|
| 1 | +--- |
| 2 | +title: "Survey demography" |
| 3 | +author: "Thomas Klebel" |
| 4 | +date: "`r format(Sys.time(), '%d %B, %Y')`" |
| 5 | +output: |
| 6 | + html_document: |
| 7 | + keep_md: true |
| 8 | +--- |
| 9 | + |
| 10 | +```{r setup, include=FALSE} |
| 11 | +library(tidyverse) |
| 12 | +library(ggchicklet) |
| 13 | +knitr::opts_chunk$set(echo = TRUE, warning = FALSE, dpi = 300) |
| 14 | +
|
| 15 | +extrafont::loadfonts(device = "win") |
| 16 | +
|
| 17 | +theme_set(hrbrthemes::theme_ipsum_rc(base_family = "Hind")) |
| 18 | +
|
| 19 | +df <- targets::tar_read(clean_data) |
| 20 | +wb_countries <- targets::tar_read(wb_countries) |
| 21 | +
|
| 22 | +custom_blue <- "#3792BD" |
| 23 | +``` |
| 24 | + |
| 25 | + |
| 26 | +# Gender (X84) |
| 27 | + |
| 28 | +```{r} |
| 29 | +df %>% make_table(X84, label = "Gender") |
| 30 | +``` |
| 31 | +# Academic role (X85) |
| 32 | +```{r} |
| 33 | +make_table(df, X85, label = "Academic role") |
| 34 | +``` |
| 35 | + |
| 36 | +Merge junior roles |
| 37 | + |
| 38 | +```{r} |
| 39 | +df %>% |
| 40 | + mutate(X85 = case_when(str_detect(X85, "Post-doc") ~ "Prae/Post-doc", |
| 41 | + str_detect(X85, "Doctoral") ~ "Prae/Post-doc", |
| 42 | + TRUE ~ X85)) %>% |
| 43 | + make_table(X85, label = "Academic role") |
| 44 | +``` |
| 45 | + |
| 46 | +# Year of first academic publication (X87) |
| 47 | +```{r academic-age} |
| 48 | +df %>% |
| 49 | + # fix mis-typed input |
| 50 | + mutate(X87 = case_when(X87 == 19999 ~ 1999, |
| 51 | + X87 == 84 ~ 1984, |
| 52 | + TRUE ~ X87)) %>% |
| 53 | + ggplot(aes(X87)) + |
| 54 | + geom_histogram(binwidth = 2, fill = custom_blue) + |
| 55 | + labs(x = "Year of first publication", y = NULL) |
| 56 | +``` |
| 57 | + |
| 58 | +# Type of instiution (X88 + X89) |
| 59 | +Q: "How would you characterise your institution?" |
| 60 | +```{r} |
| 61 | +df %>% |
| 62 | + make_table(X88) |
| 63 | +``` |
| 64 | + |
| 65 | +Q: "How would you characterise your institution?" |
| 66 | + |
| 67 | +```{r} |
| 68 | +df %>% |
| 69 | + count(X89) %>% |
| 70 | + drop_na() %>% |
| 71 | + knitr::kable() |
| 72 | +``` |
| 73 | +# Disciplines (X90 + X91) |
| 74 | +```{r} |
| 75 | +df %>% |
| 76 | + make_table(X90) |
| 77 | +``` |
| 78 | + |
| 79 | +```{r} |
| 80 | +df %>% |
| 81 | + count(X91) %>% |
| 82 | + drop_na() %>% |
| 83 | + knitr::kable() |
| 84 | +``` |
| 85 | + |
| 86 | + |
| 87 | +Disciplines were manually grouped by using the topics from the Web of Science: |
| 88 | +https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html |
| 89 | + |
| 90 | + |
| 91 | +```{r} |
| 92 | +df %>% |
| 93 | + drop_na(disciplines_recoded_wos) %>% # there is one missing case |
| 94 | + make_table(disciplines_recoded_wos) |
| 95 | +``` |
| 96 | + |
| 97 | +```{r disciplines} |
| 98 | +plot_bar(df, disciplines_recoded_wos, nudge_y = .01) + |
| 99 | + labs(caption = "n = 197") |
| 100 | +``` |
| 101 | + |
| 102 | +# Type of contract |
| 103 | +```{r} |
| 104 | +# X15 = Are you on a limited-term contract? |
| 105 | +df %>% make_table(X15) |
| 106 | +``` |
| 107 | +```{r} |
| 108 | +df %>% |
| 109 | + filter(X15 == "Other") %>% |
| 110 | + select(X16) |
| 111 | +# one of the "others" is technically on a permanent contract |
| 112 | +``` |
| 113 | + |
| 114 | +```{r} |
| 115 | +total_unlimited <- {df %>% filter(X15 == "No") %>% nrow()} + 1 |
| 116 | +share <- total_unlimited/nrow(df) |
| 117 | +
|
| 118 | +glue::glue("Number and share of researchers on unlimited contract: |
| 119 | + {total_unlimited} ({scales::percent(share, .1)})") |
| 120 | +``` |
| 121 | + |
| 122 | + |
| 123 | +# Country |
| 124 | +```{r} |
| 125 | +# checking for others |
| 126 | +stopifnot(identical(nrow(filter(df, X12 == "Other")), 0L)) |
| 127 | +
|
| 128 | +# n for country |
| 129 | +nrow(df) |
| 130 | +
|
| 131 | +# inspect country |
| 132 | +df %>% make_table(X12, label = "Country") |
| 133 | +``` |
| 134 | + |
| 135 | +```{r} |
| 136 | +# number of countries |
| 137 | +df %>% |
| 138 | + summarise(n_countries = n_distinct(X12)) |
| 139 | +``` |
| 140 | + |
| 141 | + |
| 142 | +```{r} |
| 143 | +# lumping together |
| 144 | +country <- df %>% |
| 145 | + mutate(country_lumped = fct_lump_min(X12, min = 4)) %>% |
| 146 | + select(X12, country_lumped) |
| 147 | +``` |
| 148 | + |
| 149 | +```{r country, fig.width=8, fig.height=5} |
| 150 | +country %>% |
| 151 | + count(country_lumped) %>% |
| 152 | + mutate(prop = n / sum(n), |
| 153 | + labels = scales::percent(prop, .1)) %>% |
| 154 | + mutate(country_ordered = fct_reorder(country_lumped, n, .fun = max, |
| 155 | + .desc = TRUE) %>% |
| 156 | + fct_relevel("Other", after = Inf)) %>% |
| 157 | + ggplot(aes(country_ordered, prop)) + |
| 158 | + geom_text(aes(label = labels), nudge_y = .01, size = 3.8, family = "Hind") + |
| 159 | + geom_col(width = .7, fill = custom_blue) + |
| 160 | + # geom_chicklet(width = .8, radius = unit(7, "pt")) + |
| 161 | + scale_x_discrete(guide = guide_axis(angle = 45, )) + |
| 162 | + scale_y_continuous(labels = scales::percent) + |
| 163 | + labs(x = NULL, y = NULL) + |
| 164 | + hrbrthemes::theme_ipsum_rc(base_family = "Hind", grid = "Y") |
| 165 | +``` |
| 166 | + |
| 167 | +Alternative with dotplot |
| 168 | + |
| 169 | +```{r country-dotplot, fig.height=5, fig.width=7} |
| 170 | +plot_bar(country, country_lumped, nudge_y = .005, last_val = "Other") |
| 171 | +``` |
| 172 | + |
| 173 | + |
| 174 | +Further classify countries per WP categories. Categories from: |
| 175 | +https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups |
| 176 | + |
| 177 | +```{r} |
| 178 | +# computations were moved higher up the pipeline |
| 179 | +``` |
| 180 | + |
| 181 | +```{r country-grouped-percentage, fig.width=6, fig.height=5} |
| 182 | +df %>% |
| 183 | + count(Region) %>% |
| 184 | + mutate(prop = n / sum(n), |
| 185 | + labels = scales::percent(prop, .1)) %>% |
| 186 | + mutate(country_ordered = fct_reorder(Region, n, .fun = max, |
| 187 | + .desc = TRUE)) %>% |
| 188 | + ggplot(aes(country_ordered, prop)) + |
| 189 | + geom_text(aes(label = labels), nudge_y = .03, size = 3.8, family = "Hind") + |
| 190 | + geom_col(width = .7, fill = custom_blue) + |
| 191 | + # geom_chicklet(width = .8, radius = unit(7, "pt")) + |
| 192 | + scale_x_discrete(guide = guide_axis(angle = 45, )) + |
| 193 | + scale_y_continuous(labels = scales::percent) + |
| 194 | + labs(x = NULL, y = NULL) + |
| 195 | + hrbrthemes::theme_ipsum_rc(base_family = "Hind", grid = "Y") |
| 196 | +``` |
| 197 | + |
| 198 | +alternative with n |
| 199 | +```{r country-grouped-n, fig.width=6, fig.height=5} |
| 200 | +df %>% |
| 201 | + count(Region) %>% |
| 202 | + mutate(prop = n / sum(n), |
| 203 | + labels = n) %>% |
| 204 | + mutate(country_ordered = fct_reorder(Region, n, .fun = max, |
| 205 | + .desc = TRUE)) %>% |
| 206 | + ggplot(aes(country_ordered, prop)) + |
| 207 | + geom_text(aes(label = labels), nudge_y = .03, size = 3.8, family = "Hind") + |
| 208 | + geom_col(width = .7, fill = custom_blue) + |
| 209 | + # geom_chicklet(width = .8, radius = unit(7, "pt")) + |
| 210 | + scale_x_discrete(guide = guide_axis(angle = 45, )) + |
| 211 | + scale_y_continuous(labels = scales::percent) + |
| 212 | + labs(x = NULL, y = NULL) + |
| 213 | + hrbrthemes::theme_ipsum_rc(base_family = "Hind", grid = "Yy") |
| 214 | +``` |
| 215 | + |
| 216 | +```{r country-grouped-lollipop} |
| 217 | +plot_bar(df, Region) |
| 218 | +``` |
| 219 | + |
0 commit comments