict(color = "green")
))

min_outcome = math.ceil(min(outcomes))
max_outcome = math.ceil(max(outcomes))

titles = ["Companies and outcomes", "Companies with positive outcomes"]
steps = [dict(method="update",
              args=[{'x': [[c for c, o in zip(companies,outcomes) if o>k]], #trace attributes that are updated by each slider step
                     'y': [[y for y in outcomes if y>k]]}, #trace attributes that are updated by each slider step
                    {'title': titles[1] if k>0 else titles[0]}], #layout attributes that are updated
              label=f"{k}") for k in range(min_outcome, max_outcome)]

sliders = [dict(
           active=0,
           currentvalue={"prefix": "threshold: "},
           steps=steps
)]

fig.update_layout(title=titles[0],
                  yaxis_title="outcome [mil.]",
                  sliders=sliders)

fig.show()

Relayout Method

The "relayout" method should be used when modifying layout attributes. This example demonstrates how to update which groups are in clusters.

import plotly.graph_objects as go
import numpy as np

# Create figure
fig = go.Figure()

x0 = np.random.normal(2, 0.2, 400)
y0 = np.random.normal(2, 0.3, 400)
x1 = np.random.normal(3, 0.1, 600)
y1 = np.random.normal(6, 0.3, 400)
x2 = np.random.normal(4, 0.4, 200)
y2 = np.random.normal(4, 0.5, 200)

# Add traces
fig.add_trace(
    go.Scatter(
        x=x0,
        y=y0,
        mode="markers",
        marker=dict(color="DarkOrange")
    )
)

fig.add_trace(
    go.Scatter(
        x=x1,
        y=y1,
        mode="markers",
        marker=dict(color="Crimson")
    )
)

fig.add_trace(
    go.Scatter(
        x=x2,
        y=y2,
        mode="markers",
        marker=dict(color="RebeccaPurple")
    )
)

initial_cluster = [dict(type="circle",
                            xref="x", yref="y",
                            x0=min(x0), y0=min(y0),
                            x1=max(x0), y1=max(y0),
                            line=dict(color="DarkOrange"))]
cluster2 = [dict(type="circle",
                            xref="x", yref="y",
                            x0=min(x0), y0=min(y0),
                            x1=max(x1), y1=max(y1),
                            line=dict(color="Crimson"))]
cluster3 = [dict(type="circle",
                            xref="x", yref="y",
                            x0=min(x0), y0=min(y0),
                            x1=max(x2), y1=max(y1),
                            line=dict(color="RebeccaPurple"))]

clusters = [[], initial_cluster, cluster2, cluster3]

# Create and add slider
steps = [dict(method="relayout",
              args=["shapes", clusters[k]], 
              label=f"{k}") for k in range(len(clusters))]

sliders = [dict(
    active=0,
    currentvalue={"prefix": "Groups in cluster: "},
    pad={"t": 50},
    steps=steps
)]

fig.update_layout(
    title_text="Groups",
    showlegend=False,
    sliders=sliders
)

fig.show()

Sliders in Plotly Express

Plotly Express provide sliders, but with implicit animation using the "animate" method described above. The animation play button can be omitted by removing updatemenus in the layout:

import plotly.express as px

df = px.data.gapminder()
fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
           size="pop", color="continent", hover_name="country",
           log_x=True, size_max=55, range_x=[100,100000], range_y=[25,90])

fig["layout"].pop("updatemenus") # optional, drop animation buttons
fig.show()

Reference

Check out https://plotly.com/python/reference/layout/updatemenus/ for more information!