-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_fit_1meas.py
238 lines (118 loc) · 6.96 KB
/
main_fit_1meas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 8 10:35:59 2025
@author: chiliaeva
"""
import numpy as np
from spas.metadata import read_metadata
import scipy.signal as sg
import scipy.optimize as op
from preprocess_ref_spectra import func_fit
import os
import time
#%% Paths
save_fit_data = True
bin_width = 10
root = 'C:/'
num_patient = 'P65'
num_biopsy = 'B10'
root_data = root + 'd/' + num_patient + '/'
root_ref = root + 'ref/'
# os.mkdir(root + 'fitresults_' + )
root_saveresults = root + 'fitresults_250311/'
if os.path.exists(root_saveresults) == False :
os.mkdir(root_saveresults)
type_reco = 'had_reco'
type_reco_npz = type_reco + '.npz'
# folders = os.listdir(root_data)
# print("folders", folders)
# metadata file to get the wavelengths array :
file_metadata='C:/Users/chiliaeva/Documents/Resultats_traitement/wavelengths_metadata.json'
# file_metadata = 'D:/d/P64/obj_biopsy-10-intern-limit_source_white_LED_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1/obj_biopsy-10-intern-limit_source_white_LED_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1_metadata.json'
metadata, acquisition_params, spectrometer_params, dmd_params = read_metadata(file_metadata)
wavelengths = acquisition_params.wavelengths
# 'C:/d/P64/obj_biopsy-10-intern-limit_source_No-light_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1/obj_biopsy-10-intern-limit_source_No-light_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1_had_reco.npz'
# 'C:/d/P64/obj_biopsy-11-singular-portion_source_Laser_405nm_1.2W_A_0.14_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1/obj_biopsy-11-singular-portion_source_Laser_405nm_1.2W_A_0.14_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1_had_reco.npz'
file_cube_laser = 'C:/d/P65/obj_biopsy-10-posterior-limit_source_Laser_405nm_1.2W_A_0.14_f80mm-P2_Walsh_im_32x32_ti_75ms_zoom_x1/obj_biopsy-10-posterior-limit_source_Laser_405nm_1.2W_A_0.14_f80mm-P2_Walsh_im_32x32_ti_75ms_zoom_x1_had_reco.npz'
file_cube_nolight = 'C:/d/P65/obj_biopsy-10-posterior-limit_source_No-light_f80mm-P2_Walsh_im_32x32_ti_75ms_zoom_x1/obj_biopsy-10-posterior-limit_source_No-light_f80mm-P2_Walsh_im_32x32_ti_75ms_zoom_x1_had_reco.npz'
file_mask = 'C:/d/P65/obj_biopsy-10-posterior-limit_source_white_LED_f80mm-P2_Walsh_im_32x32_ti_10ms_zoom_x1/had_reco_mask.npy'
# file_mask = root_data + 'obj_biopsy-10-intern-limit_source_white_LED_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1/' + type_reco + '_mask' + '.npy'
# file_cube_laser = root_data + 'obj_biopsy-10-intern-limit_source_Laser_405nm_1.2W_A_0.14_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1/obj_biopsy-10-intern-limit_source_Laser_405nm_1.2W_A_0.14_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1_had_reco.npz'
# file_cube_nolight = root_data +'obj_biopsy-10-intern-limit_source_No-light_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1/obj_biopsy-10-intern-limit_source_No-light_f80mm-P2_Walsh_im_16x16_ti_100ms_zoom_x1_had_reco.npz'
#%%
real_spectro_reso = 2 # real resolution of the spectrometer (nm)
theo_spectro_reso = (wavelengths[-1]-wavelengths[0])/len(wavelengths)
kernel_size = int(real_spectro_reso/theo_spectro_reso) + 1 # size of the window for the median filter, must be odd
if kernel_size %2 == 0 :
kernel_size = kernel_size + 1
reject_band = [606, 616] # exclude spectral band reject_band from fit (nm). To reject no band, set reject_band[0]=reject_band[1]
band_mask = (wavelengths <= reject_band[0])|(wavelengths >= reject_band[1])
# fit_start = 614
# fit_stop = 650
# band_mask = (wavelengths >= fit_start) & (wavelengths <= fit_stop)
wavelengths = wavelengths[band_mask]
if save_fit_data == True :
np.save(root_saveresults + 'wavelengths_mask.npy', wavelengths)
# Resampling the wavelength scale for the binned spectrum
wvlgth_bin = np.ndarray(wavelengths.size // bin_width, dtype=float)
for i in range(wvlgth_bin.size):
wvlgth_bin[i] = wavelengths[i*bin_width]
if save_fit_data == True :
np.save(root_saveresults + 'wavelengths_mask_bin.npy', wvlgth_bin)
#%% Import ref spectra
# load interpolated and normalized ref spectra :
spectr620 = np.load(root_ref + '_spectr620_interp.npy')
spectr634 = np.load(root_ref + '_spectr634_interp.npy')
spectr620 = spectr620[band_mask]
spectr634 = spectr634[band_mask]
#%% FIT
cubeobj = np.load(file_cube_laser)
cubehyper_laser = cubeobj['arr_0']
# Read nolight hypercube
cubeobj = np.load(file_cube_nolight)
cubehyper_nolight = cubeobj['arr_0']
del cubeobj
# Read mask
mask = np.load(file_mask)
popt_tab = np.ndarray((cubehyper_laser.shape[0], cubehyper_laser.shape[1], 7), dtype = 'float64')
popt_tab[:] = np.nan
spectrum_tab = np.ndarray((cubehyper_laser.shape[0], cubehyper_laser.shape[1], np.size(wvlgth_bin)), dtype='float64')
spectrum_tab[:] = np.nan
# Fit for every point of the mask
t0 = time.time()
print('start fit for the entire image', time.time()-t0)
for x_i in range(cubehyper_laser.shape[0]):
for y_i in range(cubehyper_laser.shape[1]):
if mask[x_i, y_i]!=0:
spectr_laser = cubehyper_laser[x_i, y_i, :]
spectr_nolight = cubehyper_nolight[x_i, y_i, :]
spectr_laser = cubehyper_laser[x_i, y_i, :][band_mask]
spectr_nolight = cubehyper_nolight[x_i, y_i, :][band_mask]
# Binning
sp_laser_bin = np.ndarray(spectr_laser.size // bin_width, dtype=float)
sp_nolight_bin = np.ndarray(spectr_laser.size // bin_width, dtype=float)
for i in range(sp_laser_bin.size):
sp_laser_bin[i] = np.sum(spectr_laser[i*bin_width:(1+i)*bin_width])
sp_nolight_bin[i] = np.sum(spectr_nolight[i*bin_width:(1+i)*bin_width])
# Remove the no light spectrum
spectrum = sp_laser_bin - sp_nolight_bin
spectrum_tab[x_i, y_i, :] = spectrum
# FIT THE SPECTRUM TO REFERENCE SPECTRA
M = np.abs(np.max(spectrum))
# p0 = [M/2, M/2, M/8, 0, 0, 585, 10]# initial guess for the fit
# bounds_inf = [0, 0 ,0 ,-2, -2, 580, 5]
# bounds_sup = [M, M, M, 2, 2, 610, 100]
p0 = [M/2, M/2, M/8, 0, 0, 590, 30]# initial guess for the fit
bounds_inf = [0, 0 ,0 ,-2, -2, 585, 20]
bounds_sup = [M, M, M, 2, 2, 595, 40]
try :
popt, pcov = op.curve_fit(func_fit, wvlgth_bin, spectrum, p0, bounds=(bounds_inf, bounds_sup))
popt_tab[x_i, y_i, :] = popt
except RuntimeError:
pass
print('end fit for image', time.time()-t0)
if save_fit_data == True:
if os.path.exists(root_saveresults + num_patient + '_' + type_reco) == False :
os.mkdir(root_saveresults + num_patient + '_' + type_reco)
np.save(root_saveresults + num_patient + '_' + type_reco + '/' + num_biopsy + '_' + type_reco + '_spectrum_tab.npy', spectrum_tab)
np.save(root_saveresults + num_patient + '_' + type_reco + '/' + num_biopsy + '_' + type_reco + '_fit_params.npy', popt_tab)