-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_snr_all_files.py
273 lines (130 loc) · 5.06 KB
/
compute_snr_all_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 9 12:40:57 2025
@author: chiliaeva
"""
import os
import numpy as np
import matplotlib.pyplot as plt
fontsize = 14
import cv2 as cv
# from scipy import signal
# from scipy.integrate import trapezoid
from subdirs_list import find_subdirs_with_string, find_npy_files, get_next_n_chars
from snr_functions import compute_snr
#%%
savefig_map = True
savedata = True
savefig_hist = True
type_reco = 'had_reco'
root_saveresults = 'C:/fitresults_250317_full-spectra/'
file_wvlgth = root_saveresults + 'wavelengths_mask_bin.npy'
wavelengths = np.load(file_wvlgth)
root_savefig = root_saveresults + 'fig/snr/'
if os.path.exists(root_savefig) == False :
os.mkdir(root_savefig)
list_results_files = find_subdirs_with_string(root_saveresults, type_reco)
list_spectrum_files = find_npy_files(list_results_files, 'spectrum_tab')
std_bounds = [650, 748]
max_interval = [620, 640]
#%%
mean_snr_tab = np.empty(np.shape(list_spectrum_files))
max_snr_tab = np.empty(np.shape(list_spectrum_files))
mean_std_tab = np.empty(np.shape(list_spectrum_files))
list_measurements = []
for index, file in enumerate(list_spectrum_files) :
print('file N°', index)
num_patient = get_next_n_chars(file, 'P', 3)
num_biopsy = get_next_n_chars(file, 'B', 2)
list_measurements.append(num_patient+num_biopsy)
spectrum_tab = np.load(file)
nb_tab = np.empty_like(spectrum_tab[:,:,0])
std_tab = np.empty_like(spectrum_tab[:,:,0])
snr_tab = np.empty_like(spectrum_tab[:,:,0])
integral_tab = np.empty_like(spectrum_tab[:,:,0])
for i in range(spectrum_tab.shape[0]):
print (i)
for j in range(spectrum_tab.shape[1]):
print(j)
nb_tab[i, j], std_tab[i, j], snr_tab[i, j], integral_tab[i, j] = compute_snr(spectrum_tab, wavelengths, i, j, std_bounds, max_interval)
plt.figure('STD')
plt.clf()
plt.imshow(std_tab)
plt.colorbar()
if savefig_map == True :
plt.savefig(root_savefig + num_patient + num_biopsy + type_reco + '_std_map.png', bbox_inches='tight')
plt.figure('SNR')
plt.clf()
plt.imshow(snr_tab)
plt.colorbar()
if savefig_map == True :
plt.savefig(root_savefig + num_patient + num_biopsy + type_reco + '_snr_map.png', bbox_inches='tight')
mean_std = np.nanmean(std_tab)
mean_std_tab[index] = mean_std
if savedata == True :
np.save(root_savefig + num_patient + num_biopsy + type_reco + '_mean_std', mean_std)
mean_snr = np.nanmean(snr_tab)
mean_snr_tab[index] = mean_snr
if savedata == True :
np.save(root_savefig + num_patient + num_biopsy + type_reco + '_mean_snr', mean_snr)
max_snr = np.nanmax(snr_tab)
max_snr_tab[index] = max_snr
#######################################################################################
########################################################################################
#%% Statistics
save_stats = True
fig, ax = plt.subplots(1, 1, figsize = [16, 8])
ax.plot(list_measurements, mean_snr_tab, marker='p', linestyle='')
ax.tick_params(axis='x', rotation=55, labelsize=8)
plt.xlabel("Measurement N°")
plt.ylabel("Mean SNR value")
if save_stats :
plt.savefig(root_savefig + type_reco + '_mean_snr_all_measurements', bbox_inches = 'tight')
fig, ax = plt.subplots(1, 1, figsize = [16, 8])
ax.plot(list_measurements, max_snr_tab, marker='p', linestyle='')
ax.tick_params(axis='x', rotation=55, labelsize=8)
plt.xlabel("Measurement N°")
plt.ylabel("Max SNR value")
if save_stats :
plt.savefig(root_savefig + type_reco + '_max_snr_all_measurements', bbox_inches = 'tight')
#%% Histograms
def plot_histogram(array, bins, range_min, range_max):
'''
Arguments :
array : 1D array to count and bin
bins : int, number of bins
range_min : float
range_max : float
'''
plt.figure()
plt.clf()
plt.hist(array, bins, range=(range_min, range_max))
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.ylabel('Number of measurements')
plt.xlabel('')
# plot_histogram(mean_snr_tab, 100, 0, 20)
#%%
bins = 100
range_min = 0
range_max = 20
ticks = np.arange(0, 20, 1)
ftz = 16
plt.figure('Mean SNR histogram')
plt.clf()
plt.hist(mean_snr_tab, bins, range=(range_min, range_max))
plt.xticks(ticks, fontsize=ftz)
plt.yticks(fontsize=ftz)
plt.ylabel('Number of measurements', fontsize=ftz)
plt.xlabel('Mean SNR value', fontsize=ftz)
if savefig_hist == True :
plt.savefig(root_savefig + type_reco + '_global_histogram.png', bbox_inches='tight')
#%% Count number of measurements with mean SNR >= 10 :
def nb_values_over_n(array, n):
nb = 0
for i in range(len(array)):
if array[i] >= n :
nb += 1
return nb
nb_mean_snr_over_five = nb_values_over_n(mean_snr_tab, 5)
nb_max_snr_over_five = nb_values_over_n(max_snr_tab, 5)