-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRoomImpulseResponse.cpp
226 lines (206 loc) · 8.93 KB
/
RoomImpulseResponse.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#include "RoomImpulseResponse.h"
#include "HephException.h"
#include "HephMath.h"
#include "Fourier.h"
using namespace HephCommon;
namespace HephAudio
{
RoomImpulseResponse::RoomImpulseResponse(uint32_t sampleRate, Vector3 roomSize, heph_float c,
heph_float frequencyAbsorptionCoefficients[][7], size_t nFrequency)
: sampleRate(sampleRate), roomSize(roomSize), c(c), Vroom(roomSize.x* roomSize.y* roomSize.z)
, frequencies(nFrequency), RT60(nFrequency), BX1(nFrequency), BX2(nFrequency), BY1(nFrequency), BY2(nFrequency), BZ1(nFrequency), BZ2(nFrequency)
, wallXZ(roomSize.x* roomSize.z), wallYZ(roomSize.y* roomSize.z), wallXY(roomSize.x* roomSize.y)
{
for (size_t i = 0; i < nFrequency; i++)
{
this->frequencies[i] = frequencyAbsorptionCoefficients[i][0];
this->BX1[i] = sqrt(1.0 - frequencyAbsorptionCoefficients[i][1]);
this->BX2[i] = sqrt(1.0 - frequencyAbsorptionCoefficients[i][2]);
this->BY1[i] = sqrt(1.0 - frequencyAbsorptionCoefficients[i][3]);
this->BY2[i] = sqrt(1.0 - frequencyAbsorptionCoefficients[i][4]);
this->BZ1[i] = sqrt(1.0 - frequencyAbsorptionCoefficients[i][5]);
this->BZ2[i] = sqrt(1.0 - frequencyAbsorptionCoefficients[i][6]);
const heph_float Sa =
this->wallYZ * (frequencyAbsorptionCoefficients[i][1] + frequencyAbsorptionCoefficients[i][2]) +
this->wallXZ * (frequencyAbsorptionCoefficients[i][3] + frequencyAbsorptionCoefficients[i][4]) +
this->wallXY * (frequencyAbsorptionCoefficients[i][5] + frequencyAbsorptionCoefficients[i][6]);
this->RT60[i] = (55.25 / this->c) * this->Vroom / Sa;
}
heph_float maxRT60 = -FLT_MAX;
for (size_t i = 0; i < this->frequencies.FrameCount(); i++)
{
if (this->RT60[i] > maxRT60)
{
maxRT60 = this->RT60[i];
}
}
this->impulseResponseRange = this->c * maxRT60;
}
FloatBuffer RoomImpulseResponse::SimulateRoomIR(const Vector3& source, const Vector3& reciever, size_t fftSize, Window& window, uint32_t imageRangeLimit) const
{
fftSize = Fourier::CalculateFFTSize(fftSize);
FloatBuffer roomImpulseResponse(this->CalculateImpulseResponseFrameCount(source, reciever, fftSize, imageRangeLimit));
window.SetSize(fftSize);
const FloatBuffer windowBuffer = window.GenerateBuffer();
const NLM maxNLM = this->CalculateMaxNLM(imageRangeLimit);
const Vector3 sourceReflections[p_max] =
{
Vector3(-source.x, -source.y, -source.z), Vector3(-source.x, -source.y, source.z), Vector3(-source.x, source.y, -source.z),
Vector3(-source.x, source.y, source.z), Vector3(source.x, -source.y, -source.z), Vector3(source.x, -source.y, source.z),
Vector3(source.x, source.y, -source.z), Vector3(source.x, source.y, source.z)
};
FloatBuffer frequencies2(this->frequencies.FrameCount() + 2);
frequencies2[0] = 0;
for (size_t i = 0; i < this->frequencies.FrameCount(); i++)
{
frequencies2[i + 1] = this->frequencies[i];
}
frequencies2[frequencies2.FrameCount() - 1] = this->sampleRate * 0.5;
for (int32_t n = -maxNLM.n; n <= maxNLM.n; n++)
{
for (int32_t l = -maxNLM.l; l <= maxNLM.l; l++)
{
for (int32_t m = -maxNLM.m; m <= maxNLM.m; m++)
{
for (uint32_t p = 0; p < p_max; p++)
{
FloatBuffer imagePower(frequencies2.FrameCount());
for (size_t i = 0; i < this->frequencies.FrameCount(); i++)
{
imagePower[i + 1] =
pow(this->BX1[i], abs(n - q[p])) * pow(this->BY1[i], abs(l - j[p])) * pow(this->BZ1[i], abs(m - k[p])) *
pow(this->BX2[i], abs(n)) * pow(this->BY2[i], abs(l)) * pow(this->BZ2[i], abs(m));
}
imagePower[0] = imagePower[1];
imagePower[imagePower.FrameCount() - 1] = imagePower[imagePower.FrameCount() - 2];
ComplexBuffer imageTransferFunction(fftSize);
imageTransferFunction[0].real = imagePower[0];
imageTransferFunction[fftSize - 1] = imageTransferFunction[0].Conjugate();
const size_t nyquistFrequency = fftSize / 2;
for (size_t i = 1; i < nyquistFrequency; i++)
{
const heph_float binFrequency = Fourier::IndexToBinFrequency(this->sampleRate, fftSize, i);
heph_float f_lower = 0;
heph_float f_upper = 0;
size_t i_lower = 0;
size_t i_upper = 0;
for (size_t j_f = 0; j_f < frequencies2.FrameCount(); j_f++)
{
if (frequencies2[j_f] >= binFrequency)
{
f_upper = frequencies2[j_f];
i_upper = j_f;
break;
}
f_lower = frequencies2[j_f];
i_lower = j_f;
}
const heph_float alpha = (binFrequency - f_lower) / (f_upper - f_lower);
imageTransferFunction[i].real = imagePower[i_lower] * (1.0 - alpha) + imagePower[i_upper] * alpha;
imageTransferFunction[fftSize - i - 1] = imageTransferFunction[i];
}
FloatBuffer imageImpulseRespnose(fftSize);
Fourier::IFFT(imageImpulseRespnose, imageTransferFunction);
const Vector3 image(2 * n * this->roomSize.x - sourceReflections[p].x, 2 * l * this->roomSize.y - sourceReflections[p].y, 2 * m * this->roomSize.z - sourceReflections[p].z);
const size_t delay = this->sampleRate * image.Distance(reciever) / this->c;
for (size_t i = 0; i < imageImpulseRespnose.FrameCount(); i++)
{
roomImpulseResponse[i + delay] += imageImpulseRespnose[i] * windowBuffer[i];
}
}
}
}
}
return roomImpulseResponse;
}
ComplexBuffer RoomImpulseResponse::SimulateRoomTF(const Vector3& source, const Vector3& reciever, size_t fftSize, Window& window, uint32_t imageRangeLimit) const
{
const FloatBuffer impulseResponse = this->SimulateRoomIR(source, reciever, fftSize, window, imageRangeLimit);
return Fourier::FFT(impulseResponse, Fourier::CalculateFFTSize(impulseResponse.FrameCount()));
}
FloatBuffer RoomImpulseResponse::GetFrequencies() const
{
return this->frequencies;
}
FloatBuffer RoomImpulseResponse::GetRT60() const
{
return this->RT60;
}
void RoomImpulseResponse::GetWallReflectionCoefficients(FloatBuffer* pBX1, FloatBuffer* pBX2, FloatBuffer* pBY1, FloatBuffer* pBY2, FloatBuffer* pBZ1, FloatBuffer* pBZ2) const
{
if (pBX1 != nullptr)
{
(*pBX1) = this->BX1;
}
if (pBX2 != nullptr)
{
(*pBX2) = this->BX2;
}
if (pBY1 != nullptr)
{
(*pBY1) = this->BY1;
}
if (pBY2 != nullptr)
{
(*pBY2) = this->BY2;
}
if (pBZ1 != nullptr)
{
(*pBZ1) = this->BZ1;
}
if (pBZ2 != nullptr)
{
(*pBZ2) = this->BZ2;
}
}
heph_float RoomImpulseResponse::GetImpulseResponseRange() const
{
return this->impulseResponseRange;
}
uint32_t RoomImpulseResponse::CalculateNumberOfImages(uint32_t imageRangeLimit) const
{
const NLM maxNLM = this->CalculateMaxNLM(imageRangeLimit);
return p_max * (2 * maxNLM.n + 1) * (2 * maxNLM.l + 1) * (2 * maxNLM.m + 1);
}
size_t RoomImpulseResponse::CalculateImpulseResponseFrameCount(const Vector3& source, const Vector3& reciever, size_t fftSize, uint32_t imageRangeLimit) const
{
fftSize = Fourier::CalculateFFTSize(fftSize);
const NLM maxNLM = this->CalculateMaxNLM(imageRangeLimit);
const Vector3 sourceReflections[p_max] =
{
Vector3(-source.x, -source.y, -source.z), Vector3(-source.x, -source.y, source.z), Vector3(-source.x, source.y, -source.z),
Vector3(-source.x, source.y, source.z), Vector3(source.x, -source.y, -source.z), Vector3(source.x, -source.y, source.z),
Vector3(source.x, source.y, -source.z), Vector3(source.x, source.y, source.z)
};
heph_float maxDistance = 0;
auto measureDistance = [this, &reciever, sourceReflections, &maxDistance](uint32_t p, int32_t n, int32_t l, int32_t m) -> void
{
const Vector3 image = Vector3(2 * n * this->roomSize.x - sourceReflections[p].x, 2 * l * this->roomSize.y - sourceReflections[p].y, 2 * m * this->roomSize.z - sourceReflections[p].z);
const heph_float distance = image.Distance(reciever);
if (distance > maxDistance)
{
maxDistance = distance;
}
};
for (uint32_t p = 0; p < p_max; p++)
{
measureDistance(p, maxNLM.n, maxNLM.l, maxNLM.m);
measureDistance(p, maxNLM.n, maxNLM.l, -maxNLM.m);
measureDistance(p, maxNLM.n, -maxNLM.l, -maxNLM.m);
measureDistance(p, maxNLM.n, -maxNLM.l, maxNLM.m);
measureDistance(p, -maxNLM.n, -maxNLM.l, maxNLM.m);
measureDistance(p, -maxNLM.n, maxNLM.l, maxNLM.m);
measureDistance(p, -maxNLM.n, maxNLM.l, -maxNLM.m);
measureDistance(p, -maxNLM.n, -maxNLM.l, -maxNLM.m);
}
return this->sampleRate * maxDistance / this->c + fftSize;
}
RoomImpulseResponse::NLM RoomImpulseResponse::CalculateMaxNLM(uint32_t imageRangeLimit) const
{
NLM maxNLM{ 0 };
maxNLM.n = Math::Min((uint32_t)Math::Ceil(this->impulseResponseRange * 0.5 / this->roomSize.x), imageRangeLimit);
maxNLM.l = Math::Min((uint32_t)Math::Ceil(this->impulseResponseRange * 0.5 / this->roomSize.y), imageRangeLimit);
maxNLM.m = Math::Min((uint32_t)Math::Ceil(this->impulseResponseRange * 0.5 / this->roomSize.z), imageRangeLimit);
return maxNLM;
}
}