-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
223 lines (109 loc) · 4.97 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 18 14:23:22 2024
@author: chiliaeva
Use a thresholding method do determine the binary mask for each measurement.
1 = biopsy in this pixel
0 = no biopsy here
Save the mask
IMPORTANT : use the White Light measurements
"""
import os
import numpy as np
import cv2 as cv
from scipy import interpolate
from spas.metadata import read_metadata
#%%
threshold_ = 4e5 # nb counts/pixel on background for t_i = 1s, for a 16x16 image # threshold for binary masks
type_reco = 'had_reco' # 'had_reco' or 'nn_reco'
type_reco_npz = type_reco + '.npz'
if type_reco == 'nn_reco':
threshold_ = threshold_/4
root = 'C:/'
root_data = root + 'd/'
folders = os.listdir(root_data)
root_ref = root + 'ref/'
# file_metadata_0 = 'D:/obj_biopsy-1_anterior-portion_source_Laser_405nm_1.2W_A_0.15_f80mm-P2_Walsh_im_16x16_ti_200ms_zoom_x1_metadata.json'
file_metadata_0 = root + 'wavelengths_metadata.json'
metadata, acquisition_params, spectrometer_params, dmd_params = read_metadata(file_metadata_0)
wavelengths = acquisition_params.wavelengths
#%% DEFINE FIT FUNCTION
def func_fit(x, a1, a2, a3, shift620, shift634, lambd_c, sigma):
return a1*func620(x-shift620) + a2*func634(x-shift634) + a3*np.exp(-(lambd_c-x)**2/sigma**2)
#%% REFERENCE SPECTRA
file_name_ppix620 = 'ref620_3lamda.npy'
file_name_ppix634 = 'ref634_3lamda.npy'
file_name_lambda = 'Lambda.npy'
ppix620 = np.load(root_ref + file_name_ppix620)
ppix634 = np.load(root_ref + file_name_ppix634)
lambd = np.load(root_ref + file_name_lambda)
spectr634 = ppix634[0, :]
spectr634[0] = 0 # otherwise kernel dies
spectr620 = ppix620[0, :]
spectr620[0] = 0
del ppix620
del ppix634
# Normalize the reference spectra
spectr620_norm = spectr620/np.amax(spectr620)
spectr620 = spectr620_norm
del spectr620_norm
spectr634_norm = spectr634/np.amax(spectr634)
spectr634 = spectr634_norm
del spectr634_norm
crop_start = np.digitize(wavelengths[0], lambd, right=True) # crop the ref spectra, keep the part from wavelengths[0] to wavelengths[-1]
crop_stop = np.digitize(wavelengths[-1], lambd, right=True)
lambd_crop = lambd[crop_start:crop_stop]
spectr620_crop = spectr620[crop_start:crop_stop]
spectr634_crop = spectr634[crop_start:crop_stop]
lambd = lambd_crop
spectr620 = spectr620_crop
spectr634 = spectr634_crop
del lambd_crop
del spectr620_crop
del spectr634_crop
# Interpolate the reference spectra
func620 = interpolate.make_interp_spline(lambd, spectr620)
func634 = interpolate.make_interp_spline(lambd, spectr634)
spectr620_interp = func620(wavelengths) # import wavelengths from metadata
spectr634_interp = func634(wavelengths)
# save in ref folder :
np.save(root_ref + '_spectr620_interp.npy', spectr620_interp)
np.save(root_ref + '_spectr634_interp.npy', spectr634_interp)
#%% MASKS
list_biopsies = []
for f in folders :
path = os.path.join(root_data, f)
subdirs = os.listdir(path)
for s in subdirs :
nb = int(s[11])
if nb not in list_biopsies :
list_biopsies.append(nb)
for s in subdirs :
if s[12] != '-' and s[12] != '_' :
nb_ = int(s[12])
nb = int(s[11])*10 + nb_
if nb not in list_biopsies :
list_biopsies.append(nb)
print("list of biopsies in", f, ":", list_biopsies)
for num_biopsy in list_biopsies :
print('numero biopsie : ', num_biopsy)
for s in subdirs :
if s[11] == str(num_biopsy) : # TODO: write another loop to get the biopsies > 10 s[11:12]
subpath = path + '/' + s + '/'
if "white" in s :
file_cube_white = subpath + s + '_' + type_reco_npz
file_metadata = subpath + s + '_metadata.json'
metadata, acquisition_params, spectrometer_params, dmd_params = read_metadata(file_metadata)
t_i = spectrometer_params.integration_time_ms
# Read hypercube laser
cubeobj = np.load(file_cube_white)
cubehyper = cubeobj['arr_0']
threshold = threshold_ *t_i*1e-3/(np.shape(cubehyper)[0]*np.shape(cubehyper)[1]/(16**2)) # absolute threshold
greyscale_img = np.sum(cubehyper, axis=2)
mask = cv.threshold(greyscale_img, threshold, 1, cv.THRESH_BINARY) # thresholding function
if os.path.isfile(subpath + type_reco + '_mask.npy') == False :
np.save(subpath + type_reco + '_mask.npy', mask[1])
print("mask saved")
else :
print("mask already exists")
list_biopsies = []