-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_saved_snr_data.py
111 lines (48 loc) · 1.48 KB
/
read_saved_snr_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 25 13:58:43 2025
@author: chiliaeva
Read saved .npy and .pickle files
"""
import os
import pickle
import matplotlib.pyplot as plt
import numpy as np
#%% Get SNR data
type_reco = 'had_reco'
root = 'C:/'
root_snr = root + 'snr/'
num_patient = 'P68_'
num_biopsy = 'B1_'
# max_snr = np.load(root_snr + num_patient + num_biopsy + type_reco + '_max_snr.npy')
# mean_snr = np.load(root_snr + num_patient + num_biopsy + type_reco + '_mean_snr.npy')
# mean_std = np.load(root_snr + num_patient + num_biopsy + type_reco + '_mean_std.npy')
std_map = np.load(root_snr + num_patient + num_biopsy + type_reco + '_std_tab.npy')
snr_map = np.load(root_snr + num_patient + num_biopsy + type_reco + '_snr_tab.npy')
integral_map = np.load(root_snr + num_patient + num_biopsy + type_reco + '_integral_tab.npy')
integral_width_map = np.load(root_snr + num_patient + num_biopsy + type_reco + '_width_integral.npy')
#%% Compute max and mean
max_snr = np.nanmax(snr_map)
mean_snr = np.nanmean(snr_map)
max_std=np.nanmax(std_map)
mean_std=np.nanmean(std_map)
#%% Plot maps
mksize = 4
show_pos = False
x = 21
y = 18
plt.figure('SNR map')
plt.clf()
plt.imshow(snr_map)
plt.colorbar()
plt.grid()
if show_pos == True :
plt.plot(y,x, "or", markersize = mksize)
plt.figure('STD map')
plt.clf()
plt.imshow(std_map)
plt.colorbar()
plt.grid()
if show_pos == True :
plt.plot(y,x, "or", markersize = mksize)
#%% Get fit bounds