Skip to content

Commit 5ce6d27

Browse files
committedMar 25, 2024·
fixing...
1 parent 7270606 commit 5ce6d27

12 files changed

+88
-111
lines changed
 

‎chapters/algodiff.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -1192,7 +1192,7 @@ let f y =
11921192

11931193
For this functions $f: \mathbf{R}^4 \rightarrow \mathbf{R}^4$, we can then find its Jacobian matrix. Suppose the given point of interest of where all four input variables equals one. Then we can use the `Algodiff.D.jacobian` function in this way.
11941194

1195-
```text
1195+
```ocaml
11961196
let y = Mat.ones 1 4
11971197
let result = jacobian f y
11981198
@@ -1208,7 +1208,7 @@ R3 0.53033 0.176777 0 0
12081208

12091209
Next, we find the eigenvalues of this jacobian matrix with the Linear Algebra module in Owl that we have introduced in previous chapter.
12101210

1211-
```text
1211+
```ocaml
12121212
let eig = Owl_linalg.D.eigvals j
12131213
12141214
val eig : Owl_dense_matrix_z.mat =

‎chapters/convention.md

+30-53
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ For unary operators such as `Arr.sin x`, the situation is rather straightforward
4646

4747
For `Arr.add_ x y`, the question is where to store the final result when both inputs are ndarray. Let's look at the type of `Arr.add_` function.
4848

49-
```text
49+
```ocaml
5050
val Arr.add_ : ?out:Arr.arr -> Arr.arr -> Arr.arr -> unit
5151
```
5252

@@ -275,55 +275,32 @@ As you can see, the operators above do not allow interoperation on different num
275275

276276
Some people just like Pythonic way of working, `Owl.Ext` module is specifically designed for this purpose, to make prototyping faster and easier. Once you open the module, `Ext` immediately provides a set of operators to allow you to interoperate on different number types, as below. It automatically casts types for you if necessary.
277277

278-
------------- ------------- --------------------------
279-
Operator Example Operation
280-
------------- ------------- --------------------------
281-
`+` `x + y` add
282-
283-
`-` `x - y` sub
284-
285-
`*` `x * y` mul
286-
287-
`/` `x / y` div
288-
289-
`=` `x = y` comparison, return bool
290-
291-
`!=` `x != y` comparison, return bool
292-
293-
`<>` `x <> y` same as `!=`
294-
295-
`>` `x > y` comparison, return bool
296-
297-
`<` `x < y` comparison, return bool
298-
299-
`>=` `x >= y` comparison, return bool
300-
301-
`<=` `x <= y` comparison, return bool
302-
303-
`=.` `x =. y` element_wise comparison
304-
305-
`!=.` `x !=. y` element_wise comparison
278+
Operator | Example | Operation
279+
------------- | ------------- | --------------------------
280+
`+` | `x + y` | add
281+
`-` | `x - y` | sub
282+
`*` | `x * y` | mul
283+
`/` | `x / y` | div
284+
`=` | `x = y` | comparison, return bool
285+
`!=` | `x != y` | comparison, return bool
286+
`<>` | `x <> y` | same as `!=`
287+
`>` | `x > y` | comparison, return bool
288+
`<` | `x < y` | comparison, return bool
289+
`>=` | `x >= y` | comparison, return bool
290+
`<=` | `x <= y` | comparison, return bool
291+
`=.` | `x =. y` | element_wise comparison
292+
`!=.` | `x !=. y` | element_wise comparison
293+
`<>.` | `x <>. y` | same as `!=.`
294+
`>.` | `x >. y` | element_wise comparison
295+
`<.` | `x <. y` | element_wise comparison
296+
`>=.` | `x >=. y` | element_wise comparison
297+
`<=.` | `x <=. y` | element_wise comparison
298+
`%` | `x % y` | element_wise mod divide
299+
`**` | `x ** y` | power function
300+
`*@` | `x *@ y` | matrix multiply
301+
`min2` | `min2 x y` | element-wise min
302+
`max2` | `max2 x y` | element-wise max
306303

307-
`<>.` `x <>. y` same as `!=.`
308-
309-
`>.` `x >. y` element_wise comparison
310-
311-
`<.` `x <. y` element_wise comparison
312-
313-
`>=.` `x >=. y` element_wise comparison
314-
315-
`<=.` `x <=. y` element_wise comparison
316-
317-
`%` `x % y` element_wise mod divide
318-
319-
`**` `x ** y` power function
320-
321-
`*@` `x *@ y` matrix multiply
322-
323-
`min2` `min2 x y` element-wise min
324-
325-
`max2` `max2 x y` element-wise max
326-
------------- ------------- --------------------------
327304
: Operator extensions {#tbl:convention:ext}
328305

329306
You may have noticed, the operators ended with `$` (e.g., `+$`, `-$` ...) disappeared from the table, which is simply because we can add/sub/mul/div a scalar with a matrix directly and we do not need these operators any more. Similar for comparison operators, because we can use the same `>` operator to compare a matrix to another matrix, or compare a matrix to a scalar, we do not need `>$` any longer. Allowing interoperation makes the operator table much shorter.
@@ -346,7 +323,7 @@ Note that `Ext` contains its own `Ext.Dense` module which further contains the f
346323

347324
These modules are simply the wrappers of the original modules in `Owl.Dense` module so they provide most of the APIs already implemented. The extra thing these wrapper modules does is to pack and unpack the raw number types for you automatically. However, you can certainly use the raw data types then use the constructors defined in `Owl_ext_types` to wrap them up by yourself. The constructors are defined as below.
348325

349-
```text
326+
```ocaml
350327
351328
type ext_typ =
352329
F of float
@@ -411,7 +388,7 @@ Before we finish this chapter, I want to point out the caveat. `Ext` tries to mi
411388

412389
In Owl, `Dense` module contains the modules of dense data structures. For example, `Dense.Matrix` supports the operations of dense matrices. Similarly, `Sparse` module contains the modules of sparse data structures.
413390

414-
```text
391+
```ocaml
415392
Dense.Ndarray;; (* dense ndarray *)
416393
Dense.Matrix;; (* dense matrix *)
417394
@@ -536,7 +513,7 @@ Mat.zeros 5 5;; (* same as Dense.Matrix.D.zeros 5 5 *)
536513

537514
More examples besides creation functions are as follows.
538515

539-
```text
516+
```ocaml
540517
Mat.load "data.mat";; (* same as Dense.Matrix.D.load "data.mat" *)
541518
Mat.of_array 5 5 x;; (* same as Dense.Matrix.D.of_array 5 5 x *)
542519
Mat.linspace 0. 9. 10;; (* same as Dense.Matrix.D.linspace 0. 9. 10 *)
@@ -562,7 +539,7 @@ As I mentioned before, there are four basic number types. You can therefore cast
562539

563540
In fact, all these function rely on the following `cast` function.
564541

565-
```text
542+
```ocaml
566543
567544
val cast : ('a, 'b) kind -> ('c, 'd) t -> ('a, 'b) t
568545

‎chapters/dataframe.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ However, if you just want to append one or two rows, the previous method seems a
145145
There are also functions allow you to retrieve the properties, for example:
146146

147147

148-
```text
148+
```ocaml
149149
150150
val copy : t -> t (* return the copy of a dataframe. *)
151151
@@ -204,7 +204,7 @@ R1 Carol 30
204204

205205
How can we miss the classic iteration functions in the functional programming? Dataframe includes the following methods to traverse the rows in a dataframe. We did not include any method to traverse columns because they can be simply extracted out as series then processed separately.
206206

207-
```text
207+
```ocaml
208208
209209
val iteri_row : (int -> elt array -> unit) -> t -> unit
210210
@@ -229,7 +229,7 @@ Applying these functions to a dataframe is rather straightforward. All the eleme
229229
One interesting thing worth mentioning here is that there are several functions are associated with extended indexing operators. This allows us to write quite concise code in our application.
230230

231231

232-
```text
232+
```ocaml
233233
234234
val ( .%( ) ) : t -> int * string -> elt
235235
(* associated with `get_by_name` *)
@@ -352,7 +352,7 @@ R2 Carol 3000.
352352
CSV (Comma-Separated Values) is a common format to store tabular data. The module provides simple support to process CSV files. The two core functions are as follows.
353353

354354

355-
```text
355+
```ocaml
356356
357357
val of_csv : ?sep:char -> ?head:string array -> ?types:string array -> string -> t
358358
@@ -383,7 +383,7 @@ Owl_pretty.pp_dataframe Format.std_formatter df
383383

384384
The result should look like this. We have truncated out some rows to save space here.
385385

386-
```text
386+
```ocaml
387387
funding data in csv file
388388
389389
+-----------------+-----------------+-------+---------+-------------+-----+----------+----------+--------------+------------

‎chapters/introduction.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -373,7 +373,7 @@ The Second example demonstrates how to plot figures in notebook. Because Owl's P
373373

374374
To load the image into browser, we need to call the `Jupyter_notebook.display_file` function. Then we can see the plot [@fig:introduction:example00] is correctly rendered in the notebook running in your browser. Plotting capability greatly enriches the content of an interactive presentation.
375375

376-
```text
376+
```ocaml
377377
Jupyter_notebook.display_file ~base64:true "image/png" "plot_00.png"
378378
```
379379

‎chapters/linalg.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ let x = Mat.sequential 4 6;;
118118

119119
You should be able to see the following output in your `utop`.
120120

121-
```text
121+
```ocaml
122122
123123
C0 C1 C2 C3 C4 C5
124124
R0 1 2 3 4 5 6

‎chapters/ndarray.md

+18-18
Original file line numberDiff line numberDiff line change
@@ -201,7 +201,7 @@ The `map` function can be very useful in implementing vectorised math functions.
201201

202202
If you need indices in the transformation function, you can use the `mapi` function which accepts the 1-d index of the element being accessed.
203203

204-
```text
204+
```ocaml
205205
206206
val mapi : (int -> 'a -> 'a) -> ('a, 'b) t -> ('a, 'b) t
207207
@@ -212,7 +212,7 @@ If you need indices in the transformation function, you can use the `mapi` funct
212212

213213
The `fold` function is often referred to as "reduction" in other programming languages. It has a named parameter called `axis`, with which you can specify along what axis you want to fold a given ndarray.
214214

215-
```text
215+
```ocaml
216216
217217
val fold : ?axis:int -> ('a -> 'a -> 'a) -> 'a -> ('a, 'b) t -> ('a, 'b) t
218218
@@ -231,7 +231,7 @@ The functions `sum`, `sum'`, `prod`, `prod'`, `min`, `min'`, `mean`, and `mean'`
231231

232232
Similarly, if you need indices in folding function, you can use `foldi` which passes in 1-d indices.
233233

234-
```text
234+
```ocaml
235235
236236
val foldi : ?axis:int -> (int -> 'a -> 'a -> 'a) -> 'a -> ('a, 'b) t -> ('a, 'b) t
237237
@@ -243,7 +243,7 @@ Similarly, if you need indices in folding function, you can use `foldi` which pa
243243
To some extent, the `scan` function is like the combination of `map` and `fold`. It accumulates the value along the specified axis but it does not change the shape of the input. Think about how we generate a cumulative distribution function (CDF) from a probability density/mass function (PDF/PMF).
244244
The type signature of `scan` looks like this in Ndarray.
245245

246-
```text
246+
```ocaml
247247
248248
val scan : ?axis:int -> ('a -> 'a -> 'a) -> ('a, 'b) t -> ('a, 'b) t
249249
@@ -263,7 +263,7 @@ Again, you can use the `scani` to obtain the indices in the passed in cumulative
263263

264264
The comparison functions themselves can be divided into several groups. The first group compares two ndarrays then returns a boolean value.
265265

266-
```text
266+
```ocaml
267267
268268
val equal : ('a, 'b) t -> ('a, 'b) t -> bool
269269
@@ -278,7 +278,7 @@ The comparison functions themselves can be divided into several groups. The firs
278278

279279
The second group compares two ndarrays but returns an 0-1 ndarray of the same shape. The elements where the predicate is satisfied have value 1 otherwise 0.
280280

281-
```text
281+
```ocaml
282282
283283
val elt_equal : ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t
284284
@@ -294,7 +294,7 @@ The second group compares two ndarrays but returns an 0-1 ndarray of the same sh
294294

295295
The third group is similar to the first one but compares an ndarray with a scalar value, the return is a Boolean value.
296296

297-
```text
297+
```ocaml
298298
299299
val equal_scalar : ('a, 'b) t -> 'a -> bool
300300
@@ -310,7 +310,7 @@ The third group is similar to the first one but compares an ndarray with a scala
310310

311311
The fourth group is similar to the second one but compares an ndarray with a scalar value, and the returned value is a 0-1 ndarray.
312312

313-
```text
313+
```ocaml
314314
315315
val elt_equal_scalar : ('a, 'b) t -> 'a -> ('a, 'b) t
316316
@@ -358,7 +358,7 @@ Conceptually, Owl can implement all these functions using the aforementioned `ma
358358

359359
Like native OCaml array, Owl also provides `iter` and `iteri` functions with which you can iterate over all the elements in an ndarray.
360360

361-
```text
361+
```ocaml
362362
363363
val iteri :(int -> 'a -> unit) -> ('a, 'b) t -> unit
364364
@@ -369,7 +369,7 @@ Like native OCaml array, Owl also provides `iter` and `iteri` functions with whi
369369
One common use case is iterating all the elements and checking if one (or several) predicate is satisfied.
370370
There is a special set of iteration functions to help you finish this task.
371371

372-
```text
372+
```ocaml
373373
374374
val is_zero : ('a, 'b) t -> bool
375375
@@ -387,7 +387,7 @@ There is a special set of iteration functions to help you finish this task.
387387

388388
The predicates can be very complicated sometimes. In that case you can use the following three functions to pass in arbitrarily complicated functions to check them.
389389

390-
```text
390+
```ocaml
391391
392392
val exists : ('a -> bool) -> ('a, 'b) t -> bool
393393
@@ -399,7 +399,7 @@ The predicates can be very complicated sometimes. In that case you can use the f
399399

400400
All aforementioned functions only tell us whether the predicates are met or not. They cannot tell which elements satisfy the predicate. The following `filter` function can return the 1-d indices of those elements satisfying the predicates.
401401

402-
```text
402+
```ocaml
403403
404404
val filteri : (int -> 'a -> bool) -> ('a, 'b) t -> int array
405405
@@ -409,7 +409,7 @@ All aforementioned functions only tell us whether the predicates are met or not.
409409

410410
We have mentioned that 1-d indices are passed in. The reason is passing in 1-d indices is way faster than passing in n-d indices. However, if you do need n-dimensional indices, you can use the following two functions to convert between 1-d and 2-d indices, both are defined in the `Owl.Utils` module.
411411

412-
```text
412+
```ocaml
413413
414414
val ind : ('a, 'b) t -> int -> int array
415415
(* 1-d to n-d index conversion *)
@@ -473,7 +473,7 @@ R5 8 9 10 11
473473

474474
You can also expand the dimensionality of an ndarray, or squeeze out those dimensions having only one element, or even padding elements to an existing ndarray.
475475

476-
```text
476+
```ocaml
477477
478478
val expand : ('a, 'b) t -> int -> ('a, 'b) t
479479
@@ -488,7 +488,7 @@ The `concatenate` allows us to concatenate an array of ndarrays along the specif
488488
For matrices, there are two operators associated with concatenation: `@||` for concatenating horizontally (i.e. along axis 1); `@=` for concatenating vertically (i.e. along axis 0).
489489
The `split` is simply the inverse operation of concatenation.
490490

491-
```text
491+
```ocaml
492492
493493
val concatenate : ?axis:int -> ('a, 'b) t array -> ('a, 'b) t
494494
@@ -498,15 +498,15 @@ The `split` is simply the inverse operation of concatenation.
498498

499499
You can also sort an ndarray but note that modification will happen in place.
500500

501-
```text
501+
```ocaml
502502
503503
val sort : ('a, 'b) t -> unit
504504
505505
```
506506

507507
Converting between ndarrays and OCaml native arrays can be efficiently done with these conversion functions:
508508

509-
```text
509+
```ocaml
510510
511511
val of_array : ('a, 'b) kind -> 'a array -> int array -> ('a, 'b) t
512512
@@ -521,7 +521,7 @@ Again, there also exist the `to_arrays` and `of_arrays` two functions for the sp
521521

522522
Serialisation and de-serialisation are simply done with the `save` and `load` functions.
523523

524-
```text
524+
```ocaml
525525
526526
val save : out:string -> ('a, 'b) t -> unit
527527

0 commit comments

Comments
 (0)
Please sign in to comment.