-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDistributionDifference.py
381 lines (319 loc) · 12.2 KB
/
DistributionDifference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import numpy as np
from scipy import interpolate
import collections
import functools
import emd
import math
from Utils import contains
import pandas as pd
from itertools import combinations
class memoized(object):
'''Decorator. Caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned
(not reevaluated).
'''
def __init__(self, func):
self.func = func
self.cache = {}
def __call__(self, *args):
if not isinstance(args, collections.Hashable):
# uncacheable. a list, for instance.
# better to not cache than blow up.
return self.func(*args)
if tuple(*args) in self.cache:
return self.cache[tuple(*args)]
else:
value = self.func(*args)
self.cache[tuple(*args)] = value
return value
def __repr__(self):
'''Return the function's docstring.'''
return self.func.__doc__
def __get__(self, obj, objtype):
'''Support instance methods.'''
return functools.partial(self.__call__, obj)
@memoized
def convert_to_distribution(points):
"""Converts the given data points to a smoothed distribution from 0-100%
"""
x = np.linspace(0,1, len(points), endpoint=True)
f = interpolate.interp1d(x, points, kind='cubic')
retval = np.cumsum(f(np.linspace(0, 1, 30, endpoint=True)).clip(0,1e5))
return retval / (sum(retval)+1e-10)
def get_nonuniform_mp(args, eps=1.01):
gene, row = args
temp = pd.Series(data=1, index=row.index)
if sum(pd.np.isfinite(row))==0:
return pd.np.nan
return earth_mover_multi(row + eps, temp)
def get_nonuniform_inv_mp(args):
gene, row = args
temp = pd.Series(data=1, index=row.index)
if sum(pd.np.isfinite(row))==0:
return pd.np.nan
return earth_mover_multi(eps - row, temp)
def diff_stat(points1, points2):
dist1 = convert_to_distribution(points1)
dist2 = convert_to_distribution(points2)
normfac = np.log(max(max(points1), max(points2)) + 1)
return np.max(np.abs(dist1 - dist2)) * normfac
divmat = np.zeros([0,0])
def tang_stat(points1, points2):
assert len(points1) == len(points2)
points1 = np.array(points1 / np.mean(points1))
points2 = np.array(points2 / np.mean(points2))
va = np.reshape(np.repeat(points1, len(points2)), (len(points2), -1),
order='C')
vb = np.reshape(np.repeat(points2, len(points1)), (-1, len(points2)),
order='F')
global divmat
if np.shape(divmat) != (len(points1), len(points2)):
x, y = np.mgrid[0:len(points1), 0:len(points2)]
divmat = 1/(np.abs(x - y) + 1)
return np.sqrt(np.sum(np.triu((va - vb)**2 * divmat)))
# stat = 0
# for i in range(len(points1)):
# for j in range(len(points2)):
# stat += (points1[i] - points2[j])**2 / (np.abs(i - j)+1)
# if i == j:
# break
#
# return np.sqrt(stat)
def earth_mover(points1, points2, normer=np.sum):
xs1 = np.linspace(0,1,len(points1),
endpoint=True)[np.array(np.isfinite(points1))]
xs2 = np.linspace(0,1,len(points2),
endpoint=True)[np.array(np.isfinite(points2))]
points1 = points1[np.isfinite(points1)]
points2 = points2[np.isfinite(points2)]
return emd.emd(xs1, xs2,
points1/normer(points1),
points2/normer(points2))
def lcm(a,b):
return abs(a * b) / math.gcd(a,b) if a and b else 0
def earth_mover_interp(points1, points2, normer=np.sum):
xs1 = np.linspace(0,1,len(points1),
endpoint=True)[np.array(np.isfinite(points1))]
xs2 = np.linspace(0,1,len(points2),
endpoint=True)[np.array(np.isfinite(points2))]
xs = np.linspace(0, 1, min(100, lcm(len(points1),len(points2))),
endpoint=True)
if np.sum(np.isfinite(points1)) == 0:
return 0
points1 = np.interp(xs, xs1, points1[np.isfinite(points1)])
points2 = np.interp(xs, xs2, points2[np.isfinite(points2)])
return emd.emd(xs, xs,
points1/(normer(points1) if callable(normer) else normer),
points2/(normer(points2) if callable(normer) else normer))
startswith = lambda x: lambda y: y.startswith(x)
def earth_mover_multi_rep(points1, points2, normer=np.sum):
dist = 0.0
reps1 = {col.split('sl')[0] for col in
points1.index
}
reps2 = {col.split('sl')[0] for col in
points2.index
}
for rep1 in reps1:
for rep2 in reps2:
dist += (earth_mover_interp(points1.select(contains(rep1)),
points2.select(contains(rep2)),
normer=normer)**2
/ (len(reps1)*len(reps2)))
return dist**.5
def earth_mover_within(points, sep='_sl', normer=np.sum):
dist = 0.0
n = 0
reps = {
col.split(sep)[0] for col in points.index
}
for points1, points2 in combinations(reps, 2):
n += 1
dist += earth_mover_interp(points.select(contains(points1)),
points.select(contains(points2)),
normer=normer)
return dist / n
def earth_mover_multi(points1, points2, normer=np.sum):
dist = 0.0
embs = {col.split('sl')[0] for col in points1.index}
#sums = [[],[]]
for emb in embs:
if ((sum(np.isfinite(points1.select(startswith(emb)))) == 0)
or (sum(np.isfinite(points2.select(startswith(emb)))) == 0)):
continue
dist += earth_mover_interp(points1.select(startswith(emb))+1e-5,
points2.select(startswith(emb))+1e-5,
normer=normer,
)**2
#sums[0].append(points1.select(startswith(emb)).mean())
#sums[1].append(points2.select(startswith(emb)).mean())
#dist += earth_mover(np.array(sums[0]), np.array(sums[1]))
return (dist/len(embs))**.5
def mp_earth_mover(args):
i, j = args
return earth_mover(i, j)
def mp_earth_mover_multi(args):
i, j = args
return earth_mover_multi(i, j)
import progressbar as pb
def pdist(X, metric, p=2, w=None, V=None, VI=None):
X = np.asarray(X, order='c')
s = X.shape
if len(s) != 2:
raise ValueError('A 2-dimensional array must be passed.')
m, n = s
dm = np.zeros((m * (m - 1) / 2,), dtype=np.double)
k = 0
prog = pb.ProgressBar(widgets=['calculating distances', pb.Bar(),
pb.Percentage(), pb.ETA()])
for i in prog(range(0, m - 1)):
for j in range(i + 1, m):
dm[k] = metric(X[i], X[j])
k = k + 1
prog.finish()
return dm
def mp_mapped(args):
manager, X, i, j = args
metric = manager.get_metric()
return metric(X[i], X[j])
def mp_pdist(X, metric, p=2, w=None, V=None, VI=None):
import multiprocessing
from multiprocessing.managers import BaseManager
X = np.asarray(X, order='c')
s = X.shape
if len(s) != 2:
raise ValueError('A 2-dimensional array must be passed.')
m, n = s
dm = np.zeros((m * (m - 1) / 2,), dtype=np.double)
pool = multiprocessing.Pool(10)
func = globals()["mp_"+metric.__name__]
k = 0
prog = pb.ProgressBar(widgets=['calculating distances', pb.Bar(),
pb.Percentage(), pb.ETA()])
for i in prog(range(0, m - 1)):
ks = np.arange(k, k + m - i - 1)
inputs = [(X[i], X[j]) for j in range(i+1, m)]
dm[ks] = pool.map(func, inputs)
k = ks[-1] + 1
prog.finish()
pool.close()
return dm
def mp_pandas_pdist(X, metric, p=2, w=None, V=None, VI=None):
import multiprocessing
s = X.shape
if len(s) != 2:
raise ValueError('A 2-dimensional array must be passed.')
m, n = s
dm = np.zeros((m * (m - 1) / 2,), dtype=np.double)
pool = multiprocessing.Pool()
if metric.__name__.endswith('multi'):
func = globals()["mp_"+metric.__name__]
else:
func = globals()["mp_"+metric.__name__+"_multi"]
k = 0
prog = pb.ProgressBar(widgets=['calculating distances', pb.Bar(),
pb.Percentage(), pb.ETA()])
for i in prog(range(0, m - 1)):
ks = np.arange(k, k + m - i - 1)
inputs = [(X.ix[i], X.ix[j]) for j in range(i+1, m)]
dm[ks] = pool.map(func, inputs)
k = ks[-1] + 1
prog.finish()
pool.close()
return dm
def pandas_pdist(X, metric, p=2, w=None, V=None, VI=None):
s = X.shape
if len(s) != 2:
raise ValueError('A 2-dimensional array must be passed.')
m, n = s
dm = np.zeros((m * (m - 1) / 2,), dtype=np.double)
if metric.__name__.endswith('multi'):
func = globals()["mp_"+metric.__name__]
else:
func = globals()["mp_"+metric.__name__+"_multi"]
k = 0
prog = pb.ProgressBar(widgets=['calculating distances', pb.Bar(),
pb.Percentage(), pb.ETA()])
for i in prog(range(0, m - 1)):
ks = np.arange(k, k + m - i - 1)
inputs = [(X.ix[i], X.ix[j]) for j in range(i+1, m)]
print(len(inputs))
print(ks)
dm[ks] = list(map(func, inputs))
k = ks[-1] + 1
prog.finish()
return dm
if __name__ == "__main__":
import pandas as pd
import matplotlib.pyplot as mpl
from multiprocessing import Pool
eps = 1.01
kwargs = dict(index_col=0,
keep_default_na=False,
na_values=['---'])
ase = pd.read_table('analysis_godot/ase_summary.tsv', **kwargs)
expr = pd.read_table('analysis_godot/summary_fb.tsv', **kwargs)
translate = pd.read_table('prereqs/gene_map_table_fb_2016_01.tsv', index_col=1).ix[:,0]
with Pool() as p:
diff_from_uniform = pd.Series(
data=map(
get_nonuniform_mp,
ase.iterrows()),
index=ase.index
)
diff_from_uniform2 = pd.Series(
data=map(
get_nonuniform_inv_mp,
ase.iterrows()),
index=ase.index
)
good_ase = pd.np.isfinite(ase).sum(axis=1) > 25
lott = pd.read_table('prereqs/journal.pbio.1000590.s002', index_col=0)
is_mat = {gene for gene, c in lott.CLASS.iteritems() if c == 'mat'}
is_mat = translate.apply(is_mat.__contains__)
diff_from_uniform = diff_from_uniform.ix[~(is_mat.ix[diff_from_uniform.index].replace(pd.np.nan, False)) & good_ase].sort_values(ascending=False)
diff_from_uniform2 = diff_from_uniform2.ix[~(is_mat.ix[diff_from_uniform2.index].replace(pd.np.nan, False)) & good_ase].sort_values(ascending=False)
diff_from_uniform.to_csv('analysis/results/diff_from_uniform.tsv', sep='\t')
diff_from_uniform2.to_csv('analysis/results/diff_from_uniform2.tsv', sep='\t')
import PlotUtils
ix = diff_from_uniform.index[:50].intersection(expr.index)
ix2 = diff_from_uniform2.index[:50].intersection(expr.index)
plot_kwargs = dict(
draw_row_labels=True,
box_size=15,total_width=150,
split_columns=True, col_sep='_sl',
convert=True,
progress_bar=True,
)
PlotUtils.svg_heatmap(
ase.ix[ix, :-1],
'analysis/results/diff_from_uniform.svg',
row_labels=translate.ix[ix],
norm_rows_by='center0pre',
cmap=mpl.cm.RdBu,
**plot_kwargs
)
PlotUtils.svg_heatmap(
expr.ix[ix,:-1],
'analysis/results/diff_from_uniform_expr.svg',
row_labels=translate.ix[ix],
norm_rows_by='max',
cmap=PlotUtils.ISH,
**plot_kwargs
)
PlotUtils.svg_heatmap(
ase.ix[ix2, :-1],
'analysis/results/diff_from_uniform2.svg',
row_labels=translate.ix[ix2],
norm_rows_by='center0pre',
cmap=mpl.cm.RdBu,
**plot_kwargs
)
PlotUtils.svg_heatmap(
expr.ix[ix2,:-1],
'analysis/results/diff_from_uniform2_expr.svg',
row_labels=translate.ix[ix2],
norm_rows_by='max',
cmap=PlotUtils.ISH,
**plot_kwargs
)