{{ header }}
The axis labeling information in pandas objects serves many purposes:
- Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display.
- Enables automatic and explicit data alignment.
- Allows intuitive getting and setting of subsets of the data set.
In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area.
Note
The Python and NumPy indexing operators []
and attribute operator .
provide quick and easy access to pandas data structures across a wide range
of use cases. This makes interactive work intuitive, as there's little new
to learn if you already know how to deal with Python dictionaries and NumPy
arrays. However, since the type of the data to be accessed isn't known in
advance, directly using standard operators has some optimization limits. For
production code, we recommended that you take advantage of the optimized
pandas data access methods exposed in this chapter.
See the :ref:`MultiIndex / Advanced Indexing <advanced>` for MultiIndex
and more advanced indexing documentation.
See the :ref:`cookbook<cookbook.selection>` for some advanced strategies.
Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing.
.loc
is primarily label based, but may also be used with a boolean array..loc
will raiseKeyError
when the items are not found. Allowed inputs are:- A single label, e.g.
5
or'a'
(Note that5
is interpreted as a label of the index. This use is not an integer position along the index.). - A list or array of labels
['a', 'b', 'c']
. - A slice object with labels
'a':'f'
(Note that contrary to usual Python slices, both the start and the stop are included, when present in the index! See :ref:`Slicing with labels <indexing.slicing_with_labels>` and :ref:`Endpoints are inclusive <advanced.endpoints_are_inclusive>`.) - A boolean array (any
NA
values will be treated asFalse
). - A
callable
function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). - A tuple of row (and column) indices whose elements are one of the above inputs.
See more at :ref:`Selection by Label <indexing.label>`.
- A single label, e.g.
.iloc
is primarily integer position based (from0
tolength-1
of the axis), but may also be used with a boolean array..iloc
will raiseIndexError
if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with Python/NumPy slice semantics). Allowed inputs are:- An integer e.g.
5
. - A list or array of integers
[4, 3, 0]
. - A slice object with ints
1:7
. - A boolean array (any
NA
values will be treated asFalse
). - A
callable
function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). - A tuple of row (and column) indices whose elements are one of the above inputs.
See more at :ref:`Selection by Position <indexing.integer>`, :ref:`Advanced Indexing <advanced>` and :ref:`Advanced Hierarchical <advanced.advanced_hierarchical>`.
- An integer e.g.
.loc
,.iloc
, and also[]
indexing can accept acallable
as indexer. See more at :ref:`Selection By Callable <indexing.callable>`.Note
Destructuring tuple keys into row (and column) indexes occurs before callables are applied, so you cannot return a tuple from a callable to index both rows and columns.
Getting values from an object with multi-axes selection uses the following
notation (using .loc
as an example, but the following applies to .iloc
as
well). Any of the axes accessors may be the null slice :
. Axes left out of
the specification are assumed to be :
, e.g. p.loc['a']
is equivalent to
p.loc['a', :]
.
.. ipython:: python ser = pd.Series(range(5), index=list("abcde")) ser.loc[["a", "c", "e"]] df = pd.DataFrame(np.arange(25).reshape(5, 5), index=list("abcde"), columns=list("abcde")) df.loc[["a", "c", "e"], ["b", "d"]]
As mentioned when introducing the data structures in the :ref:`last section
<basics>`, the primary function of indexing with []
(a.k.a. __getitem__
for those familiar with implementing class behavior in Python) is selecting out
lower-dimensional slices. The following table shows return type values when
indexing pandas objects with []
:
Object Type | Selection | Return Value Type |
---|---|---|
Series | series[label] |
scalar value |
DataFrame | frame[colname] |
Series corresponding to colname |
Here we construct a simple time series data set to use for illustrating the indexing functionality:
.. ipython:: python dates = pd.date_range('1/1/2000', periods=8) df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) df
Note
None of the indexing functionality is time series specific unless specifically stated.
Thus, as per above, we have the most basic indexing using []
:
.. ipython:: python s = df['A'] s[dates[5]]
You can pass a list of columns to []
to select columns in that order.
If a column is not contained in the DataFrame, an exception will be
raised. Multiple columns can also be set in this manner:
.. ipython:: python df df[['B', 'A']] = df[['A', 'B']] df
You may find this useful for applying a transform (in-place) to a subset of the columns.
Warning
pandas aligns all AXES when setting Series
and DataFrame
from .loc
.
This will not modify df
because the column alignment is before value assignment.
.. ipython:: python df[['A', 'B']] df.loc[:, ['B', 'A']] = df[['A', 'B']] df[['A', 'B']]
The correct way to swap column values is by using raw values:
.. ipython:: python df.loc[:, ['B', 'A']] = df[['A', 'B']].to_numpy() df[['A', 'B']]
However, pandas does not align AXES when setting Series
and DataFrame
from .iloc
because .iloc
operates by position.
This will modify df
because the column alignment is not done before value assignment.
.. ipython:: python df[['A', 'B']] df.iloc[:, [1, 0]] = df[['A', 'B']] df[['A','B']]
You may access an index on a Series
or column on a DataFrame
directly
as an attribute:
.. ipython:: python sa = pd.Series([1, 2, 3], index=list('abc')) dfa = df.copy()
.. ipython:: python sa.b dfa.A
.. ipython:: python sa.a = 5 sa dfa.A = list(range(len(dfa.index))) # ok if A already exists dfa dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column dfa
Warning
- You can use this access only if the index element is a valid Python identifier, e.g.
s.1
is not allowed. See here for an explanation of valid identifiers. - The attribute will not be available if it conflicts with an existing method name, e.g.
s.min
is not allowed, buts['min']
is possible. - Similarly, the attribute will not be available if it conflicts with any of the following list:
index
,major_axis
,minor_axis
,items
. - In any of these cases, standard indexing will still work, e.g.
s['1']
,s['min']
, ands['index']
will access the corresponding element or column.
If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.
You can also assign a dict
to a row of a DataFrame
:
.. ipython:: python x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]}) x.iloc[1] = {'x': 9, 'y': 99} x
You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful;
if you try to use attribute access to create a new column, it creates a new attribute rather than a
new column and will this raise a UserWarning
:
.. ipython:: python :okwarning: df_new = pd.DataFrame({'one': [1., 2., 3.]}) df_new.two = [4, 5, 6] df_new
The most robust and consistent way of slicing ranges along arbitrary axes is
described in the :ref:`Selection by Position <indexing.integer>` section
detailing the .iloc
method. For now, we explain the semantics of slicing using the []
operator.
Note
When the :class:`Series` has float indices, slicing will select by position.
With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:
.. ipython:: python s[:5] s[::2] s[::-1]
Note that setting works as well:
.. ipython:: python s2 = s.copy() s2[:5] = 0 s2
With DataFrame, slicing inside of []
slices the rows. This is provided
largely as a convenience since it is such a common operation.
.. ipython:: python df[:3] df[::-1]
Warning
.loc
is strict when you present slicers that are not compatible (or convertible) with the index type. For example using integers in aDatetimeIndex
. These will raise aTypeError
... ipython:: python :okexcept: dfl = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('20130101', periods=5)) dfl dfl.loc[2:3]
String likes in slicing can be convertible to the type of the index and lead to natural slicing.
.. ipython:: python dfl.loc['20130102':'20130104']
pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol.
Every label asked for must be in the index, or a KeyError
will be raised.
When slicing, both the start bound AND the stop bound are included, if present in the index.
Integers are valid labels, but they refer to the label and not the position.
The .loc
attribute is the primary access method. The following are valid inputs:
- A single label, e.g.
5
or'a'
(Note that5
is interpreted as a label of the index. This use is not an integer position along the index.). - A list or array of labels
['a', 'b', 'c']
. - A slice object with labels
'a':'f'
(Note that contrary to usual Python slices, both the start and the stop are included, when present in the index! See :ref:`Slicing with labels <indexing.slicing_with_labels>`. - A boolean array.
- A
callable
, see :ref:`Selection By Callable <indexing.callable>`.
.. ipython:: python s1 = pd.Series(np.random.randn(6), index=list('abcdef')) s1 s1.loc['c':] s1.loc['b']
Note that setting works as well:
.. ipython:: python s1.loc['c':] = 0 s1
With a DataFrame:
.. ipython:: python df1 = pd.DataFrame(np.random.randn(6, 4), index=list('abcdef'), columns=list('ABCD')) df1 df1.loc[['a', 'b', 'd'], :]
Accessing via label slices:
.. ipython:: python df1.loc['d':, 'A':'C']
For getting a cross section using a label (equivalent to df.xs('a')
):
.. ipython:: python df1.loc['a']
For getting values with a boolean array:
.. ipython:: python df1.loc['a'] > 0 df1.loc[:, df1.loc['a'] > 0]
NA values in a boolean array propagate as False
:
.. ipython:: python mask = pd.array([True, False, True, False, pd.NA, False], dtype="boolean") mask df1[mask]
For getting a value explicitly:
.. ipython:: python # this is also equivalent to ``df1.at['a','A']`` df1.loc['a', 'A']
When using .loc
with slices, if both the start and the stop labels are
present in the index, then elements located between the two (including them)
are returned:
.. ipython:: python s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4]) s.loc[3:5]
If the index is sorted, and can be compared against start and stop labels, then slicing will still work as expected, by selecting labels which rank between the two:
.. ipython:: python s.sort_index() s.sort_index().loc[1:6]
However, if at least one of the two is absent and the index is not sorted, an
error will be raised (since doing otherwise would be computationally expensive,
as well as potentially ambiguous for mixed type indexes). For instance, in the
above example, s.loc[1:6]
would raise KeyError
.
For the rationale behind this behavior, see :ref:`Endpoints are inclusive <advanced.endpoints_are_inclusive>`.
.. ipython:: python s = pd.Series(list('abcdef'), index=[0, 3, 2, 5, 4, 2]) s.loc[3:5]
Also, if the index has duplicate labels and either the start or the stop label is duplicated,
an error will be raised. For instance, in the above example, s.loc[2:5]
would raise a KeyError
.
For more information about duplicate labels, see :ref:`Duplicate Labels <duplicates>`.
pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely Python and NumPy slicing. These are 0-based
indexing. When slicing, the start bound is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise an IndexError
.
The .iloc
attribute is the primary access method. The following are valid inputs:
- An integer e.g.
5
. - A list or array of integers
[4, 3, 0]
. - A slice object with ints
1:7
. - A boolean array.
- A
callable
, see :ref:`Selection By Callable <indexing.callable>`. - A tuple of row (and column) indexes, whose elements are one of the above types.
.. ipython:: python s1 = pd.Series(np.random.randn(5), index=list(range(0, 10, 2))) s1 s1.iloc[:3] s1.iloc[3]
Note that setting works as well:
.. ipython:: python s1.iloc[:3] = 0 s1
With a DataFrame:
.. ipython:: python df1 = pd.DataFrame(np.random.randn(6, 4), index=list(range(0, 12, 2)), columns=list(range(0, 8, 2))) df1
Select via integer slicing:
.. ipython:: python df1.iloc[:3] df1.iloc[1:5, 2:4]
Select via integer list:
.. ipython:: python df1.iloc[[1, 3, 5], [1, 3]]
.. ipython:: python df1.iloc[1:3, :]
.. ipython:: python df1.iloc[:, 1:3]
.. ipython:: python # this is also equivalent to ``df1.iat[1,1]`` df1.iloc[1, 1]
For getting a cross section using an integer position (equiv to df.xs(1)
):
.. ipython:: python df1.iloc[1]
Out of range slice indexes are handled gracefully just as in Python/NumPy.
.. ipython:: python # these are allowed in Python/NumPy. x = list('abcdef') x x[4:10] x[8:10] s = pd.Series(x) s s.iloc[4:10] s.iloc[8:10]
Note that using slices that go out of bounds can result in an empty axis (e.g. an empty DataFrame being returned).
.. ipython:: python dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB')) dfl dfl.iloc[:, 2:3] dfl.iloc[:, 1:3] dfl.iloc[4:6]
A single indexer that is out of bounds will raise an IndexError
.
A list of indexers where any element is out of bounds will raise an
IndexError
.
.. ipython:: python :okexcept: dfl.iloc[[4, 5, 6]]
.. ipython:: python :okexcept: dfl.iloc[:, 4]
.loc
, .iloc
, and also []
indexing can accept a callable
as indexer.
The callable
must be a function with one argument (the calling Series or DataFrame) that returns valid output for indexing.
Note
For .iloc
indexing, returning a tuple from the callable is
not supported, since tuple destructuring for row and column indexes
occurs before applying callables.
.. ipython:: python df1 = pd.DataFrame(np.random.randn(6, 4), index=list('abcdef'), columns=list('ABCD')) df1 df1.loc[lambda df: df['A'] > 0, :] df1.loc[:, lambda df: ['A', 'B']] df1.iloc[:, lambda df: [0, 1]] df1[lambda df: df.columns[0]]
You can use callable indexing in Series
.
.. ipython:: python df1['A'].loc[lambda s: s > 0]
Using these methods / indexers, you can chain data selection operations without using a temporary variable.
.. ipython:: python bb = pd.read_csv('data/baseball.csv', index_col='id') (bb.groupby(['year', 'team']).sum(numeric_only=True) .loc[lambda df: df['r'] > 100])
If you wish to get the 0th and the 2nd elements from the index in the 'A' column, you can do:
.. ipython:: python dfd = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=list('abc')) dfd dfd.loc[dfd.index[[0, 2]], 'A']
This can also be expressed using .iloc
, by explicitly getting locations on the indexers, and using
positional indexing to select things.
.. ipython:: python dfd.iloc[[0, 2], dfd.columns.get_loc('A')]
For getting multiple indexers, using .get_indexer
:
.. ipython:: python dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])]
The idiomatic way to achieve selecting potentially not-found elements is via .reindex()
. See also the section on :ref:`reindexing <basics.reindexing>`.
.. ipython:: python s = pd.Series([1, 2, 3]) s.reindex([1, 2, 3])
Alternatively, if you want to select only valid keys, the following is idiomatic and efficient; it is guaranteed to preserve the dtype of the selection.
.. ipython:: python labels = [1, 2, 3] s.loc[s.index.intersection(labels)]
Having a duplicated index will raise for a .reindex()
:
.. ipython:: python :okexcept: s = pd.Series(np.arange(4), index=['a', 'a', 'b', 'c']) labels = ['c', 'd'] s.reindex(labels)
Generally, you can intersect the desired labels with the current axis, and then reindex.
.. ipython:: python s.loc[s.index.intersection(labels)].reindex(labels)
However, this would still raise if your resulting index is duplicated.
.. ipython:: python :okexcept: labels = ['a', 'd'] s.loc[s.index.intersection(labels)].reindex(labels)
A random selection of rows or columns from a Series or DataFrame with the :meth:`~DataFrame.sample` method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.
.. ipython:: python s = pd.Series([0, 1, 2, 3, 4, 5]) # When no arguments are passed, returns 1 row. s.sample() # One may specify either a number of rows: s.sample(n=3) # Or a fraction of the rows: s.sample(frac=0.5)
By default, sample
will return each row at most once, but one can also sample with replacement
using the replace
option:
.. ipython:: python s = pd.Series([0, 1, 2, 3, 4, 5]) # Without replacement (default): s.sample(n=6, replace=False) # With replacement: s.sample(n=6, replace=True)
By default, each row has an equal probability of being selected, but if you want rows
to have different probabilities, you can pass the sample
function sampling weights as
weights
. These weights can be a list, a NumPy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:
.. ipython:: python s = pd.Series([0, 1, 2, 3, 4, 5]) example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4] s.sample(n=3, weights=example_weights) # Weights will be re-normalized automatically example_weights2 = [0.5, 0, 0, 0, 0, 0] s.sample(n=1, weights=example_weights2)
When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling rows and not columns) by simply passing the name of the column as a string.
.. ipython:: python df2 = pd.DataFrame({'col1': [9, 8, 7, 6], 'weight_column': [0.5, 0.4, 0.1, 0]}) df2.sample(n=3, weights='weight_column')
sample
also allows users to sample columns instead of rows using the axis
argument.
.. ipython:: python df3 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]}) df3.sample(n=1, axis=1)
Finally, one can also set a seed for sample
's random number generator using the random_state
argument, which will accept either an integer (as a seed) or a NumPy RandomState object.
.. ipython:: python df4 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]}) # With a given seed, the sample will always draw the same rows. df4.sample(n=2, random_state=2) df4.sample(n=2, random_state=2)
The .loc/[]
operations can perform enlargement when setting a non-existent key for that axis.
In the Series
case this is effectively an appending operation.
.. ipython:: python se = pd.Series([1, 2, 3]) se se[5] = 5. se
A DataFrame
can be enlarged on either axis via .loc
.
.. ipython:: python dfi = pd.DataFrame(np.arange(6).reshape(3, 2), columns=['A', 'B']) dfi dfi.loc[:, 'C'] = dfi.loc[:, 'A'] dfi
This is like an append
operation on the DataFrame
.
.. ipython:: python dfi.loc[3] = 5 dfi
Since indexing with []
must handle a lot of cases (single-label access,
slicing, boolean indexing, etc.), it has a bit of overhead in order to figure
out what you're asking for. If you only want to access a scalar value, the
fastest way is to use the at
and iat
methods, which are implemented on
all of the data structures.
Similarly to loc
, at
provides label based scalar lookups, while, iat
provides integer based lookups analogously to iloc
.. ipython:: python s.iat[5] df.at[dates[5], 'A'] df.iat[3, 0]
You can also set using these same indexers.
.. ipython:: python df.at[dates[5], 'E'] = 7 df.iat[3, 0] = 7
at
may enlarge the object in-place as above if the indexer is missing.
.. ipython:: python df.at[dates[-1] + pd.Timedelta('1 day'), 0] = 7 df
Another common operation is the use of boolean vectors to filter the data.
The operators are: |
for or
, &
for and
, and ~
for not
.
These must be grouped by using parentheses, since by default Python will
evaluate an expression such as df['A'] > 2 & df['B'] < 3
as
df['A'] > (2 & df['B']) < 3
, while the desired evaluation order is
(df['A'] > 2) & (df['B'] < 3)
.
Using a boolean vector to index a Series works exactly as in a NumPy ndarray:
.. ipython:: python s = pd.Series(range(-3, 4)) s s[s > 0] s[(s < -1) | (s > 0.5)] s[~(s < 0)]
You may select rows from a DataFrame using a boolean vector the same length as the DataFrame's index (for example, something derived from one of the columns of the DataFrame):
.. ipython:: python df[df['A'] > 0]
List comprehensions and the map
method of Series can also be used to produce
more complex criteria:
.. ipython:: python df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'], 'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'], 'c': np.random.randn(7)}) # only want 'two' or 'three' criterion = df2['a'].map(lambda x: x.startswith('t')) df2[criterion] # equivalent but slower df2[[x.startswith('t') for x in df2['a']]] # Multiple criteria df2[criterion & (df2['b'] == 'x')]
With the choice methods :ref:`Selection by Label <indexing.label>`, :ref:`Selection by Position <indexing.integer>`, and :ref:`Advanced Indexing <advanced>` you may select along more than one axis using boolean vectors combined with other indexing expressions.
.. ipython:: python df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']
Warning
While loc
supports two kinds of boolean indexing, iloc
only supports indexing with a
boolean array. If the indexer is a boolean Series
, an error will be raised. For instance,
in the following example, df.iloc[s.values, 1]
is ok. The boolean indexer is an array.
But df.iloc[s, 1]
would raise ValueError
.
.. ipython:: python df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], index=list('abc'), columns=['A', 'B']) s = (df['A'] > 2) s df.loc[s, 'B'] df.iloc[s.values, 1]
Consider the :meth:`~Series.isin` method of Series
, which returns a boolean
vector that is true wherever the Series
elements exist in the passed list.
This allows you to select rows where one or more columns have values you want:
.. ipython:: python s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64') s s.isin([2, 4, 6]) s[s.isin([2, 4, 6])]
The same method is available for Index
objects and is useful for the cases
when you don't know which of the sought labels are in fact present:
.. ipython:: python s[s.index.isin([2, 4, 6])] # compare it to the following s.reindex([2, 4, 6])
In addition to that, MultiIndex
allows selecting a separate level to use
in the membership check:
.. ipython:: python s_mi = pd.Series(np.arange(6), index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])) s_mi s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])] s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
DataFrame also has an :meth:`~DataFrame.isin` method. When calling isin
, pass a set of
values as either an array or dict. If values is an array, isin
returns
a DataFrame of booleans that is the same shape as the original DataFrame, with True
wherever the element is in the sequence of values.
.. ipython:: python df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'], 'ids2': ['a', 'n', 'c', 'n']}) values = ['a', 'b', 1, 3] df.isin(values)
Oftentimes you'll want to match certain values with certain columns.
Just make values a dict
where the key is the column, and the value is
a list of items you want to check for.
.. ipython:: python values = {'ids': ['a', 'b'], 'vals': [1, 3]} df.isin(values)
To return the DataFrame of booleans where the values are not in the original DataFrame,
use the ~
operator:
.. ipython:: python values = {'ids': ['a', 'b'], 'vals': [1, 3]} ~df.isin(values)
Combine DataFrame's isin
with the any()
and all()
methods to
quickly select subsets of your data that meet a given criteria.
To select a row where each column meets its own criterion:
.. ipython:: python values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]} row_mask = df.isin(values).all(axis=1) df[row_mask]
The :meth:`~pandas.DataFrame.where` Method and Masking
Selecting values from a Series with a boolean vector generally returns a
subset of the data. To guarantee that selection output has the same shape as
the original data, you can use the where
method in Series
and DataFrame
.
To return only the selected rows:
.. ipython:: python s[s > 0]
To return a Series of the same shape as the original:
.. ipython:: python s.where(s > 0)
Selecting values from a DataFrame with a boolean criterion now also preserves
input data shape. where
is used under the hood as the implementation.
The code below is equivalent to df.where(df < 0)
.
.. ipython:: python dates = pd.date_range('1/1/2000', periods=8) df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) df[df < 0]
In addition, where
takes an optional other
argument for replacement of
values where the condition is False, in the returned copy.
.. ipython:: python df.where(df < 0, -df)
You may wish to set values based on some boolean criteria. This can be done intuitively like so:
.. ipython:: python s2 = s.copy() s2[s2 < 0] = 0 s2 df2 = df.copy() df2[df2 < 0] = 0 df2
where
returns a modified copy of the data.
Note
The signature for :func:`DataFrame.where` differs from :func:`numpy.where`.
Roughly df1.where(m, df2)
is equivalent to np.where(m, df1, df2)
.
.. ipython:: python df.where(df < 0, -df) == np.where(df < 0, df, -df)
Alignment
Furthermore, where
aligns the input boolean condition (ndarray or DataFrame),
such that partial selection with setting is possible. This is analogous to
partial setting via .loc
(but on the contents rather than the axis labels).
.. ipython:: python df2 = df.copy() df2[df2[1:4] > 0] = 3 df2
Where can also accept axis
and level
parameters to align the input when
performing the where
.
.. ipython:: python df2 = df.copy() df2.where(df2 > 0, df2['A'], axis='index')
This is equivalent to (but faster than) the following.
.. ipython:: python df2 = df.copy() df.apply(lambda x, y: x.where(x > 0, y), y=df['A'])
where
can accept a callable as condition and other
arguments. The function must
be with one argument (the calling Series or DataFrame) and that returns valid output
as condition and other
argument.
.. ipython:: python df3 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}) df3.where(lambda x: x > 4, lambda x: x + 10)
:meth:`~pandas.DataFrame.mask` is the inverse boolean operation of where
.
.. ipython:: python s.mask(s >= 0) df.mask(df >= 0)
Setting with enlargement conditionally using :func:`numpy`
An alternative to :meth:`~pandas.DataFrame.where` is to use :func:`numpy.where`. Combined with setting a new column, you can use it to enlarge a DataFrame where the values are determined conditionally.
Consider you have two choices to choose from in the following DataFrame. And you want to set a new column color to 'green' when the second column has 'Z'. You can do the following:
.. ipython:: python df = pd.DataFrame({'col1': list('ABBC'), 'col2': list('ZZXY')}) df['color'] = np.where(df['col2'] == 'Z', 'green', 'red') df
If you have multiple conditions, you can use :func:`numpy.select` to achieve that. Say corresponding to three conditions there are three choice of colors, with a fourth color as a fallback, you can do the following.
.. ipython:: python conditions = [ (df['col2'] == 'Z') & (df['col1'] == 'A'), (df['col2'] == 'Z') & (df['col1'] == 'B'), (df['col1'] == 'B') ] choices = ['yellow', 'blue', 'purple'] df['color'] = np.select(conditions, choices, default='black') df
The :meth:`~pandas.DataFrame.query` Method
:class:`~pandas.DataFrame` objects have a :meth:`~pandas.DataFrame.query` method that allows selection using an expression.
You can get the value of the frame where column b
has values
between the values of columns a
and c
. For example:
.. ipython:: python n = 10 df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) df # pure python df[(df['a'] < df['b']) & (df['b'] < df['c'])] # query df.query('(a < b) & (b < c)')
Do the same thing but fall back on a named index if there is no column
with the name a
.
.. ipython:: python df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc')) df.index.name = 'a' df df.query('a < b and b < c')
If instead you don't want to or cannot name your index, you can use the name
index
in your query expression:
.. ipython:: python df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc')) df df.query('index < b < c')
Note
If the name of your index overlaps with a column name, the column name is given precedence. For example,
.. ipython:: python df = pd.DataFrame({'a': np.random.randint(5, size=5)}) df.index.name = 'a' df.query('a > 2') # uses the column 'a', not the index
You can still use the index in a query expression by using the special identifier 'index':
.. ipython:: python df.query('index > 2')
If for some reason you have a column named index
, then you can refer to
the index as ilevel_0
as well, but at this point you should consider
renaming your columns to something less ambiguous.
You can also use the levels of a DataFrame
with a
:class:`~pandas.MultiIndex` as if they were columns in the frame:
.. ipython:: python n = 10 colors = np.random.choice(['red', 'green'], size=n) foods = np.random.choice(['eggs', 'ham'], size=n) colors foods index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food']) df = pd.DataFrame(np.random.randn(n, 2), index=index) df df.query('color == "red"')
If the levels of the MultiIndex
are unnamed, you can refer to them using
special names:
.. ipython:: python df.index.names = [None, None] df df.query('ilevel_0 == "red"')
The convention is ilevel_0
, which means "index level 0" for the 0th level
of the index
.
:meth:`~pandas.DataFrame.query` Use Cases
A use case for :meth:`~pandas.DataFrame.query` is when you have a collection of :class:`~pandas.DataFrame` objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you're interested in querying
.. ipython:: python df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) df df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns) df2 expr = '0.0 <= a <= c <= 0.5' map(lambda frame: frame.query(expr), [df, df2])
:meth:`~pandas.DataFrame.query` Python versus pandas Syntax Comparison
Full numpy-like syntax:
.. ipython:: python df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc')) df df.query('(a < b) & (b < c)') df[(df['a'] < df['b']) & (df['b'] < df['c'])]
Slightly nicer by removing the parentheses (comparison operators bind tighter
than &
and |
):
.. ipython:: python df.query('a < b & b < c')
Use English instead of symbols:
.. ipython:: python df.query('a < b and b < c')
Pretty close to how you might write it on paper:
.. ipython:: python df.query('a < b < c')
:meth:`~pandas.DataFrame.query` also supports special use of Python's in
and
not in
comparison operators, providing a succinct syntax for calling the
isin
method of a Series
or DataFrame
.
.. ipython:: python # get all rows where columns "a" and "b" have overlapping values df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'), 'c': np.random.randint(5, size=12), 'd': np.random.randint(9, size=12)}) df df.query('a in b') # How you'd do it in pure Python df[df['a'].isin(df['b'])] df.query('a not in b') # pure Python df[~df['a'].isin(df['b'])]
You can combine this with other expressions for very succinct queries:
.. ipython:: python # rows where cols a and b have overlapping values # and col c's values are less than col d's df.query('a in b and c < d') # pure Python df[df['b'].isin(df['a']) & (df['c'] < df['d'])]
Note
Note that in
and not in
are evaluated in Python, since numexpr
has no equivalent of this operation. However, only the in
/not in
expression itself is evaluated in vanilla Python. For example, in the
expression
df.query('a in b + c + d')
(b + c + d)
is evaluated by numexpr
and then the in
operation is evaluated in plain Python. In general, any operations that can
be evaluated using numexpr
will be.
Comparing a list
of values to a column using ==
/!=
works similarly
to in
/not in
.
.. ipython:: python df.query('b == ["a", "b", "c"]') # pure Python df[df['b'].isin(["a", "b", "c"])] df.query('c == [1, 2]') df.query('c != [1, 2]') # using in/not in df.query('[1, 2] in c') df.query('[1, 2] not in c') # pure Python df[df['c'].isin([1, 2])]
You can negate boolean expressions with the word not
or the ~
operator.
.. ipython:: python df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) df['bools'] = np.random.rand(len(df)) > 0.5 df.query('~bools') df.query('not bools') df.query('not bools') == df[~df['bools']]
Of course, expressions can be arbitrarily complex too:
.. ipython:: python # short query syntax shorter = df.query('a < b < c and (not bools) or bools > 2') # equivalent in pure Python longer = df[(df['a'] < df['b']) & (df['b'] < df['c']) & (~df['bools']) | (df['bools'] > 2)] shorter longer shorter == longer
Performance of :meth:`~pandas.DataFrame.query`
DataFrame.query()
using numexpr
is slightly faster than Python for
large frames.
You will only see the performance benefits of using the numexpr
engine
with DataFrame.query()
if your frame has more than approximately 100,000
rows.
This plot was created using a DataFrame
with 3 columns each containing
floating point values generated using numpy.random.randn()
.
.. ipython:: python df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) df2 = df.copy()
If you want to identify and remove duplicate rows in a DataFrame, there are
two methods that will help: duplicated
and drop_duplicates
. Each
takes as an argument the columns to use to identify duplicated rows.
duplicated
returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.drop_duplicates
removes duplicate rows.
By default, the first observed row of a duplicate set is considered unique, but
each method has a keep
parameter to specify targets to be kept.
keep='first'
(default): mark / drop duplicates except for the first occurrence.keep='last'
: mark / drop duplicates except for the last occurrence.keep=False
: mark / drop all duplicates.
.. ipython:: python df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'], 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'], 'c': np.random.randn(7)}) df2 df2.duplicated('a') df2.duplicated('a', keep='last') df2.duplicated('a', keep=False) df2.drop_duplicates('a') df2.drop_duplicates('a', keep='last') df2.drop_duplicates('a', keep=False)
Also, you can pass a list of columns to identify duplications.
.. ipython:: python df2.duplicated(['a', 'b']) df2.drop_duplicates(['a', 'b'])
To drop duplicates by index value, use Index.duplicated
then perform slicing.
The same set of options are available for the keep
parameter.
.. ipython:: python df3 = pd.DataFrame({'a': np.arange(6), 'b': np.random.randn(6)}, index=['a', 'a', 'b', 'c', 'b', 'a']) df3 df3.index.duplicated() df3[~df3.index.duplicated()] df3[~df3.index.duplicated(keep='last')] df3[~df3.index.duplicated(keep=False)]
Dictionary-like :meth:`~pandas.DataFrame.get` method
Each of Series or DataFrame have a get
method which can return a
default value.
.. ipython:: python s = pd.Series([1, 2, 3], index=['a', 'b', 'c']) s.get('a') # equivalent to s['a'] s.get('x', default=-1)
The :meth:`~pandas.DataFrame.lookup` method
Sometimes you want to extract a set of values given a sequence of row labels
and column labels, and the lookup
method allows for this and returns a
NumPy array. For instance:
.. ipython:: python dflookup = pd.DataFrame(np.random.rand(20, 4), columns = ['A', 'B', 'C', 'D']) dflookup.lookup(list(range(0, 10, 2)), ['B', 'C', 'A', 'B', 'D'])
The pandas :class:`~pandas.Index` class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are allowed.
:class:`~pandas.Index` also provides the infrastructure necessary for
lookups, data alignment, and reindexing. The easiest way to create an
:class:`~pandas.Index` directly is to pass a list
or other sequence to
:class:`~pandas.Index`:
.. ipython:: python index = pd.Index(['e', 'd', 'a', 'b']) index 'd' in index
or using numbers:
.. ipython:: python index = pd.Index([1, 5, 12]) index 5 in index
If no dtype is given, Index
tries to infer the dtype from the data.
It is also possible to give an explicit dtype when instantiating an :class:`Index`:
.. ipython:: python index = pd.Index(['e', 'd', 'a', 'b'], dtype="string") index index = pd.Index([1, 5, 12], dtype="int8") index index = pd.Index([1, 5, 12], dtype="float32") index
You can also pass a name
to be stored in the index:
.. ipython:: python index = pd.Index(['e', 'd', 'a', 'b'], name='something') index.name
The name, if set, will be shown in the console display:
.. ipython:: python index = pd.Index(list(range(5)), name='rows') columns = pd.Index(['A', 'B', 'C'], name='cols') df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns) df df['A']
Indexes are "mostly immutable", but it is possible to set and change their
name
attribute. You can use the rename
, set_names
to set these attributes
directly, and they default to returning a copy.
See :ref:`Advanced Indexing <advanced>` for usage of MultiIndexes.
.. ipython:: python ind = pd.Index([1, 2, 3]) ind.rename("apple") ind ind = ind.set_names(["apple"]) ind.name = "bob" ind
set_names
, set_levels
, and set_codes
also take an optional
level
argument
.. ipython:: python index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second']) index index.levels[1] index.set_levels(["a", "b"], level=1)
The two main operations are union
and intersection
.
Difference is provided via the .difference()
method.
.. ipython:: python a = pd.Index(['c', 'b', 'a']) b = pd.Index(['c', 'e', 'd']) a.difference(b)
Also available is the symmetric_difference
operation, which returns elements
that appear in either idx1
or idx2
, but not in both. This is
equivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1))
,
with duplicates dropped.
.. ipython:: python idx1 = pd.Index([1, 2, 3, 4]) idx2 = pd.Index([2, 3, 4, 5]) idx1.symmetric_difference(idx2)
Note
The resulting index from a set operation will be sorted in ascending order.
When performing :meth:`Index.union` between indexes with different dtypes, the indexes must be cast to a common dtype. Typically, though not always, this is object dtype. The exception is when performing a union between integer and float data. In this case, the integer values are converted to float
.. ipython:: python idx1 = pd.Index([0, 1, 2]) idx2 = pd.Index([0.5, 1.5]) idx1.union(idx2)
Important
Even though Index
can hold missing values (NaN
), it should be avoided
if you do not want any unexpected results. For example, some operations
exclude missing values implicitly.
Index.fillna
fills missing values with specified scalar value.
.. ipython:: python idx1 = pd.Index([1, np.nan, 3, 4]) idx1 idx1.fillna(2) idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) idx2 idx2.fillna(pd.Timestamp('2011-01-02'))
Occasionally you will load or create a data set into a DataFrame and want to add an index after you've already done so. There are a couple of different ways.
DataFrame has a :meth:`~DataFrame.set_index` method which takes a column name
(for a regular Index
) or a list of column names (for a MultiIndex
).
To create a new, re-indexed DataFrame:
.. ipython:: python data = pd.DataFrame({'a': ['bar', 'bar', 'foo', 'foo'], 'b': ['one', 'two', 'one', 'two'], 'c': ['z', 'y', 'x', 'w'], 'd': [1., 2., 3, 4]}) data indexed1 = data.set_index('c') indexed1 indexed2 = data.set_index(['a', 'b']) indexed2
The append
keyword option allow you to keep the existing index and append
the given columns to a MultiIndex:
.. ipython:: python frame = data.set_index('c', drop=False) frame = frame.set_index(['a', 'b'], append=True) frame
Other options in set_index
allow you not drop the index columns.
.. ipython:: python data.set_index('c', drop=False)
As a convenience, there is a new function on DataFrame called :meth:`~DataFrame.reset_index` which transfers the index values into the DataFrame's columns and sets a simple integer index. This is the inverse operation of :meth:`~DataFrame.set_index`.
.. ipython:: python data data.reset_index()
The output is more similar to a SQL table or a record array. The names for the
columns derived from the index are the ones stored in the names
attribute.
You can use the level
keyword to remove only a portion of the index:
.. ipython:: python frame frame.reset_index(level=1)
reset_index
takes an optional parameter drop
which if true simply
discards the index, instead of putting index values in the DataFrame's columns.
You can assign a custom index to the index
attribute:
.. ipython:: python df_idx = pd.DataFrame(range(4)) df_idx.index = pd.Index([10, 20, 30, 40], name="a") df_idx
:ref:`Copy-on-Write <copy_on_write>` is the new default with pandas 3.0. This means that chained indexing will never work. See :ref:`this section <copy_on_write_chained_assignment>` for more context.