-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquaternion.c
1083 lines (927 loc) · 29.3 KB
/
quaternion.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "quaternion.h"
//creates and returns a quaternion with its Cartesian form
Quaternion QInit(const double a,const double b,const double c,const double d)
{
Quaternion q;
q.a = a;
q.b = b;
q.c = c;
q.d = d;
return q;
}
Quaternion QInitZero()
{
Quaternion q;
q.a = 0.;
q.b = 0.;
q.c = 0.;
q.d = 0.;
return q;
}
//returns the conjugate quaternion
Quaternion QConj(const Quaternion q1)
{
Quaternion q;
q.a = q1.a;
q.b = - q1.b;
q.c = - q1.c;
q.d = - q1.d;
return q;
}
//returns the opponent quaternion
Quaternion QOpp(const Quaternion q1)
{
Quaternion q;
q.a = - q1.a;
q.b = - q1.b;
q.c = - q1.c;
q.d = - q1.d;
return q;
}
//returns the real part
double QReal(const Quaternion q)
{
return q.a;
}
//returns the first imaginary part
double QImI(const Quaternion q)
{
return q.b;
}
//returns the second imaginary part
double QImJ(const Quaternion q)
{
return q.c;
}
//returns the third imaginary part
double QImK(const Quaternion q)
{
return q.d;
}
//Creates and returns a quaternion from its exponential form
//Nu must be a single unit quaternion
Quaternion QInitExp(const Quaternion Nu,const double theta)
{
double sinus;
sinus=sin(theta);
return QInit(cos(theta),QImI(Nu)*sinus,QImJ(Nu)*sinus,QImK(Nu)*sinus);
}
//returns the complete imaginary part
Quaternion QImag(const Quaternion q)
{
Quaternion q1;
q1.a = 0;
q1.b = q.b;
q1.c = q.c;
q1.d = q.d;
return q1;
}
//returns the quaternion norm
double QNorm(const Quaternion q)
{
return sqrt(q.a*q.a + q.b*q.b + q.c*q.c + q.d*q.d);
}
//return the quaternion inverse
Quaternion QInv(const Quaternion q)
{
return QScalDiv(QConj(q),QNorm(q)*QNorm(q));
}
//returns the division between quaternion q1 and q2
//q2 must be different than 0
Quaternion QDiv(const Quaternion q1, const Quaternion q2)
{
return QMult(q1,QInv(q2));
}
//displays the quaternion q on the input stream
void QDisp(const Quaternion q,FILE * stream)
{
fprintf(stream,"q = %g + (%g) i + (%g) j + (%g) k",q.a,q.b,q.c,q.d);
}
//returns the sum between q1 & q2
Quaternion QAdd(const Quaternion q1,const Quaternion q2)
{
Quaternion q;
q.a = q1.a + q2.a;
q.b = q1.b + q2.b;
q.c = q1.c + q2.c;
q.d = q1.d + q2.d;
return q;
}
//returns the sum between q1 and a real
Quaternion QScalAdd(const Quaternion q1,const double dbl1)
{
Quaternion q;
q.a = q1.a + dbl1;
q.b = q1.b;
q.c = q1.c;
q.d = q1.d;
return q;
}
//returns the difference between q1 & q2
Quaternion QDiff(const Quaternion q1,const Quaternion q2)
{
Quaternion q;
q.a = q1.a - q2.a;
q.b = q1.b - q2.b;
q.c = q1.c - q2.c;
q.d = q1.d - q2.d;
return q;
}
//returns the multiplication between q1 & q2
Quaternion QMult(const Quaternion q1,const Quaternion q2)
{
Quaternion q;
q.a = q1.a*q2.a - q1.b*q2.b - q1.c*q2.c - q1.d*q2.d;
q.b = q1.a*q2.b + q1.b*q2.a + q1.c*q2.d - q1.d*q2.c;
q.c = q1.a*q2.c - q1.b*q2.d + q1.c*q2.a + q1.d*q2.b;
q.d = q1.a*q2.d + q1.b*q2.c - q1.c*q2.b + q1.d*q2.a;
return q;
}
//returns the scalar product of q1 & q2
double QScalProd(const Quaternion q1,const Quaternion q2)
{
return q1.a*q2.a + q1.b*q2.b + q1.c*q2.c + q1.d*q2.d;
}
//returns the multiplication of quaternion q1 with a scalar
Quaternion QScalMult(const Quaternion q1,const double dbl1)
{
Quaternion q;
q.a = q1.a * dbl1;
q.b = q1.b * dbl1;
q.c = q1.c * dbl1;
q.d = q1.d * dbl1;
return q;
}
//returns the division of quaternion q by a scalar
Quaternion QScalDiv(const Quaternion q1,const double dbl1)
{
Quaternion q;
q.a = q1.a / dbl1;
q.b = q1.b / dbl1;
q.c = q1.c / dbl1;
q.d = q1.d / dbl1;
return q;
}
void QExp_LogRo_Mu_Phi(const Quaternion q, double * LogRo, Quaternion * qMu, double * Phi)
{
*LogRo = log(QNorm(q));
*qMu = QScalDiv(QImag(q),QNorm(QImag(q)));//qMu est donc un quaternion pur
*Phi = atan(QNorm(QImag(q))/QReal(q));
}
void QExp_Ro_Mu_Phi(const Quaternion q, double * Ro, Quaternion * qMu, double * Phi)
{
*Ro = QNorm(q);
*qMu = QScalDiv(QImag(q),QNorm(QImag(q)));
*Phi = atan(QNorm(QImag(q))/QReal(q));
}
void QParOrtho(const Quaternion q,const Quaternion p, Quaternion * qPar, Quaternion * qOrtho)
{
*qPar = QScalMult(QAdd(q,QMult(p,QMult(q,p))),0.5);
*qOrtho = QScalMult(QAdd(q,QOpp(QMult(p,QMult(q,p)))),0.5);
}
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Matrix operations on quaternion
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
int QMatrixAllocate(int intHeight,int intWidth,Quaternion *** pQMatrix)
{
int i,intCount,j;
(*pQMatrix)=(struct stQuaternion **)malloc(sizeof(struct stQuaternion *)*intHeight);
if ( (*pQMatrix) != NULL) /*allocation successful*/
{
for(i=0;i<intHeight;i++)
{
(*pQMatrix)[i]=(struct stQuaternion *)malloc(sizeof(struct stQuaternion)*intWidth);
if ((*pQMatrix)[i] == NULL) //allocation error
{
printf("allocation memory error\n");
//we need to free the matrix memory that is already allocated
for(j=i-1;j<=0;j--)
free((*pQMatrix)[j]);
free(*pQMatrix);
return FALSE;
}
}
}
else /*allocation error*/
{
printf("allocation memory error\n");
return FALSE;
}
return TRUE;
}
/* we need to free the matrix memory */
void QMatrixFree(int intHeight,Quaternion *** pQMatrix)
{
int i;
for(i=0;i<=intHeight-1;i++)
free((*pQMatrix)[i]);
free(*pQMatrix);
printf("quaternion matrix memory free\n");
}
void QMatrixDisp(const Quaternion **qMat,int intHeight,int intWidth,int intPart,FILE * stream)
{
int i,j;
switch(intPart)
{
case 1 : printf("partie reelle\n");
for(i=0;i<intHeight;i++)
{
for(j=0;j<intWidth;j++)
printf("%6.2lf ",qMat[i][j].a);
printf("\n");
}
break;
case 2 : printf("partie imaginaire I\n");
for(i=0;i<intHeight;i++)
{
for(j=0;j<intWidth;j++)
printf("%6.2lf ",qMat[i][j].b);
printf("\n");
}
break;
case 3 : printf("partie imaginaire J\n");
for(i=0;i<intHeight;i++)
{
for(j=0;j<intWidth;j++)
printf("%6.2lf ",qMat[i][j].c);
printf("\n");
}
break;
case 4 : printf("partie imaginaire K\n");
for(i=0;i<intHeight;i++)
{
for(j=0;j<intWidth;j++)
printf("%6.2lf ",qMat[i][j].d);
printf("\n");
}
break;
default : printf("partie reelle\n");
for(i=0;i<intHeight;i++)
{
for(j=0;j<intWidth;j++)
printf("%6.2lf ",qMat[i][j].a);
printf("\n");
}
printf("partie imaginaire I\n");
for(i=0;i<intHeight;i++)
{
for(j=0;j<intWidth;j++)
printf("%6.2lf ",qMat[i][j].b);
printf("\n");
}
printf("partie imaginaire J\n");
for(i=0;i<intHeight;i++)
{
for(j=0;j<intWidth;j++)
printf("%6.2lf ",qMat[i][j].c);
printf("\n");
}
printf("partie imaginaire K\n");
for(i=0;i<intHeight;i++)
{
for(j=0;j<intWidth;j++)
printf("%6.2lf ",qMat[i][j].d);
printf("\n");
}
}
}
//cette procedure initialise la matrice avec des valeurs nulles
int QMatInitZero(Quaternion ***pqtnMat, int * dim)
{
int i,j,ind=0;
if(pqtnMat)
{
for(i=0;i<dim[0];i++)
for(j=0;j<dim[0];j++)
(*pqtnMat)[i][j] = QInitZero();
}
else return FALSE;
return TRUE;
}
// this procedure take the composant from r, g, and b arrays
// to fill the Quaternion Matrix QMatrix.
int QSetMatrix(double r [],double g[],double b[],int intHeight,int intWidth,
Quaternion *** pQMatrix)
{
int i,j,ind=0;
if(pQMatrix)
{
for(i=0;i<intHeight;i++)
for(j=0;j<intWidth;j++)
{
(*pQMatrix)[i][j] = QInit(0.,r[ind],g[ind],b[ind]);
ind++;
}
}
else return FALSE;
return TRUE;
}
// cette procedure remplit la matrice avec les matrices doubles passées en parametres
int QSetMatrixFromDblMat(const double ** dblCompR,const double ** dblCompI, const double ** dblCompJ,
const double ** dblCompK,int * intDim, Quaternion *** pQMatrix)
{
int i,j;
if(pQMatrix)
{
for(i=0;i<intDim[0];i++)
for(j=0;j<intDim[1];j++)
(*pQMatrix)[i][j] = QInit(dblCompR[i][j],dblCompI[i][j],dblCompJ[i][j],dblCompK[i][j]);
}
else return FALSE;
return TRUE;
}
// this procedure take the composant from r, i, j and k arrays
// to fill the Quaternion Matrix QMatrix.
int QSetMatrixComp(double r [],double i[],double j[],double k[],int intHeight,int intWidth,
Quaternion *** pQMatrix)
{
int bx,by,ind=0;
if( QMatrixAllocate(intHeight,intWidth,pQMatrix) == TRUE)
{
for(bx=0;bx<intHeight;bx++)
for(by=0;by<intWidth;by++)
{
(*pQMatrix)[bx][by] = QInit(r[ind],i[ind],j[ind],k[ind]);
ind++;
}
}
else return FALSE;
return TRUE;
}
// this procedure fill the r, g, and b arrays
// from the Quaternion Matrix QMatrix imaginary composants.
void QGetMatrixCompl(double * mr[],double * mi[],double * mj[],double * mk[],int intHeight,int intWidth,
Quaternion ** QMatrix)
{
int i,j,ind=0;
for(i=0;i<intHeight;i++)
for(j=0;j<intWidth;j++)
{
(*mr)[ind] = QReal(QMatrix[i][j]);
(*mi)[ind] = QImI(QMatrix[i][j]);
(*mj)[ind] = QImJ(QMatrix[i][j]);
(*mk)[ind] = QImK(QMatrix[i][j]);
ind++;
}
}
// this procedure fill the i, j, and k arrays
// from the Quaternion Matrix QMatrix imaginary composants.
void QGetMatrixImagPart(double * i[],double * j[],double * k[],int intHeight,int intWidth,
Quaternion ** QMatrix)
{
int x,y,ind=0;
for(x=0;x<intHeight;x++)
for(y=0;y<intWidth;y++)
{
(*i)[ind] = QImI(QMatrix[x][y]);
(*j)[ind] = QImJ(QMatrix[x][y]);
(*k)[ind] = QImK(QMatrix[x][y]);
ind++;
}
}
void QCopyMatrixPartR(const Quaternion ** QMatrixFrom , Quaternion *** pQMatrixTo, int * intDim)
{
int x,y,ind=0;
for(x=0;x<intDim[0];x++)
for(y=0;y<intDim[1];y++)
{
(*pQMatrixTo)[x][y].a = QMatrixFrom[x][y].a;
}
}
void QCopyMatrixPartI(const Quaternion ** QMatrixFrom , Quaternion *** pQMatrixTo, int * intDim)
{
int x,y,ind=0;
for(x=0;x<intDim[0];x++)
for(y=0;y<intDim[1];y++)
{
(*pQMatrixTo)[x][y].b = QMatrixFrom[x][y].b;
}
}
void QCopyMatrixPartJ(const Quaternion ** QMatrixFrom , Quaternion *** pQMatrixTo, int * intDim)
{
int x,y,ind=0;
for(x=0;x<intDim[0];x++)
for(y=0;y<intDim[1];y++)
{
(*pQMatrixTo)[x][y].c = QMatrixFrom[x][y].c;
}
}
void QCopyMatrixPartK(const Quaternion ** QMatrixFrom , Quaternion *** pQMatrixTo, int * intDim)
{
int x,y,ind=0;
for(x=0;x<intDim[0];x++)
for(y=0;y<intDim[1];y++)
{
(*pQMatrixTo)[x][y].d = QMatrixFrom[x][y].d;
}
}
void QGetMatrixComponent(double * comp[],int intHeight,int intWidth,Quaternion ** QMatrix,char * strComp)
{
int x,y,ind=0;
for(x=0;x<intHeight;x++)
for(y=0;y<intWidth;y++)
{
if(strcmp(strComp,"R")==0)
(*comp)[ind] = QReal(QMatrix[x][y]);
if(strcmp(strComp,"I")==0)
(*comp)[ind] = QImI(QMatrix[x][y]);
if(strcmp(strComp,"J")==0)
(*comp)[ind] = QImJ(QMatrix[x][y]);
if(strcmp(strComp,"K")==0)
(*comp)[ind] = QImK(QMatrix[x][y]);
ind++;
}
}
void QSetMatrixComponent(double comp[],int intHeight,int intWidth,Quaternion *** pQMatrix,char * strComp)
{
int i,j,ind=0;
for(i=0;i<intHeight;i++)
for(j=0;j<intWidth;j++)
{
if(strcmp(strComp,"R")==0)
(*pQMatrix)[i][j].a = comp[ind];
if(strcmp(strComp,"I")==0)
(*pQMatrix)[i][j].b = comp[ind];
if(strcmp(strComp,"J")==0)
(*pQMatrix)[i][j].c = comp[ind];
if(strcmp(strComp,"K")==0)
(*pQMatrix)[i][j].d = comp[ind];
ind++;
}
}
// this fonction initialise the matrix given in "pQMatrix"
//each componant of the matrix will be
// set with the "QInitValue" quaternion.
void QInitMatrix(int intHeight,int intWidth, Quaternion QInitValue, Quaternion *** pQMatrix)
{
int i,j;
for(i=0;i<intHeight;i++)
for(j=0;j<intWidth;j++)
{
(*pQMatrix)[i][j] = QInitValue;
}
}
// This function will shift the contents of the two sub-matrix pointed by
// MatFrom and MatTo as describe in the following scheme
// |-----------| |-----------|
// | 1 | 2 | | 4 | 3 |
// |-----------| ---> |-----------|
// | 3 | 4 | | 2 | 1 |
// |-----------| |-----------|
void QCopySubMatrix(Quaternion ** QMatFrom,Quaternion *** pQMatTo,int intXFrom,int intYFrom,
int intXTo,int intYTo,int intHeight,int intWidth)
{
int i,j;
for(i=0;i<intHeight;i++)
for(j=0;j<intWidth;j++)
(*pQMatTo)[i+intXTo][j+intYTo] = QMatFrom[i+intXFrom][j+intYFrom];
}
void QMatrixShift(Quaternion ** QMatFrom,Quaternion *** pQMatShifted,int intHeight,int intWidth)
{
int intMid;
intMid = intHeight/2;
QCopySubMatrix(QMatFrom,pQMatShifted,0,0,intMid,intMid,intMid,intMid); //1->4
QCopySubMatrix(QMatFrom,pQMatShifted,intMid,intMid,0,0,intMid,intMid); //4->1
QCopySubMatrix(QMatFrom,pQMatShifted,intMid,0,0,intMid,intMid,intMid); //2->3
QCopySubMatrix(QMatFrom,pQMatShifted,0,intMid,intMid,0,intMid,intMid); //3->2
}
int IsQMatImEpsilon(int * intDim,Quaternion ** qtnMat,double dblEpsilon)
{
int i,j;
for(i=0;i<intDim[0];i++)
for(j=0;j<intDim[1];j++)
if(fabs(QReal(qtnMat[i][j]))>=dblEpsilon) return FALSE;
return TRUE;
}
int IsQMatReEpsilon(int * intDim,Quaternion ** qtnMat,double dblEpsilon)
{
int i,j;
for(i=0;i<intDim[0];i++)
for(j=0;j<intDim[1];j++)
if((fabs(QImI(qtnMat[i][j]))>=dblEpsilon)||(fabs(QImJ(qtnMat[i][j]))>=dblEpsilon)
||(fabs(QImK(qtnMat[i][j]))>=dblEpsilon)) return FALSE;
return TRUE;
}
void QMatDisp(const Quaternion **QMat,int * intDim,FILE * stream)
{
int i,j;
for(i=0;i<intDim[0];i++)
{
for(j=0;j<intDim[1];j++)
{
fprintf(stream,"%4.2lf+(%4.2lf)i+(%4.2lf)j+(%4.2lf)k ",QReal(QMat[i][j]),QImI(QMat[i][j]),QImJ(QMat[i][j]),QImK(QMat[i][j]));
}
fprintf(stream,"\n");
}
}
//MatrixIn1 * MatrixIn2 -> MatrixOut multiplication Term by Term
void QMatMultTBT(Quaternion ** QMatIn1, Quaternion ** QMatIn2, Quaternion *** pQMatOut,int * dim)
{
int i,j;
QInitMatrix(dim[0],dim[1],QInit(1.0,0.,0.,0.),pQMatOut);
for(i=0;i<dim[0];i++)
for(j=0;j<dim[1];j++)
(*pQMatOut)[i][j]=QMult(QMatIn1[i][j],QMatIn2[i][j]);
}
//cette fonction effectue la multiplication terme par terme avec une matrice de reels
void QMatMultTBTWithDblMat(Quaternion ** QMatIn1, double ** dblMatIn2, Quaternion *** pQMatOut,int * dim)
{
int i,j;
QInitMatrix(dim[0],dim[1],QInit(1.0,0.,0.,0.),pQMatOut);
for(i=0;i<dim[0];i++)
for(j=0;j<dim[1];j++)
(*pQMatOut)[i][j]=QScalMult(QMatIn1[i][j],dblMatIn2[i][j]);
}
void QMatConj(Quaternion ** QMatIn, int * dim, Quaternion *** pQMatConj)
{
int i,j;
QInitMatrix(dim[0],dim[1],QInit(1.0,0.,0.,0.),pQMatConj);
for(i=0;i<dim[0];i++)
for(j=0;j<dim[1];j++)
(*pQMatConj)[i][j]=QConj(QMatIn[i][j]);
}
void QMatScalMult(Quaternion ** QMatIn, int * dim, Quaternion *** pQMatOut,double dblScal)
{
int i,j;
QInitMatrix(dim[0],dim[1],QInit(0.0,0.,0.,0.),pQMatOut);
for(i=0;i<dim[0];i++)
for(j=0;j<dim[1];j++)
(*pQMatOut)[i][j]=QScalMult(QMatIn[i][j],dblScal);
}
void QSubImageUnion(Quaternion ** qtnll,Quaternion ** qtnlh,Quaternion ** qtnhl,Quaternion ** qtnhh,
int *dim,Quaternion *** pqtnComp)
{
int i,j;
QInitMatrix(dim[0],dim[1],QInit(0.0,0.,0.,0.),pqtnComp);
for(i=0;i<dim[0]/2;i++)
{
for(j=0;j<dim[1]/2;j++)
{
(*pqtnComp)[i][j]= qtnll[i][j];
(*pqtnComp)[i+dim[0]/2][j]= qtnlh[i][j];
(*pqtnComp)[i][j+dim[1]/2]= qtnhl[i][j];
(*pqtnComp)[i+dim[0]/2][j+dim[1]/2]= qtnhh[i][j];
}
}
}
void QThumbnailsConstruct(Quaternion *** pqtnMatOut,int * intDimOut, Quaternion **qtnLow,
Quaternion **qtnHighV,Quaternion **qtnHighH,Quaternion **qtnHighD)
{
int i,j;
//ici on remplit la matrice des sortie avec uniquement un point sur deux de la matrice d'origine.
for(i=0;i<intDimOut[0]/2;i++)
for(j=0;j<intDimOut[1]/2;j++)
{
(*pqtnMatOut)[i][j]=qtnLow[i][j];
(*pqtnMatOut)[i][j+intDimOut[1]/2]=qtnHighV[i][j];
(*pqtnMatOut)[i+intDimOut[0]/2][j]=qtnHighH[i][j];
(*pqtnMatOut)[i+intDimOut[0]/2][j+intDimOut[1]/2]=qtnHighD[i][j];
}
}
void QThumbnailsConstructWithoutLow(Quaternion *** pqtnMatOut,int * intDimOut,
Quaternion **qtnHighV,Quaternion **qtnHighH,Quaternion **qtnHighD)
{
int i,j;
//ici on remplit la matrice des sortie avec uniquement un point sur deux de la matrice d'origine.
for(i=0;i<intDimOut[0]/2;i++)
for(j=0;j<intDimOut[1]/2;j++)
{
(*pqtnMatOut)[i][j+intDimOut[1]/2]=qtnHighV[i][j];
(*pqtnMatOut)[i+intDimOut[0]/2][j]=qtnHighH[i][j];
(*pqtnMatOut)[i+intDimOut[0]/2][j+intDimOut[1]/2]=qtnHighD[i][j];
}
}
void QThumbnailsConstructLow(Quaternion *** pqtnMatOut,int * intDimLow, Quaternion **qtnLow)
{
int i,j;
//ici on remplit la matrice des sortie avec uniquement un point sur deux de la matrice d'origine.
for(i=0;i<intDimLow[0];i++)
for(j=0;j<intDimLow[1];j++)
(*pqtnMatOut)[i][j]=qtnLow[i][j];
}
void QMatCopy(Quaternion ***pqtnMatCpy,int *intDim,const Quaternion **qtnMat)
{
int i,j;
for(i=0;i<intDim[0];i++)
for(j=0;j<intDim[1];j++)
(*pqtnMatCpy)[i][j]=qtnMat[i][j];
}
void QThumbnailsExtract(const Quaternion ** qtnMat,int * intDim, Quaternion ***pqtnLow,
Quaternion ***pqtnHighV,Quaternion ***pqtnHighH,Quaternion ***pqtnHighD)
{
int i,j;
//les sous matrices complexes sont deja allouées
for(i=0;i<intDim[0]/2;i++)
for(j=0;j<intDim[1]/2;j++)
{
(*pqtnLow)[i][j]=qtnMat[i][j];
(*pqtnHighV)[i][j]=qtnMat[i][j+intDim[1]/2];
(*pqtnHighH)[i][j]=qtnMat[i+intDim[0]/2][j];
(*pqtnHighD)[i][j]=qtnMat[i+intDim[0]/2][j+intDim[1]/2];
}
}
void QNThumbnailsExtract(const Quaternion **qtnMat,int *intDim,int intN,Quaternion ***pqtnll,Quaternion ***pqtnlh,
Quaternion ***pqtnhl,Quaternion ***pqtnhh)
{
int i,j;
int dimTempB[2];
dimTempB[0]=intDim[0]>>intN-1;
dimTempB[1]=intDim[1]>>intN-1;
//les sous matrices complexes sont deja allouées
for(i=0;i<dimTempB[0]/2;i++)
for(j=0;j<dimTempB[1]/2;j++)
{
(*pqtnll)[i][j]=qtnMat[i][j];
(*pqtnlh)[i][j]=qtnMat[i][j+dimTempB[1]/2];
(*pqtnhl)[i][j]=qtnMat[i+dimTempB[0]/2][j];
(*pqtnhh)[i][j]=qtnMat[i+dimTempB[0]/2][j+dimTempB[1]/2];
}
}
void QThumbnailsExtractLow(Quaternion ** qtnMat,int * intDim, Quaternion ***pqtnLow)
{
int i,j;
//les sous matrices complexes sont deja allouées
for(i=0;i<intDim[0]/2;i++)
for(j=0;j<intDim[1]/2;j++)
(*pqtnLow)[i][j]=qtnMat[i][j];
}
//cette fonction somme les deux matrices passées en parametre
void QMatAdd(Quaternion *** pqtnMatAdd,Quaternion ** qtnMat1,Quaternion ** qtnMat2,int *dim)
{
int i,j;
for(i=0;i<dim[0];i++)
for(j=0;j<dim[1];j++)
(*pqtnMatAdd)[i][j]=QAdd(qtnMat1[i][j],qtnMat1[i][j]);
}
void QAdd4(Quaternion *** pqtnQMat,int *dim,Quaternion ** qtnQLow,
Quaternion ** qtnQHighV,Quaternion ** qtnQHighH,Quaternion ** qtnQHighD)
{
int i,j;
for(i=0;i<dim[0];i++)
for(j=0;j<dim[1];j++)
{
(*pqtnQMat)[i][j]=QAdd(qtnQLow[i][j],qtnQHighV[i][j]);
(*pqtnQMat)[i][j]=QAdd((*pqtnQMat)[i][j],qtnQHighH[i][j]);
(*pqtnQMat)[i][j]=QAdd((*pqtnQMat)[i][j],qtnQHighD[i][j]);
}
}
//void QMatScaleIm0255(const Quaternion **qtnMatIn,int *dim, Quaternion *** pqtnMatOut)
//{
// double dblMin,dblMax;
// double dblRMin,dblRMax,dblIMin,dblIMax,dblJMin,dblJMax,dblKMin,dblKMax;
//
//
// //on va chercher les extrema
// QMat_Min_Max(qtnMatIn,dim,&dblRMin,&dblRMax,&dblIMin,&dblIMax,&dblJMin,&dblJMax,&dblKMin,&dblKMax);
// //ensuite on modifie l'echelle des parties imaginaires
// QImMat_ChgScale_IntLvlMax(qtnMatIn,dim,255,
// dblIMin,dblIMax,dblJMin,dblJMax,dblKMin,dblKMax,pqtnMatOut);
//}
void QMatScaleIm0255(Quaternion** qtnlh,Quaternion** qtnhl,Quaternion** qtnhh,
int *dim, Quaternion *** pqtnlhOut,Quaternion *** pqtnhlOut,Quaternion *** pqtnhhOut)
{
double dblMin,dblMax;
double dblRMin,dblRMax,dblIMin,dblIMax,dblJMin,dblJMax,dblKMin,dblKMax;
//LH
//on va chercher les extrema
QMat_Min_Max((const Quaternion **)qtnlh,dim,&dblRMin,&dblRMax,&dblIMin,&dblIMax,
&dblJMin,&dblJMax,&dblKMin,&dblKMax);
//ensuite on modifie l'echelle des parties imaginaires
QImMat_ChgScale_IntLvlMax((const Quaternion **)qtnlh,dim,255,dblIMin,dblIMax,
dblJMin,dblJMax,dblKMin,dblKMax,pqtnlhOut);
//HL
QMat_Min_Max((const Quaternion **)qtnhl,dim,&dblRMin,&dblRMax,&dblIMin,&dblIMax,
&dblJMin,&dblJMax,&dblKMin,&dblKMax);
//ensuite on modifie l'echelle des parties imaginaires
QImMat_ChgScale_IntLvlMax((const Quaternion **)qtnhl,dim,255,dblIMin,dblIMax,
dblJMin,dblJMax,dblKMin,dblKMax,pqtnhlOut);
//HH
QMat_Min_Max((const Quaternion **)qtnhh,dim,&dblRMin,&dblRMax,&dblIMin,&dblIMax,
&dblJMin,&dblJMax,&dblKMin,&dblKMax);
//ensuite on modifie l'echelle des parties imaginaires
QImMat_ChgScale_IntLvlMax((const Quaternion **)qtnhh,dim,255,dblIMin,dblIMax,
dblJMin,dblJMax,dblKMin,dblKMax,pqtnhhOut);
}
void QMat_Min_Max(const Quaternion ** QMat,int * dim,double * dblRMin,double * dblRMax,
double * dblIMin,double * dblIMax,double * dblJMin,double * dblJMax,double * dblKMin,double * dblKMax)
{
int bx,by;
*dblRMin=DBL_MAX;
*dblRMax=DBL_MIN;
*dblIMin=DBL_MAX;
*dblIMax=DBL_MIN;
*dblJMin=DBL_MAX;
*dblJMax=DBL_MIN;
*dblKMin=DBL_MAX;
*dblKMax=DBL_MIN;
for (bx=0;bx<dim[0];bx++)
for (by=0;by<dim[1];by++)
{
*dblRMin = Denis_Min(*dblRMin,QMat[bx][by].a);
*dblRMax = Denis_Max(*dblRMax,QMat[bx][by].a);
*dblIMin = Denis_Min(*dblIMin,QMat[bx][by].b);
*dblIMax = Denis_Max(*dblIMax,QMat[bx][by].b);
*dblJMin = Denis_Min(*dblJMin,QMat[bx][by].c);
*dblJMax = Denis_Max(*dblJMax,QMat[bx][by].c);
*dblKMin = Denis_Min(*dblKMin,QMat[bx][by].d);
*dblKMax = Denis_Max(*dblKMax,QMat[bx][by].d);
}
}
void QMat_Min_Max2(const Quaternion ** QMatPure,int * dim,double * dblMin,double * dblMax)
{
int bx,by;
*dblMin=DBL_MAX;
*dblMax=DBL_MIN;
for (bx=0;bx<dim[0];bx++)
for (by=0;by<dim[1];by++)
{
*dblMin = Denis_Min(*dblMin,QMatPure[bx][by].a);
*dblMax = Denis_Max(*dblMax,QMatPure[bx][by].a);
*dblMin = Denis_Min(*dblMin,QMatPure[bx][by].b);
*dblMax = Denis_Max(*dblMax,QMatPure[bx][by].b);
*dblMin = Denis_Min(*dblMin,QMatPure[bx][by].c);
*dblMax = Denis_Max(*dblMax,QMatPure[bx][by].c);
*dblMin = Denis_Min(*dblMin,QMatPure[bx][by].d);
*dblMax = Denis_Max(*dblMax,QMatPure[bx][by].d);
}
}
//////////////////////////////////////////////////////////////////////////////
// C H A N G E M E N T D ' E C H E L L E
//////////////////////////////////////////////////////////////////////////////
int QMat_ChgScale_IntLvlMax(const Quaternion ** QMat, int * dim,int intLvlMax,
double dblRMin,double dblRMax,double dblIMin,double dblIMax,double dblJMin,
double dblJMax,double dblKMin,double dblKMax,Quaternion *** pQMatScaled)
{
int bx,by;
double Min,Max;
Min=Denis_Min(dblRMin,dblIMin);
Min=Denis_Min(Min,dblJMin);
Min=Denis_Min(Min,dblKMin);
Max=Denis_Max(dblRMax,dblIMax);
Max=Denis_Max(Max,dblJMax);
Max=Denis_Max(Max,dblKMax);
if(((dblRMax-dblRMin) != 0.)&&((dblIMax-dblIMin) != 0.)&&((dblJMax-dblJMin) != 0.)&&((dblKMax-dblKMin) != 0.))
{
for (bx=0;bx<dim[0];bx++)
for (by=0;by<dim[1];by++)
{
((*pQMatScaled)[bx][by]).a = (double)((int)(((QMat[bx][by].a - Min)*intLvlMax/(Max - Min))+ 0.5));
((*pQMatScaled)[bx][by]).b = (double)((int)(((QMat[bx][by].b - Min)*intLvlMax/(Max - Min))+ 0.5));
((*pQMatScaled)[bx][by]).c = (double)((int)(((QMat[bx][by].c - Min)*intLvlMax/(Max - Min))+ 0.5));
((*pQMatScaled)[bx][by]).d = (double)((int)(((QMat[bx][by].d - Min)*intLvlMax/(Max - Min))+ 0.5));
}
return TRUE;
}
/*if(((dblIMax-dblIMin) != 0.)&&((dblJMax-dblJMin) != 0.)&&((dblKMax-dblKMin) != 0.))
{
for (bx=0;bx<dim[0];bx++)
for (by=0;by<dim[1];by++)
{
((*QMatScaled)[bx][by]).a = (double)((int)(((QMat[bx][by].a - dblRMin)*intLvlMax/(dblRMax - dblRMin))+ 0.5));
((*QMatScaled)[bx][by]).b = (double)((int)(((QMat[bx][by].b - dblIMin)*intLvlMax/(dblIMax - dblIMin))+ 0.5));
((*QMatScaled)[bx][by]).c = (double)((int)(((QMat[bx][by].c - dblJMin)*intLvlMax/(dblJMax - dblJMin))+ 0.5));
((*QMatScaled)[bx][by]).d = (double)((int)(((QMat[bx][by].d - dblKMin)*intLvlMax/(dblKMax - dblKMin))+ 0.5));
}
return TRUE;
}*/
else
{
printf("division by zero\n");
return FALSE;
}
}
int QImMat_ChgScale_IntLvlMax(const Quaternion ** QMat, int * dim,int intLvlMax,
double dblIMin,double dblIMax,double dblJMin,
double dblJMax,double dblKMin,double dblKMax,Quaternion *** pQMatScaled)
{
int bx,by;
double Min,Max;
Min=Denis_Min(dblIMin,dblJMin);
Min=Denis_Min(Min,dblKMin);
Max=Denis_Max(dblIMax,dblJMax);
Max=Denis_Max(Max,dblKMax);
if(((dblIMax-dblIMin) != 0.)&&((dblJMax-dblJMin) != 0.)&&((dblKMax-dblKMin) != 0.))
{
for (bx=0;bx<dim[0];bx++)
for (by=0;by<dim[1];by++)
{
((*pQMatScaled)[bx][by]).b = (double)((int)(((QMat[bx][by].b - Min)*intLvlMax/(Max - Min))+ 0.5));
((*pQMatScaled)[bx][by]).c = (double)((int)(((QMat[bx][by].c - Min)*intLvlMax/(Max - Min))+ 0.5));
((*pQMatScaled)[bx][by]).d = (double)((int)(((QMat[bx][by].d - Min)*intLvlMax/(Max - Min))+ 0.5));
}
return TRUE;
}
else
{
printf("division by zero\n");
return FALSE;
}
}
int QMat_ChgScale_IntLvlMax_PerChannel(const Quaternion ** QMat, int * dim,int intLvlMax,
double dblRMin,double dblRMax,double dblIMin,double dblIMax,double dblJMin,
double dblJMax,double dblKMin,double dblKMax,Quaternion *** pQMatScaled)
{
int bx,by;
if(((dblRMax-dblRMin) != 0.)&&((dblIMax-dblIMin) != 0.)&&((dblJMax-dblJMin) != 0.)&&((dblKMax-dblKMin) != 0.))
{
for (bx=0;bx<dim[0];bx++)
for (by=0;by<dim[1];by++)
{
((*pQMatScaled)[bx][by]).a = (double)((int)(((QMat[bx][by].a - dblRMin)*intLvlMax/(dblRMax - dblRMin))+ 0.5));
((*pQMatScaled)[bx][by]).b = (double)((int)(((QMat[bx][by].b - dblIMin)*intLvlMax/(dblIMax - dblIMin))+ 0.5));
((*pQMatScaled)[bx][by]).c = (double)((int)(((QMat[bx][by].c - dblJMin)*intLvlMax/(dblJMax - dblJMin))+ 0.5));
((*pQMatScaled)[bx][by]).d = (double)((int)(((QMat[bx][by].d - dblKMin)*intLvlMax/(dblKMax - dblKMin))+ 0.5));
}
return TRUE;
}
else
{
printf("division by zero\n");
return FALSE;
}
}
void QMatAbs(const Quaternion ** qtnqMat,int * dim,Quaternion *** pqtnMatAbs)
{
int bx,by;
for (bx=0;bx<dim[0];bx++)
for (by=0;by<dim[1];by++)
{
((*pqtnMatAbs)[bx][by]).a = fabs(qtnqMat[bx][by].a);
((*pqtnMatAbs)[bx][by]).b = fabs(qtnqMat[bx][by].b);
((*pqtnMatAbs)[bx][by]).c = fabs(qtnqMat[bx][by].c);
((*pqtnMatAbs)[bx][by]).d = fabs(qtnqMat[bx][by].d);
}
}
void QMatMax(const Quaternion ** qtnqMat,int * dim,double *** pdblMatMax)
{
int bx,by;
double temp;
for (bx=0;bx<dim[0];bx++)
for (by=0;by<dim[1];by++)
{