diff --git a/content/ar/404.md b/content/ar/404.md
new file mode 100644
index 0000000000..299593ff09
--- /dev/null
+++ b/content/ar/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+عفواً! لقد وصلت إلى طريق مسدود.
+
+إذا كنت تعتقد أنه يجب أن يكون هناك شيء ما هنا ، فيمكنك [فتح مشكلة](https://github.com/numpy/numpy.org/issues) على GitHub.
diff --git a/content/ar/about.md b/content/ar/about.md
new file mode 100644
index 0000000000..ad34b96460
--- /dev/null
+++ b/content/ar/about.md
@@ -0,0 +1,85 @@
+---
+title: من نحن
+sidebar: false
+---
+
+_بعض المعلومات حول مشروع ومجتمع نمباي_
+
+نمباي هو مشروع مفتوح المصدر يهدف إلي إتاحة الحوسبة الرقمية باستخدام لغة برمجة بايثون. وقد أنشئت في عام 2005، استنادا علي العمل المبكر للمكتبتان Numeric و Numarray. NumPy will always be 100% open source software, free for all to use and released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+وقد تم تطوير نمباي في العلن على GitHub ومن خلال توافق آراء مجتمع نمباي ونطاق أوسع لمجتمع بايثون العلمي. لمزيد من المعلومات حول نهج الإدارة، يرجى الاطلاع على [الوثيقة الإدارية](https://www.numpy.org/devdocs/dev/governance/index.html) الخاصة بنا.
+
+
+## المجلس التوجيهي
+
+ويتمثل دور المجلس التوجيهي في ضمان ازدهار المشروع على المدى الطويل، على كلا الصعيدين التقنى والاجتماعى وذلك من خلال العمل فى مجتمع نمباى الواسع وخدمته. ويتألف المجلس التوجيهي المعني بالمشروع حاليا من الأعضاء التالية (بالترتيب الأبجدي):
+
+- سيباستيان بيرج
+- رالف غومرس
+- تشارلز هاريس
+- ستيفان هوير
+- ميليسا فيبر ميندونسا (Melissa Weber Mendonça)
+- إينيسا باوسون
+- ماتى بيكاس
+- ستيفان فان دير والت(Stefan van der Walt)
+- إريك وايزر
+
+الأعضاء الفخريون:
+
+- ترافيس أوليفانت (مؤسس المشروع، 2005-2012)
+- ألكس غريفينغ (2015-2017)
+- مارتن فان كيركويك (2017-2019)
+- آلان هالدين (2015-2021)
+- ناثانييل سميث (2012-2021)
+- جوليان تايلور (2013-2021)
+- باولي فيرتانين (2008-2021)
+- جايمي فرنانديز ديل ريو(2014-2021)
+
+
+## الأقسام
+
+The NumPy project is growing! 🎉 We have teams for:
+
+- الشفرة(الكود)
+- الوثائق
+- المواقع الالكترونية
+- الفرز
+- survey
+- funding and grants
+
+See the [}}">Team]({{< relref) page for individual team members.
+
+## اللجنة الفرعية ل NumFOCUS
+
+- تشارليز هاريس
+- رالف غومرس
+- ميليسا ويبر ميندوكا
+- سيباستيشان بيرج
+- عضو خارجي: توماس كاسويل
+
+## الرعاة
+
+ويتلقى المشروع تمويلا مباشرا من المصادر التالية:
+{{< sponsors >}}
+
+
+## الشركاء المؤسيسون
+
+الشركاء المؤسسيون هم المنظمات التي تدعم المشروع وذلك بتوظيف الأشخاص الذين يساهمون في "نمباي" كجزء من عملهم. ويشمل الشركاء المؤسسيون الحاليون ما يلي:
+
+- جامعة كاليفورنيا في بركلي( ستيفان فان دير والت وسيباستيان بيرغ وروس بارنوفسكي)
+- نظام الواجهة الخلفية( رالف غومرس وميليسا وييبر ميندوكا ومارس لي وماتي بيكاس وبيروا بيتنسون)
+
+{{< partners >}}
+
+
+## التبرع
+
+يرجى النظر في التبرع للمشروع بما يتناسب مع مواردك إذا كنت وجدته مفيد في عملك أو بحثك أو شركتك. ،أي مبلغ قد يساعد، وستستخدم جميع التبرعات بشكل صارم لتطوير برمجيات المشروع مفتوحة المصدر، ووثائقه، ومجتمعه.
+
+نمباي هو مشروع ممول برعاية شركةNumFOCUS, 501(c)(3) وهي مؤسسة خيرية غير ربحية في الولايات المتحدة. فهى تدعم مشروع نمباي ماليا وقانونيا وإداريا للمساعدة في ضمان ازدهاره واستدامته. قم بزيارة [numfocus.org](https://numfocus.org) لمزيد من المعلومات.
+
+يمكنك التبرع من خلال: [](https://numfocus.org). وبخصوص المتبرعين في الولايات المتحدة، فإن هديتكم تخصم من الضرائب بالقدر الذي ينص عليه القانون. كما هو الحال في أي تبرع، وعلى هذا فيتوجب عليك التشاور مع مستشارك الضريبى.
+
+وسيتخذ المجلس التوجيهي لنمباى القرارات المتعلقة بكيفية استخدام أي أموال يتلقاها على أفضل وجه. وتوثق الأولويات التقنية وأولويات البنية التحتية على [](https://www.numpy.org/neps/index.html#roadmap).
+{{< numfocus >}}
diff --git a/content/ar/arraycomputing.md b/content/ar/arraycomputing.md
new file mode 100644
index 0000000000..abd29d11c1
--- /dev/null
+++ b/content/ar/arraycomputing.md
@@ -0,0 +1,21 @@
+---
+title: Array Computing
+sidebar: false
+---
+
+*Array computing is the foundation of statistical, mathematical, scientific computing in various contemporary data science and analytics applications such as data visualization, digital signal processing, image processing, bioinformatics, machine learning, AI, and several others.*
+
+Large scale data manipulation and transformation depends on efficient, high-performance array computing. The language of choice for data analytics, machine learning, and productive numerical computing is **Python.**
+
+**Num**erical **Py**thon or NumPy is its de-facto standard Python programming language library that supports large, multi-dimensional arrays and matrices, and comes with a vast collection of high-level mathematical functions to operate on these arrays.
+
+Since the launch of NumPy in 2006, Pandas appeared on the landscape in 2008, and it was not until a couple of years ago that several array computing libraries showed up in succession, crowding the array computing landscape. Many of these newer libraries mimic NumPy-like features and capabilities, and pack newer algorithms and features geared towards machine learning and artificial intelligence applications.
+
+
+
+**Array computing** is based on **arrays** data structures. *Arrays* are used to organize vast amounts of data such that a related set of values can be easily sorted, searched, mathematically manipulated, and transformed easily and quickly.
+
+Array computing is *unique* as it involves operating on the data array *at once*. What this means is that any array operation applies to an entire set of values in one shot. This vectorized approach provides speed and simplicity by enabling programmers to code and operate on aggregates of data, without having to use loops of individual scalar operations.
diff --git a/content/ar/case-studies/blackhole-image.md b/content/ar/case-studies/blackhole-image.md
new file mode 100644
index 0000000000..f2460d3d5b
--- /dev/null
+++ b/content/ar/case-studies/blackhole-image.md
@@ -0,0 +1,70 @@
+---
+title: "Case Study: First Image of a Black Hole"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**Black Hole M87**" alt="black hole image" attr="*(Image Credits: Event Horizon Telescope Collaboration)*" attrlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg" >}}
+
+
+
Imaging the M87 Black Hole is like trying to see something that is by definition impossible to see.
+
+
+
+## A telescope the size of the earth
+
+The [Event Horizon telescope (EHT)](https://eventhorizontelescope.org) is an array of eight ground-based radio telescopes forming a computational telescope the size of the earth, studing the universe with unprecedented sensitivity and resolution. The huge virtual telescope, which uses a technique called very-long-baseline interferometry (VLBI), has an angular resolution of [20 micro-arcseconds][resolution] — enough to read a newspaper in New York from a sidewalk café in Paris!
+
+### Key Goals and Results
+
+* **A New View of the Universe:** The groundwork for the EHT's groundbreaking image had been laid 100 years earlier when [Sir Arthur Eddington][eddington] yielded the first observational support of Einstein's theory of general relativity.
+
+* **The Black Hole:** EHT was trained on a supermassive black hole approximately 55 million light-years from Earth, lying at the center of the galaxy Messier 87 (M87) in the Virgo galaxy cluster. Its mass is 6.5 billion times the Sun's. It had been studied for [over 100 years](https://www.jpl.nasa.gov/news/news.php?feature=7385), but never before had a black hole been visually observed.
+
+* **Comparing Observations to Theory:** From Einstein’s general theory of relativity, scientists expected to find a shadow-like region caused by gravitational bending and capture of light. Scientists could use it to measure the black hole's enormous mass.
+
+### The Challenges
+
+* **Computational scale**
+
+ EHT poses massive data-processing challenges, including rapid atmospheric phase fluctuations, large recording bandwidth, and telescopes that are widely dissimilar and geographically dispersed.
+
+* **Too much information**
+
+ Each day EHT generates over 350 terabytes of observations, stored on helium-filled hard drives. Reducing the volume and complexity of this much data is enormously difficult.
+
+* **Into the unknown**
+
+ When the goal is to see something never before seen, how can scientists be confident the image is correct?
+
+{{< figure src="/images/content_images/cs/dataprocessbh.png" class="csfigcaption" caption="**EHT Data Processing Pipeline**" alt="data pipeline" align="middle" attr="(Diagram Credits: The Astrophysical Journal, Event Horizon Telescope Collaboration)" attrlink="https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57" >}}
+
+## NumPy’s Role
+
+What if there's a problem with the data? Or perhaps an algorithm relies too heavily on a particular assumption. Will the image change drastically if a single parameter is changed?
+
+The EHT collaboration met these challenges by having independent teams evaluate the data, using both established and cutting-edge image reconstruction techniques. When results proved consistent, they were combined to yield the first-of-a-kind image of the black hole.
+
+Their work illustrates the role the scientific Python ecosystem plays in advancing science through collaborative data analysis.
+
+{{< figure src="/images/content_images/cs/bh_numpy_role.png" class="fig-center" alt="role of numpy" caption="**The role of NumPy in Black Hole imaging**" >}}
+
+For example, the [`eht-imaging`][ehtim] Python package provides tools for simulating and performing image reconstruction on VLBI data. NumPy is at the core of array data processing used in this package, as illustrated by the partial software dependency chart below.
+
+{{< figure src="/images/content_images/cs/ehtim_numpy.png" class="fig-center" alt="ehtim dependency map highlighting numpy" caption="**Software dependency chart of ehtim package highlighting NumPy**" >}}
+
+Besides NumPy, many other packages, such as [SciPy](https://www.scipy.org) and [Pandas](https://pandas.io), are part of the data processing pipeline for imaging the black hole. The standard astronomical file formats and time/coordinate transformations were handled by [Astropy][astropy], while [Matplotlib][mpl] was used in visualizing data throughout the analysis pipeline, including the generation of the final image of the black hole.
+
+## Summary
+
+The efficient and adaptable n-dimensional array that is NumPy's central feature enabled researchers to manipulate large numerical datasets, providing a foundation for the first-ever image of a black hole. A landmark moment in science, it gives stunning visual evidence of Einstein’s theory. The achievement encompasses not only technological breakthroughs but also international collaboration among over 200 scientists and some of the world's best radio observatories. Innovative algorithms and data processing techniques, improving upon existing astronomical models, helped unfold a mystery of the universe.
+
+{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
diff --git a/content/ar/case-studies/cricket-analytics.md b/content/ar/case-studies/cricket-analytics.md
new file mode 100644
index 0000000000..db140f858c
--- /dev/null
+++ b/content/ar/case-studies/cricket-analytics.md
@@ -0,0 +1,64 @@
+---
+title: "Case Study: Cricket Analytics, the game changer!"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/ipl-stadium.png" caption="**IPLT20, the biggest Cricket Festival in India**" alt="Indian Premier League Cricket cup and stadium" attr="*(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))*" attrlink="https://unsplash.com/@aksh1802" >}}
+
+
+
You don't play for the crowd, you play for the country.
+
+
+
+## About Cricket
+
+It would be an understatement to state that Indians love cricket. The game is played in just about every nook and cranny of India, rural or urban, popular with the young and the old alike, connecting billions in India unlike any other sport. Cricket enjoys lots of media attention. There is a significant amount of [money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and fame at stake. Over the last several years, technology has literally been a game changer. Audiences are spoilt for choice with streaming media, tournaments, affordable access to mobile based live cricket watching, and more.
+
+The Indian Premier League (IPL) is a professional Twenty20 cricket league, founded in 2008. It is one of the most attended cricketing events in the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League) in 2019.
+
+Cricket is a game of numbers - the runs scored by a batsman, the wickets taken by a bowler, the matches won by a cricket team, the number of times a batsman responds in a certain way to a kind of bowling attack, etc. The capability to dig into cricketing numbers for both improving performance and studying the business opportunities, overall market, and economics of cricket via powerful analytics tools, powered by numerical computing software such as NumPy, is a big deal. Cricket analytics provides interesting insights into the game and predictive intelligence regarding game outcomes.
+
+Today, there are rich and almost infinite troves of cricket game records and statistics available, e.g., [ESPN cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) and [cricsheet](https://cricsheet.org). These and several such cricket databases have been used for [cricket analysis](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances) using the latest machine learning and predictive modelling algorithms. Media and entertainment platforms along with professional sports bodies associated with the game use technology and analytics for determining key metrics for improving match winning chances:
+
+* batting performance moving average,
+* score forecasting,
+* gaining insights into fitness and performance of a player against different opposition,
+* player contribution to wins and losses for making strategic decisions on team composition
+
+{{< figure src="/images/content_images/cs/cricket-pitch.png" class="csfigcaption" caption="**Cricket Pitch, the focal point in the field**" alt="A cricket pitch with bowler and batsmen" align="middle" attr="*(Image credit: Debarghya Das)*" attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
+
+### Key Data Analytics Objectives
+
+* Sports data analytics are used not only in cricket but many [other sports](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) for improving the overall team performance and maximizing winning chances.
+* Real-time data analytics can help in gaining insights even during the game for changing tactics by the team and by associated businesses for economic benefits and growth.
+* Besides historical analysis, predictive models are harnessed to determine the possible match outcomes that require significant number crunching and data science know-how, visualization tools and capability to include newer observations in the analysis.
+
+{{< figure src="/images/content_images/cs/player-pose-estimator.png" class="fig-center" alt="pose estimator" caption="**Cricket Pose Estimator**" attr="*(Image credit: connect.vin)*" attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
+
+### The Challenges
+
+* **Data Cleaning and preprocessing**
+
+ IPL has expanded cricket beyond the classic test match format to a much larger scale. The number of matches played every season across various formats has increased and so has the data, the algorithms, newer sports data analysis technologies and simulation models. Cricket data analysis requires field mapping, player tracking, ball tracking, player shot analysis, and several other aspects involved in how the ball is delivered, its angle, spin, velocity, and trajectory. All these factors together have increased the complexity of data cleaning and preprocessing.
+
+* **Dynamic Modeling**
+
+ In cricket, just like any other sport, there can be a large number of variables related to tracking various numbers of players on the field, their attributes, the ball, and several possibilities of potential actions. The complexity of data analytics and modeling is directly proportional to the kind of predictive questions that are put forth during analysis and are highly dependent on data representation and the model. Things get even more challenging in terms of computation, data comparisons when dynamic cricket play predictions are sought such as what would have happened if the batsman had hit the ball at a different angle or velocity.
+
+* **Predictive Analytics Complexity**
+
+ Much of the decision making in cricket is based on questions such as "how often does a batsman play a certain kind of shot if the ball delivery is of a particular type", or "how does a bowler change his line and length if the batsman responds to his delivery in a certain way". This kind of predictive analytics query requires highly granular dataset availability and the capability to synthesize data and create generative models that are highly accurate.
+
+## NumPy’s Role in Cricket Analytics
+
+Sports Analytics is a thriving field. Many researchers and companies [use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter, besides using the latest machine learning and AI techniques. NumPy has been used for various kinds of cricket related sporting analytics such as:
+
+* **Statistical Analysis:** NumPy's numerical capabilities help estimate the statistical significance of observational data or match events in the context of various player and game tactics, estimating the game outcome by comparison with a generative or static model. [Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation) and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/) are used for tactical analysis.
+
+* **Data Visualization:** Data graphing and [visualization](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) provide useful insights into relationship between various datasets.
+
+## Summary
+
+Sports Analytics is a game changer when it comes to how professional games are played, especially how strategic decision making happens, which until recently was primarily done based on “gut feeling" or adherence to past traditions. NumPy forms a solid foundation for a large set of Python packages which provide higher level functions related to data analytics, machine learning, and AI algorithms. These packages are widely deployed to gain real-time insights that help in decision making for game-changing outcomes, both on field as well as to draw inferences and drive business around the game of cricket. Finding out the hidden parameters, patterns, and attributes that lead to the outcome of a cricket match helps the stakeholders to take notice of game insights that are otherwise hidden in numbers and statistics.
+
+{{< figure src="/images/content_images/cs/numpy_ca_benefits.png" class="fig-center" alt="Diagram showing benefits of using NumPy for cricket analytics" caption="**Key NumPy Capabilities utilized**" >}}
diff --git a/content/ar/case-studies/deeplabcut-dnn.md b/content/ar/case-studies/deeplabcut-dnn.md
new file mode 100644
index 0000000000..b8879d147e
--- /dev/null
+++ b/content/ar/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,90 @@
+---
+title: "دراسة حالة: تقدير DeepLabCut 3D Pose"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Analyzing mice hand-movement using DeepLapCut**" alt="micehandanim" attr="*(Source: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut">}}
+
+
+
Open Source Software is accelerating Biomedicine. DeepLabCut enables automated video analysis of animal behavior using Deep Learning.
+
+
+
+## About DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
+
+Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
+
+{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**Colored dots track the positions of a racehorse’s body part**" alt="horserideranim" attr="*(Source: Mackenzie Mathis)*">}}
+
+DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
+
+DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
+
+Recently, the [DeepLabCut model zoo](http://www.mousemotorlab.org/dlc-modelzoo) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
+
+### Key Goals and Results
+
+* **Automation of animal pose analysis for scientific studies:**
+
+ The primary objective of DeepLabCut technology is to measure and track posture of animals in a diverse settings. This data can be used, for example, in neuroscience studies to understand how the brain controls movement, or to elucidate how animals socially interact. Researchers have observed a [tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1) with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second (FPS).
+
+* **Creation of an easy-to-use Python toolkit for pose estimation:**
+
+ DeepLabCut wanted to share their animal pose-estimation technology in the form of an easy to use tool that can be adopted by researchers easily. So they have created a complete, easy-to-use Python toolbox with project management features as well. These enable not only automation of pose-estimation but also managing the project end-to-end by helping the DeepLabCut Toolkit user right from the dataset collection stage to creating shareable and reusable analysis pipelines.
+
+ Their [toolkit][DLCToolkit] is now available as open source.
+
+ A typical DeepLabCut Workflow includes:
+
+ - creation and refining of training sets via active learning
+ - creation of tailored neural networks for specific animals and scenarios
+ - code for large-scale inference on videos
+ - draw inferences using integrated visualization tools
+
+{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**Pose estimation steps with DeepLabCut**" alt="dlcsteps" align="middle" attr="(Source: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
+
+### The Challenges
+
+* **Speed**
+
+ Fast processing of animal behavior videos in order to measure their behavior and at the same time make scientific experiments more efficient, accurate. Extracting detailed animal poses for laboratory experiments, without markers, in dynamically changing backgrounds, can be challenging, both technically as well as in terms of resource needs and training data required. Coming up with a tool that is easy to use without the need for skills such as computer vision expertise that enables scientists to do research in more real-world contexts, is a non-trivial problem to solve.
+
+* **Combinatorics**
+
+ Combinatorics involves assembly and integration of movement of multiple limbs into individual animal behavior. Assembling keypoints and their connections into individual animal movements and linking them across time is a complex process that requires heavy-duty numerical analysis, especially in case of multi-animal movement tracking in experiment videos.
+
+* **Data Processing**
+
+ Last but not the least, array manipulation - processing large stacks of arrays corresponding to various images, target tensors and keypoints is fairly challenging.
+
+{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**Pose estimation variety and complexity**" alt="challengesfig" align="middle" attr="(Source: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
+
+## NumPy's Role in meeting Pose Estimation Challenges
+
+NumPy addresses DeepLabCut technology's core need of numerical computations at high speed for behavioural analytics. Besides NumPy, DeepLabCut employs various Python software that utilize NumPy at their core, such as [SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org), [matplotlib](https://matplotlib.org), [Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug), [scikit-learn](https://scikit-learn.org/stable/), [scikit-image](https://scikit-image.org) and [Tensorflow](https://www.tensorflow.org).
+
+The following features of NumPy played a key role in addressing the image processing, combinatorics requirements and need for fast computation in DeepLabCut pose estimation algorithms:
+
+* Vectorization
+* Masked Array Operations
+* Linear Algebra
+* Random Sampling
+* Reshaping of large arrays
+
+DeepLabCut utilizes NumPy’s array capabilities throughout the workflow offered by the toolkit. In particular, NumPy is used for sampling distinct frames for human annotation labeling, and for writing, editing and processing annotation data. Within TensorFlow the neural network is trained by DeepLabCut technology over thousands of iterations to predict the ground truth annotations from frames. For this purpose, target densities (scoremaps) are created to cast pose estimation as a image-to-image translation problem. To make the neural networks robust, data augmentation is employed, which requires the calculation of target scoremaps subject to various geometric and image processing steps. To make training fast, NumPy’s vectorization capabilities are leveraged. For inference, the most likely predictions from target scoremaps need to extracted and one needs to efficiently “link predictions to assemble individual animals”.
+
+{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**DeepLabCut Workflow**" alt="workflow" attr="*(Source: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
+
+## Summary
+
+Observing and efficiently describing behavior is a core tenant of modern ethology, neuroscience, medicine, and technology. [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior. With only a small set of training images, the DeepLabCut Python toolbox allows training a neural network to within human level labeling accuracy, thus expanding its application to not only behavior analysis in the laboratory, but to potentially also in sports, gait analysis, medicine and rehabilitation studies. Complex combinatorics, data processing challenges faced by DeepLabCut algorithms are addressed through the use of NumPy's array manipulation capabilities.
+
+{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
diff --git a/content/ar/case-studies/gw-discov.md b/content/ar/case-studies/gw-discov.md
new file mode 100644
index 0000000000..fd4fc688f8
--- /dev/null
+++ b/content/ar/case-studies/gw-discov.md
@@ -0,0 +1,69 @@
+---
+title: "دراسة حالة: اكتشاف الأمواج الثقالية"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/gw_sxs_image.png" class="fig-center" caption="**Gravitational Waves**" alt="binary coalesce black hole generating gravitational waves" attr="*(Image Credits: The Simulating eXtreme Spacetimes (SXS) Project at LIGO)*" attrlink="https://youtu.be/Zt8Z_uzG71o" >}}
+
+
+
The scientific Python ecosystem is critical infrastructure for the research done at LIGO.
+
+
+
+## حول الموجات الثقالية والLIGO[](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/)[](https://www.ligo.caltech.edu)
+
+Gravitational waves are ripples in the fabric of space and time, generated by cataclysmic events in the universe such as collision and merging of two black holes or coalescing binary stars or supernovae. Observing GW can not only help in studying gravity but also in understanding some of the obscure phenomena in the distant universe and its impact.
+
+The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu) was designed to open the field of gravitational-wave astrophysics through the direct detection of gravitational waves predicted by Einstein’s General Theory of Relativity. It comprises two widely separated interferometers within the United States — one in Hanford, Washington and the other in Livingston, Louisiana — operated in unison to detect gravitational waves. Each of them has multi-kilometer-scale gravitational wave detectors that use laser interferometry. The LIGO Scientific Collaboration (LSC), is a group of more than 1000 scientists from universities around the United States and in 14 other countries supported by more than 90 universities and research institutes; approximately 250 students actively contributing to the collaboration. The new LIGO discovery is the first observation of gravitational waves themselves, made by measuring the tiny disturbances the waves make to space and time as they pass through the earth. It has opened up new astrophysical frontiers that explore the warped side of the universe—objects and phenomena that are made from warped spacetime.
+
+
+### Key Objectives
+
+* Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to detect gravitational waves from some of the most violent and energetic processes in the Universe, the data LIGO collects may have far-reaching effects on many areas of physics including gravitation, relativity, astrophysics, cosmology, particle physics, and nuclear physics.
+* Crunch observed data via numerical relativity computations that involves complex maths in order to discern signal from noise, filter out relevant signal and statistically estimate significance of observed data
+* Data visualization so that the binary / numerical results can be comprehended.
+
+
+
+### The Challenges
+
+* **Computation**
+
+ Gravitational Waves are hard to detect as they produce a very small effect and have tiny interaction with matter. Processing and analyzing all of LIGO's data requires a vast computing infrastructure.After taking care of noise, which is billions of times of the signal, there is still very complex relativity equations and huge amounts of data which present a computational challenge: [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI) spread on 6 dedicated LIGO clusters
+
+* **Data Deluge**
+
+ As observational devices become more sensitive and reliable, the challenges posed by data deluge and finding a needle in a haystack rise multi-fold. LIGO generates terabytes of data every day! Making sense of this data requires an enormous effort for each and every detection. For example, the signals being collected by LIGO must be matched by supercomputers against hundreds of thousands of templates of possible gravitational-wave signatures.
+
+* **Visualization**
+
+ Once the obstacles related to understanding Einstein’s equations well enough to solve them using supercomputers are taken care of, the next big challenge was making data comprehensible to the human brain. Simulation modeling as well as signal detection requires effective visualization techniques. Visualization also plays a role in lending more credibility to numerical relativity in the eyes of pure science aficionados, who did not give enough importance to numerical relativity until imaging and simulations made it easier to comprehend results for a larger audience. Speed of complex computations and rendering, re-rendering images and simulations using latest experimental inputs and insights can be a time consuming activity that challenges researchers in this domain.
+
+{{< figure src="/images/content_images/cs/gw_strain_amplitude.png" class="fig-center" alt="gravitational waves strain amplitude" caption="**Estimated gravitational-wave strain amplitude from GW150914**" attr="(**Graph Credits:** Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)" attrlink="https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger" >}}
+
+## NumPy’s Role in the Detection of Gravitational Waves
+
+Gravitational waves emitted from the merger cannot be computed using any technique except brute force numerical relativity using supercomputers. The amount of data LIGO collects is as incomprehensibly large as gravitational wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by the software used for various tasks performed during the GW detection project at LIGO. NumPy helped in solving complex maths and data manipulation at high speed. Here are some examples:
+
+* [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+* Data retrieval: Deciding which data can be analyzed, figuring out whether it contains a signal - needle in a haystack
+* Statistical analysis: estimate the statistical significance of observational data, estimating the signal parameters (e.g. masses of stars, spin velocity, and distance) by comparison with a model.
+* Visualization of data
+ - Time series
+ - Spectrograms
+* Compute Correlations
+* Key [Software](https://github.com/lscsoft) developed in GW data analysis such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for providing object based interfaces to utilities, tools, and methods for studying data from gravitational-wave detectors.
+
+{{< figure src="/images/content_images/cs/gwpy-numpy-dep-graph.png" class="fig-center" alt="gwpy-numpy depgraph" caption="**Dependency graph showing how GwPy package depends on NumPy**" >}}
+
+----
+
+{{< figure src="/images/content_images/cs/PyCBC-numpy-dep-graph.png" class="fig-center" alt="PyCBC-numpy depgraph" caption="**Dependency graph showing how PyCBC package depends on NumPy**" >}}
+
+## Summary
+
+GW detection has enabled researchers to discover entirely unexpected phenomena while providing new insight into many of the most profound astrophysical phenomena known. Number crunching and data visualization is a crucial step that helps scientists gain insights into data gathered from the scientific observations and understand the results. The computations are complex and cannot be comprehended by humans unless it is visualized using computer simulations that are fed with the real observed data and analysis. NumPy along with other Python packages such as matplotlib, pandas, and scikit-learn is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to answer complex questions and discover new horizons in our understanding of the universe.
+
+{{< figure src="/images/content_images/cs/numpy_gw_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
diff --git a/content/ar/citing-numpy.md b/content/ar/citing-numpy.md
new file mode 100644
index 0000000000..e1f68bdf3f
--- /dev/null
+++ b/content/ar/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: الاستشهاد بنمباي
+sidebar: خطأ
+---
+
+إذا كان لنمباي دور كبير فى بحثك وتود الإشارة إليه فى منشورك الأكاديمى،فبامكانك إلقاء نظرة على هذة الورقة المقترحة للاستشهاد:
+
+* Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _برمجة المصفوفات بواسطة نمباي_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([رابط النشر](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_بتنسيق In BibTeX:_
+
+ ```
+@Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+}
+```
diff --git a/content/ar/code-of-conduct.md b/content/ar/code-of-conduct.md
new file mode 100644
index 0000000000..4811c7c959
--- /dev/null
+++ b/content/ar/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: القواعد السلوكية لنمباي
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### المقدمة
+
+هذه القواعد السلوكية تنطبق علي جميع المجالات التي تدار من قبل مشروع نمباي, بما في ذلك كل قوائم البريد سواء كانت خاصة أم عامة ومتعقبات القضايا والويكي والمدونات وتويتر وأي قناة اتصال تستخدم من قبل مجتمعنا. مشروع نمباي لا يقوم بتنظيم أي فعاليات شخصية ومع ذلك أي فعاليات متعلقة لمجتمعنا ينبغي أن تكون لها قواعد سلوكية مشابهة لروح هذا المستند.
+
+ينبغي علي كل شخص مشارك في مجتمع نمباي أن يحتذي بهذه القواعد سواء كان مشترك بصورة رسمية أو غير رسمية، أو يدعي انتمائه للمشروع في أي انشطه متعلقة للمشروع وخاصة عندما يمثل المشروع تحت أي دور.
+
+هذه القواعد ليست شاملة أو كاملة. لكنها تساعد علي استخلاص فهمنا المشترك للتعاون في ظل بيئة وأهداف مشتركة. من فضلك حاول أن تتبع هذه القواعد روحا ونصا من أجل إنشاء بيئة ودودة ومنتجة نثري بها المجتمع المحيط.
+
+### القواعد الارشادية المحددة
+
+نحن نسعى إلي:
+
+1. أن نكون منفتحين. نحن ندعو الجميع للمشاركة في مجتمعنا. نحن نفضل استخدام وسائل الاتصال العامة للرسائل المتعلقة بالمشروع، ما لم نناقش شيئا حساسا. ينطبق هذا علي الرسائل الخاصة بطلب المساعدة أوالمتعلقة بدعم المشروع ، ليس فقط ﻷن طلبات الدعم العام محببة لاحتمالية الوصول للإجابة عن الاستفسارات بشكل اكبر، ولكن أيضا لضمان سهولة الكشف والتصحيح عن أي أخطاء غير مقصودة في الإجابات.
+2. أن نكون عطوفين ومرحبين واكثر ودا وصبرا. نحن نعمل معا لحل الخلافات ونفترض حسن النوايا. قد نواجه بعض الإحباط من حين ألي أخر لكننا لا نسمح للإحباط أن يتحول إلي هجوم شخصي. فالمجتمع الذي يشعر فيه الناس بعدم الارتياح أو بالتهديد ليس مجتمعا منتجا.
+3. أن نكون متعاونين. كما سيستفيد بعملنا الآخرين سنستفيد نحن أيضا بعملهم. عندما نقوم بصنع شيئاً لمنفعة المشروع ، سوف نكون علي الاستعداد لشرح للآخرين كيفية عمله ، حتي يكونوا قادرين علي البناء عليه لجعله أفضل. أي قرار سنتخذه سيؤثر علي المستخدمين وعلي زملائنا في العمل لذا يجب أن تأخذ العواقب علي محمل الجد عندما نتخذ القرارات.
+4. أن نكون اكثر استطلاعاً. لا أحد علي دراية بكل شئ! طرح الأسئلة في وقت مبكر قد يجنب العديد من المشاكل اللاحقة ، لذا نحن نشجع الأسئلة علي الرغم من أننا قد نعيد توجهها إلي المنتدي المناسب. وسنحاول جاهدين أن نكون متجاوبين ومفيدين.
+5. أن نكون حذريين في اختيار الكلمات. وأن نتوخى الحذر والاحترام في اتصالاتنا، ونتحمل المسؤولية عن خطابنا. وأن نكون عطوفين مع الأخريين. لا تهين أو تحط من قدر المشاركين الآخرين. نحن لن نتقبل المضايقات أو أي سلوك استبعادي أخر ، مثل:
+ * التهديدات العنيفة أو الخطاب الموجه ضد الأخر.
+ * النكات والتلميحات القائمة علي الجنس أو العرق أو اي أشكال التمييز الأخري.
+ * نشر مواد جنسية صريحة أو مواد تشجع علي العنف.
+ * نشر (أو التهديد بنشر) المعلومات التعريفية الشخصية لأناس آخرين ("doxing").
+ * مشاركة المحتوى الخاص، مثل رسائل البريد الإلكتروني المرسلة بشكل خاص أو غير علني، أو المنتديات غير المسجلة مثل تاريخ قناة IRC، بدون موافقة المرسل.
+ * الإهانات الشخصية، خاصةً التي تستخدم مصطلحات عنصرية أو متحيزة جنسياً.
+ * الاهتمام الجنسي الغير مرحب به.
+ * البذائه المفرطه. يرجى تجنب الكلمات البذيئة، يختلف الناس اختلافا كبيرا في حساسيتهم للبذائه.
+ * • المضايقة المتكررة للآخرين. بشكل عام، إذا طلب منك شخص ما التوقف فيجب عليك التوقف.
+ * الدعوة إلى أي من السلوكيات المذكور أعلاه أو التشجيع إليها.
+
+### بيان التنوع
+
+يرحب ويشجع مشروع نمباي بمشاركات الجميع. نحن ملتزمون بأن نكون مجتمعا يتمتع كل فرد فيه بكونه جزء منه. وبالرغم أننا قد لا نكون قادرين دوماً على استيعاب تفضيلات كل فرد، إلا إننا حريصين علي بذل قصارى جهدنا لمعاملة الجميع معاملة كريمة.
+
+بغض النظر عن كيفية تعريفك لنفسك أو كيف يتصورك الآخرون: نحن نرحب بك. وعلى الرغم من أنه لا يمكن لأي قائمة أن تكون شاملة، فإننا نكرم بوضوح التنوع في: السن والثقافة والأصل العرقي والوراثي والهوية الجنسية واللغة والأصل القومي وتنوع العصبي والتكوين الظاهري والمعتقد السياسي والمهنة والعرق والديانة والتوجه الجنسي والحالة الاجتماعية الاقتصادية وثقافات الفرعية والقدرات التقنية بما لا يتعارض مع هذه القواعد السلوكية.
+
+على الرغم من أننا نتقبل الناس بجميع اللغات التي يتقنوها، إلا أن تطوير نمباي يجري باستخدام اللغة الإنجليزية.
+
+ترد في قواعد السلوكية المذكورة أعلاه تفاصيل معايير السلوك في مجتمع نمباي. وينبغي علي المشاركين في مجتمعنا أن يتمسكوا بهذه المعايير في جميع فعاليتهم وأن يساعدوا الآخرين على القيام بالمثل (انظر الفرع التالي).
+
+### القواعد الارشادية للإبلاغ
+
+نحن نعلم أنه شاع بشكل مؤلم إساءة استخدام الاتصالات عبر الإنترنت في انتهاكات واضحة وصارخة. وندرك أيضاً أن الناس قد يمرون أحيانا بيوم سيئ أو قد لا يكونون علي دراية ببعض إرشادات القواعد السلوكية. لذا ضع هذا في عين الاعتبار عند اتخاذ القرار بشأن كيفية الرد علي انتهاك هذه القواعد.
+
+أما بالنسبة للانتهاكات المتعمدة بشكل واضح فيجب إبلاغ لجنة قواعد السلوك عليها (انظر أدناه). في حالة حدوث خروفات غير متعمدة فيمكنك الرد على الشخص المعني والإشارة إلى قواعد السلوك هذه (سواء علناً أو سراً، أينما كان ذلك مناسباً). وإذا كنت تفضل عدم القيام بذلك، فلا تتردد في إبلاغ اللجنة المعنية بقواعد السلوك مباشرة ويمكنك أيضاً طلب المشورة من اللجنة بكل ثقة.
+
+يمكنك إبلاغ لجنة القواعد السلوكية لنمباي عبر numpy-conduct@googlegroups.com.
+
+وتتألف اللجنة حاليا مما يلي:
+
+* ستيفان فان دير والت (Stefan van der Walt)
+* ميليسا فيبر ميندونسا (Melissa Weber Mendonça)
+* أنيروده سوبرامانيان (Anirudh Subramanian)
+
+لو كان بلاغك متورط به أحد أعضاء اللجنة أو إذا كانوا يشعرون بأن لديهم تضارب في المصالح يحدهم عن التعامل معه. أو إذا شعرت بعدم الارتياح لأي سبب من الأسباب لإبلاغ اللجنة ، فبمكانك الاتصال عوضا عن ذلك بفريق NumFOCUS الأعلى على [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### تسوية بلاغات الحوادث & نفاذ القواعد السلوكية
+
+_هذا القسم يلخص أهم النقاط، يمكنك العثور على مزيد من التفاصيل في_ [ قواعد سلوكيات نمباي - كيفية متابعة التقرير](/report-handling-manual).
+
+سوف نقوم بالتحقيق في جميع الشكاوى والرد عليها. وستقوم لجنة القواعد السلوكية واللجنة التوجيهية لنمباي (إذا اشتركت) بحماية هوية المبلِّغ وسوف يتم التعامل مع مضمون الشكاوى على أنها سرية (ما لم يوافق المبلغ على غير ذلك).
+
+في حالة حدوث إخلالات خطيرة وواضحة، مثل التهديد أو العنف الشخصي أو التحيز جنسياً أو عنصرياً، سنقوم على الفور بفصل المقدم عن قنوات الاتصال الخاصة بنمباي؛ يرجى الاطلاع على الدليل للحصول على التفاصيل.
+
+وفي الحالات التي لا تنطوي على انتهاكات خطيرة وواضحة لقواعد السلوك هذه، تكون عملية التصرف بشأن أي تقرير يرد عن انتهاك القواعد السلوكية علي ما يلي:
+
+1. الإقرار بتلقي التقرير،
+2. مناقشات/ملاحظات معقولة،
+3. الوساطة (إذا لم تساعد ردود الفعل، وفقط إذا وافق كل من المبلّغ والمبلّغ على ذلك)،
+4. • الإنفاذ من خلال قرار شفاف (انظر [القرارات](/report-handling-manual#resolutions))الصادر عن لجنة قواعد السلوك.
+
+واللجنة سترد على أي تقرير في أقرب وقت ممكن، وفي الأغلب 72 ساعة على الأكثر.
+
+### تعليق ختامي
+
+نحن ممتنون للمجموعات التي تقف وراء الوثائق التالية التي استخلصنا منها المضمون والإلهام:
+
+- [القواعد السلوكية لسكابي](https://docs.scipy.org/doc/scipy/reference/dev/conduct/code_of_conduct.html)
diff --git a/content/ar/community.md b/content/ar/community.md
new file mode 100644
index 0000000000..ebbe0cc802
--- /dev/null
+++ b/content/ar/community.md
@@ -0,0 +1,65 @@
+---
+title: Community
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
+
+We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
+
+
+## Participate online
+
+The following are ways to engage directly with the NumPy project and community. _Please note that we encourage users and community members to support each other for usage questions - see [Get Help](/gethelp)._
+
+
+### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making. Announcements about NumPy, such as for releases, developer meetings, sprints or conference talks are also made on this list.
+
+On this list please use bottom posting, reply to the list (rather than to another sender), and don't reply to digests. A searchable archive of this list is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
+
+- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
+- documentation issues (e.g. "I found this section unclear");
+- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
+
+_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+A real-time chat room to ask questions about _contributing_ to NumPy. This is a private space, specifically meant for people who are hesitant to bring up their questions or ideas on a large public mailing list or GitHub. Please see [here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more details and how to get an invite.
+
+
+## Study Groups and Meetups
+
+If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
+
+NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion) and [Twitter](https://twitter.com/numpy_team).
+
+
+## Conferences
+
+The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
+
+- [SciPy US](https://conference.scipy.org)
+- [EuroSciPy](https://www.euroscipy.org)
+- [SciPy Latin America](https://www.scipyla.org)
+- [SciPy India](https://scipy.in)
+- [SciPy Japan](https://conference.scipy.org)
+- [PyData conferences](https://pydata.org/event-schedule/) (15-20 events a year spread over many countries)
+
+Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
+
+
+## Join the NumPy community
+
+To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
+
+If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
+
diff --git a/content/ar/config.yaml b/content/ar/config.yaml
new file mode 100644
index 0000000000..bda18c3313
--- /dev/null
+++ b/content/ar/config.yaml
@@ -0,0 +1,165 @@
+---
+languageName: English
+params:
+ description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
+ navbarlogo:
+ image: logo.svg
+ link: /
+ hero:
+ #Main hero title
+ title: NumPy
+ #Hero subtitle (optional)
+ subtitle: The fundamental package for scientific computing with Python
+ #Button text
+ buttontext: Get started
+ #Where the main hero button links to
+ buttonlink: "/install"
+ #Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ promptlabel: interactive shell prompt
+ button:
+ -
+ label: Enables the interactive tutorial shell
+ text: Enable
+ shellcontent:
+ intro:
+ -
+ title: Try NumPy
+ text: Enable the interactive shell
+ loading:
+ -
+ title: While we wait...
+ text: Launching container on mybinder.org...
+ docslink: Don't forget to check out the docs.
+ casestudies:
+ title: CASE STUDIES
+ features:
+ -
+ title: First Image of a Black Hole
+ text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: First image of a black hole. It is an orange circle in a black background.
+ url: /case-studies/blackhole-image
+ -
+ title: Detection of Gravitational Waves
+ text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Two orbs orbiting each other. They are displacing gravity around them.
+ url: /case-studies/gw-discov
+ -
+ title: Sports Analytics
+ text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Cricket ball on green field.
+ url: /case-studies/cricket-analytics
+ -
+ title: Pose Estimation using deep learning
+ text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Cheetah pose analysis
+ url: /case-studies/deeplabcut-dnn
+ keyfeatures:
+ features:
+ -
+ title: Powerful N-dimensional arrays
+ text: Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
+ -
+ title: Numerical computing tools
+ text: NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
+ -
+ title: Interoperable
+ text: NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
+ -
+ title: Performant
+ text: The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
+ -
+ title: Easy to use
+ text: NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
+ -
+ title: Open source
+ text: Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+ tabs:
+ title: ECOSYSTEM
+ section5: false
+navbar:
+ -
+ title: Install
+ url: /install
+ -
+ title: Documentation
+ url: https://numpy.org/doc/stable
+ -
+ title: Learn
+ url: /learn
+ -
+ title: Community
+ url: /community
+ -
+ title: About Us
+ url: /about
+ -
+ title: Contribute
+ url: /contribute
+footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ -
+ link: https://github.com/numpy/numpy
+ icon: github
+ -
+ link: https://twitter.com/numpy_team
+ icon: twitter
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ -
+ text: Install
+ link: /install
+ -
+ text: Documentation
+ link: https://numpy.org/doc/stable
+ -
+ text: Learn
+ link: /learn
+ -
+ text: Citing Numpy
+ link: /citing-numpy
+ -
+ text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ -
+ text: About us
+ link: /about
+ -
+ text: Community
+ link: /community
+ -
+ text: User surveys
+ link: /user-surveys
+ -
+ text: Contribute
+ link: /contribute
+ -
+ text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ -
+ text: Get help
+ link: /gethelp
+ -
+ text: Terms of use
+ link: /terms
+ -
+ text: Privacy
+ link: /privacy
+ -
+ text: Press kit
+ link: /press-kit
+
diff --git a/content/ar/contribute.md b/content/ar/contribute.md
new file mode 100644
index 0000000000..2533761d12
--- /dev/null
+++ b/content/ar/contribute.md
@@ -0,0 +1,78 @@
+- - -
+title: Contribute to NumPy sidebar: false
+- - -
+
+The NumPy project welcomes your expertise and enthusiasm! Your choices aren't limited to programming -- in addition to
+
+- [Writing code](#writing-code)
+
+you can
+
+- [Review pull requests](#reviewing-pull-requests)
+- [Develop tutorials, presentations, and other educational material](#developing-educational-materials)
+- [Triage issues](#issue-triaging)
+- [Work on our website](#website-development)
+- [Contribute graphic design](#graphic-design)
+- [Translate website content](#translating-website-content)
+- [Serve as a community coordinator](#community-coordination-and-outreach)
+- [Write grant proposals and help with other fundraising](#fundraising)
+
+If you're unsure where to start or how your skills fit in, _reach out!_ You can ask on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion) or [GitHub](http://github.com/numpy/numpy) (open an [issue](https://github.com/numpy/numpy/issues) or comment on a relevant issue).
+
+Those are our preferred channels (open source is open by nature), but if you prefer to talk privately, contact our community coordinators at or on [Slack](https://numpy-team.slack.com) (write for an invite).
+
+We also have a biweekly _community call_, details of which are announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion). You are very welcome to join. If you are new to contributing to open source, we also highly recommend reading [this guide](https://opensource.guide/how-to-contribute/).
+
+Our community aspires to treat everyone equally and to value all contributions. We have a [Code of Conduct](/code-of-conduct) to foster an open and welcoming environment.
+
+### Writing code
+
+Programmers, this [guide](https://numpy.org/devdocs/dev/index.html#development-process-summary) explains how to contribute to the codebase.
+
+### Reviewing pull requests
+The project has more than 250 open pull requests -- meaning many potential improvements and many open-source contributors waiting for feedback. If you're a developer who knows NumPy, you can help even if you're not familiar with the codebase. You can:
+* summarize a long-running discussion
+* triage documentation PRs
+* test proposed changes
+
+
+### Developing educational materials
+
+NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation. We're in need of new tutorials, how-to's, and deep-dive explanations, and the site needs restructuring. Opportunities aren't limited to writers. We'd also welcome worked examples, notebooks, and videos. [NEP 44 — Restructuring the NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html) lays out our ideas -- and you may have others.
+
+
+### Issue triaging
+
+The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_ of open issues. Some are no longer valid, some should be prioritized, and some would make good issues for new contributors. You can:
+
+* check if older bugs are still present
+* find duplicate issues and link related ones
+* add good self-contained reproducers to issues
+* label issues correctly (this requires triage rights -- just ask)
+
+Please just dive in.
+
+
+### Website development
+
+We've just revamped our website, but we're far from done. If you love web development, these [issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign) list some of our unmet needs -- and feel free to share your own ideas.
+
+
+### Graphic design
+
+We can barely begin to list the contributions a graphic designer can make here. Our docs are parched for illustration; our growing website craves images -- opportunities abound.
+
+
+### Translating website content
+
+We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy accessible to users in their native language. Volunteer translators are at the heart of this effort. See [here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n) for background; comment on [this GitHub issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
+
+
+### Community coordination and outreach
+
+Through community contact we share our work more widely and learn where we're falling short. We're eager to get more people involved in efforts like our [Twitter](https://twitter.com/numpy_team) account, organizing NumPy [code sprints](https://scisprints.github.io/), a newsletter, and perhaps a blog.
+
+### Fundraising
+
+NumPy was all-volunteer for many years, but as its importance grew it became clear that to ensure stability and growth we'd need financial support. [This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference that support has made. Like all the nonprofit world, we're constantly searching for grants, sponsorships, and other kinds of support. We have a number of ideas and of course we welcome more. Fundraising is a scarce skill here -- we'd appreciate your help.
+
diff --git a/content/ar/diversity_sep2020.md b/content/ar/diversity_sep2020.md
new file mode 100644
index 0000000000..ef3030d5f7
--- /dev/null
+++ b/content/ar/diversity_sep2020.md
@@ -0,0 +1,48 @@
+---
+title: NumPy Diversity and Inclusion Statement
+sidebar: false
+---
+
+
+_In light of the foregoing discussion on social media after publication of the NumPy paper in Nature and the concerns raised about the state of diversity and inclusion on the NumPy team, we would like to issue the following statement:_
+
+
+It is our strong belief that we are at our best, as a team and community, when we are inclusive and equitable. Being an international team from the onset, we recognize the value of collaborating with individuals from diverse backgrounds and expertise. A culture where everyone is welcomed, supported, and valued is at the core of the NumPy project.
+
+## The Past
+
+Contributing to open source has always been a pastime in which most historically marginalized groups, especially women, faced more obstacles to participate due to a number of societal constraints and expectations. Open source has a severe diversity gap that is well documented (see, e.g., the [2017 GitHub Open Source Survey](https://opensourcesurvey.org/2017/) and [this blog post](https://medium.com/tech-diversity-files/if-you-think-women-in-tech-is-just-a-pipeline-problem-you-haven-t-been-paying-attention-cb7a2073b996)).
+
+Since its inception and until 2018, NumPy was maintained by a handful of volunteers often working nights and weekends outside of their day jobs. At any one time, the number of active core developers, the ones doing most of the heavy lifting as well as code review and integration of contributions from the community, was in the range of 4 to 8. The project didn't have a roadmap or mechanism for directing resources, being driven by individual efforts to work on what seemed needed. The authors on the NumPy paper are the individuals who made the most significant and sustained contributions to the project over a period of 15 years (2005 - 2019). The lack of diversity on this author list is a reflection of the formative years of the Python and SciPy ecosystems.
+
+2018 has marked an important milestone in the history of the NumPy project. Receiving funding from The Gordon and Betty Moore Foundation and Alfred P. Sloan Foundation allowed us to provide full-time employment for two software engineers with years of experience contributing to the Python ecosystem. Those efforts brought NumPy to a much healthier technical state.
+
+This funding also created space for NumPy maintainers to focus on project governance, community development, and outreach to underrepresented groups. [The diversity statement](https://figshare.com/articles/online_resource/Diversity_and_Inclusion_Statement_NumPy_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/12980852) written in mid 2019 for the CZI EOSS program grant application details some of the challenges as well as the advances in our efforts to bring in more diverse talent to the NumPy team.
+
+## The Present
+
+Offering employment opportunities is an effective way to attract and retain diverse talent in OSS. Therefore, we used two-thirds of our second grant that became available in Dec 2019 to employ Melissa Weber Mendonça and Mars Lee.
+
+As a result of several initiatives aimed at community development and engagement led by Inessa Pawson and Ralf Gommers, the NumPy project has received a number of valuable contributions from women and other underrepresented groups in open source in 2020:
+
+- Melissa Weber Mendonça gained commit rights, is maintaining numpy.f2py and is leading the documentation team,
+- Shaloo Shalini created all case studies on numpy.org,
+- Mars Lee contributed web design and led our accessibility improvements work,
+- Isabela Presedo-Floyd designed our new logo,
+- Stephanie Mendoza, Xiayoi Deng, Deji Suolang, and Mame Fatou Thiam designed and fielded the first NumPy user survey,
+- Yuki Dunn, Dayane Machado, Mahfuza Humayra Mohona, Sumera Priyadarsini, Shaloo Shalini, and Kriti Singh (former Outreachy intern) helped the survey team to reach out to non-English speaking NumPy users and developers by translating the questionnaire into their native languages,
+- Sayed Adel, Raghuveer Devulapalli, and Chunlin Fang are driving the work on SIMD optimizations in the core of NumPy.
+
+While we still have much more work to do, the NumPy team is starting to look much more representative of our user base. And we can assure you that the next NumPy paper will certainly have a more diverse group of authors.
+
+## The Future
+
+We are fully committed to fostering inclusion and diversity on our team and in our community, and to do our part in building a more just and equitable future.
+
+We are open to dialogue and welcome every opportunity to connect with organizations representing and supporting women and minorities in tech and science. We are ready to listen, learn, and support.
+
+Please get in touch with us on [our mailing list](https://scipy.org/scipylib/mailing-lists.html#mailing-lists), [GitHub](https://github.com/numpy/numpy/issues), [Slack](https://numpy.org/contribute/), in private at numpy-team@googlegroups.com, or join our [bi-weekly community meeting](https://hackmd.io/76o-IxCjQX2mOXO_wwkcpg).
+
+
+_Sayed Adel, Sebastian Berg, Raghuveer Devulapalli, Chunlin Fang, Ralf Gommers, Allan Haldane, Stephan Hoyer, Mars Lee, Melissa Weber Mendonça, Jarrod Millman, Inessa Pawson, Matti Picus, Nathaniel Smith, Julian Taylor, Pauli Virtanen, Stéfan van der Walt, Eric Wieser, on behalf of the NumPy team_
+
diff --git a/content/ar/gethelp.md b/content/ar/gethelp.md
new file mode 100644
index 0000000000..a3eb24c50f
--- /dev/null
+++ b/content/ar/gethelp.md
@@ -0,0 +1,34 @@
+---
+title: الحصول على مساعدة
+sidebar: false
+---
+
+**أسئلة المستخدم**: إن أفضل طريقة للحصول على المساعدة هي أن تقوم بنشر سؤالك على الموقع مثل [ ](http://stackoverflow.com/questions/tagged/numpy)حيث يوجد آلاف المستخدمين المتاحين للإجابة على أسئلتك. وتحتوي البدائل الأصغر على [IRC](https://webchat.freenode.net/?channels=%23numpy), [Gitter](https://gitter.im/numpy/numpy), and [Reddit](https://www.reddit.com/r/Numpy/). ونتمنى أن نستطيع مراقبة الموقع أو الإجابة على الأسئلة مباشرة ولكن المجلد كبير نوعًا ما!
+
+**مشاكل التطوير:**للاطلاع على المشاكل المتعلقة بتطوير نمباي(مثل تقارير الأخطاء) برجاء انظر هنا[Community](/community).
+
+
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+منتدى لطرح أسئلة الاستخدام مثل" كيف أستطيع أن أفعل x في نمباي؟". برجاء [استخدم `#numpy` tag](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+منتدى آخر لأسئلة الاستخدام.
+
+***
+
+### [Gitter](https://gitter.im/numpy/numpy)
+
+غرفة دردشة فورية حيث يساعد المستخدمون وأعضاء المجتمع بعضهم البعض.
+
+***
+
+### [IRC](https://webchat.freenode.net/?channels=%23numpy)
+
+غرفة أخرى للدردشة فورية حيث يساعد المستخدمون وأعضاء المجتمع بعضهم البعض.
+
+***
diff --git a/content/ar/history.md b/content/ar/history.md
new file mode 100644
index 0000000000..041d967485
--- /dev/null
+++ b/content/ar/history.md
@@ -0,0 +1,21 @@
+---
+title: تاريخ مشروع نمباي
+sidebar: false
+---
+
+مشروع نمباي هو مكتبة تأسيسية للغة البايثون يوفر هياكل بيانات المصفوفات وما يتصل بها من إجراءات رقمية سريعة. When started, the library had little funding, and was written mainly by graduate students—many of them without computer science education, and often without a blessing of their advisors. To even imagine that a small group of “rogue” student programmers could upend the already well-established ecosystem of research software—backed by millions in funding and many hundreds of highly qualified engineers — was preposterous. Yet, the philosophical motivations behind a fully open tool stack, in combination with the excited, friendly community with a singular focus, have proven auspicious in the long run. Nowadays, NumPy is relied upon by scientists, engineers, and many other professionals around the world. For example, the published scripts used in the analysis of gravitational waves import NumPy, and the M87 black hole imaging project directly cites NumPy.
+
+For the in-depth account on milestones in the development of NumPy and related libraries please see [arxiv.org](arxiv.org/abs/1907.10121).
+
+If you’d like to obtain a copy of the original Numeric and Numarray libraries, follow the links below:
+
+[Download Page for *Numeric*](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)*
+
+[Download Page for *Numarray*](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)*
+
+*Please note that these older array packages are no longer maintained, and users are strongly advised to use NumPy for any array-related purposes or refactor any pre-existing code to utilize the NumPy library.
+
+### Historic Documentation
+
+[Download *`Numeric'* Manual](static/numeric-manual.pdf)
+
diff --git a/content/ar/install.md b/content/ar/install.md
new file mode 100644
index 0000000000..3ec0dc58b7
--- /dev/null
+++ b/content/ar/install.md
@@ -0,0 +1,142 @@
+---
+title: Installing NumPy
+sidebar: false
+---
+
+The only prerequisite for installing NumPy is Python itself. If you don't have Python yet and want the simplest way to get started, we recommend you use the [Anaconda Distribution](https://www.anaconda.com/distribution) - it includes Python, NumPy, and many other commonly used packages for scientific computing and data science.
+
+NumPy can be installed with `conda`, with `pip`, with a package manager on macOS and Linux, or [from source](https://numpy.org/devdocs/user/building.html). For more detailed instructions, consult our [Python and NumPy installation guide](#python-numpy-install-guide) below.
+
+**CONDA**
+
+If you use `conda`, you can install NumPy from the `defaults` or `conda-forge` channels:
+
+```bash
+# Best practice, use an environment rather than install in the base env
+conda create -n my-env
+conda activate my-env
+# If you want to install from conda-forge
+conda config --env --add channels conda-forge
+# The actual install command
+conda install numpy
+```
+
+**PIP**
+
+If you use `pip`, you can install NumPy with:
+
+```bash
+pip install numpy
+```
+Also when using pip, it's good practice to use a virtual environment - see [Reproducible Installs](#reproducible-installs) below for why, and [this guide](https://dev.to/bowmanjd/python-tools-for-managing-virtual-environments-3bko#howto) for details on using virtual environments.
+
+
+
+# Python and NumPy installation guide
+
+Installing and managing packages in Python is complicated, there are a number of alternative solutions for most tasks. This guide tries to give the reader a sense of the best (or most popular) solutions, and give clear recommendations. It focuses on users of Python, NumPy, and the PyData (or numerical computing) stack on common operating systems and hardware.
+
+## Recommendations
+
+We'll start with recommendations based on the user's experience level and operating system of interest. If you're in between "beginning" and "advanced", please go with "beginning" if you want to keep things simple, and with "advanced" if you want to work according to best practices that go a longer way in the future.
+
+### Beginning users
+
+On all of Windows, macOS, and Linux:
+
+- Install [Anaconda](https://www.anaconda.com/distribution/) (it installs all packages you need and all other tools mentioned below).
+- For writing and executing code, use notebooks in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/index.html) for exploratory and interactive computing, and [Spyder](https://www.spyder-ide.org/) or [Visual Studio Code](https://code.visualstudio.com/) for writing scripts and packages.
+- Use [Anaconda Navigator](https://docs.anaconda.com/anaconda/navigator/) to manage your packages and start JupyterLab, Spyder, or Visual Studio Code.
+
+
+### Advanced users
+
+#### Windows or macOS
+
+- Install [Miniconda](https://docs.conda.io/en/latest/miniconda.html).
+- Keep the `base` conda environment minimal, and use one or more [conda environments](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) to install the package you need for the task or project you're working on.
+- Unless you're fine with only the packages in the `defaults` channel, make `conda-forge` your default channel via [setting the channel priority](https://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge).
+
+
+#### Linux
+
+If you're fine with slightly outdated packages and prefer stability over being able to use the latest versions of libraries:
+- Use your OS package manager for as much as possible (Python itself, NumPy, and other libraries).
+- Install packages not provided by your package manager with `pip install somepackage --user`.
+
+If you use a GPU:
+- Install [Miniconda](https://docs.conda.io/en/latest/miniconda.html).
+- Keep the `base` conda environment minimal, and use one or more [conda environments](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) to install the package you need for the task or project you're working on.
+- Use the `defaults` conda channel (`conda-forge` doesn't have good support for GPU packages yet).
+
+Otherwise:
+- Install [Miniforge](https://github.com/conda-forge/miniforge).
+- Keep the `base` conda environment minimal, and use one or more [conda environments](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) to install the package you need for the task or project you're working on.
+
+
+#### Alternative if you prefer pip/PyPI
+
+For users who know, from personal preference or reading about the main differences between conda and pip below, they prefer a pip/PyPI-based solution, we recommend:
+- Install Python from [python.org](https://www.python.org/downloads/), [Homebrew](https://brew.sh/), or your Linux package manager.
+- Use [Poetry](https://python-poetry.org/) as the most well-maintained tool that provides a dependency resolver and environment management capabilities in a similar fashion as conda does.
+
+
+## Python package management
+
+Managing packages is a challenging problem, and, as a result, there are lots of tools. For web and general purpose Python development there's a whole [host of tools](https://packaging.python.org/guides/tool-recommendations/) complementary with pip. For high-performance computing (HPC), [Spack](https://github.com/spack/spack) is worth considering. For most NumPy users though, [conda](https://conda.io/en/latest/) and [pip](https://pip.pypa.io/en/stable/) are the two most popular tools.
+
+
+### Pip & conda
+
+The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. We'll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
+
+The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip can't.
+
+The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically "defaults" or "conda-forge"). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+
+### Reproducible installs
+
+As libraries get updated, results from running your code can change, or your code can break completely. It's important to be able to reconstruct the set of packages and versions you're using. Best practice is to:
+
+1. use a different environment per project you're working on,
+2. record package names and versions using your package installer; each has its own metadata format for this:
+ - Conda: [conda environments and environment.yml](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)
+ - Pip: [virtual environments](https://docs.python.org/3/tutorial/venv.html) and [requirements.txt](https://pip.readthedocs.io/en/latest/user_guide/#requirements-files)
+ - Poetry: [virtual environments and pyproject.toml](https://python-poetry.org/docs/basic-usage/)
+
+
+
+## NumPy packages & accelerated linear algebra libraries
+
+NumPy doesn't depend on any other Python packages, however, it does depend on an accelerated linear algebra library - typically [Intel MKL](https://software.intel.com/en-us/mkl) or [OpenBLAS](https://www.openblas.net/). Users don't have to worry about installing those (they're automatically included in all NumPy install methods). Power users may still want to know the details, because the used BLAS can affect performance, behavior and size on disk:
+
+- The NumPy wheels on PyPI, which is what pip installs, are built with OpenBLAS. The OpenBLAS libraries are included in the wheel. This makes the wheel larger, and if a user installs (for example) SciPy as well, they will now have two copies of OpenBLAS on disk.
+
+- In the conda defaults channel, NumPy is built against Intel MKL. MKL is a separate package that will be installed in the users' environment when they install NumPy.
+
+- In the conda-forge channel, NumPy is built against a dummy "BLAS" package. When a user installs NumPy from conda-forge, that BLAS package then gets installed together with the actual library - this defaults to OpenBLAS, but it can also be MKL (from the defaults channel), or even [BLIS](https://github.com/flame/blis) or reference BLAS.
+
+- The MKL package is a lot larger than OpenBLAS, it's about 700 MB on disk while OpenBLAS is about 30 MB.
+
+- MKL is typically a little faster and more robust than OpenBLAS.
+
+Besides install sizes, performance and robustness, there are two more things to consider:
+
+- Intel MKL is not open source. For normal use this is not a problem, but if a user needs to redistribute an application built with NumPy, this could be an issue.
+- Both MKL and OpenBLAS will use multi-threading for function calls like `np.dot`, with the number of threads being determined by both a build-time option and an environment variable. Often all CPU cores will be used. This is sometimes unexpected for users; NumPy itself doesn't auto-parallelize any function calls. It typically yields better performance, but can also be harmful - for example when using another level of parallelization with Dask, scikit-learn or multiprocessing.
+
+
+## Troubleshooting
+
+If your installation fails with the message below, see [Troubleshooting ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html).
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/ar/learn.md b/content/ar/learn.md
new file mode 100644
index 0000000000..a87b92b63e
--- /dev/null
+++ b/content/ar/learn.md
@@ -0,0 +1,90 @@
+---
+title: التعلم
+sidebar: false
+---
+
+للحصول على وثائق مشروع نمباى الرسمية عليك بزيارة[numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+## المحتوى التعليمي لنمباي
+
+يقدم مجتمع نمباي مجموعة من الدروس والمواد التعليمية في [المحتوى التعليمى لنمباى](https://numpy.org/numpy-tutorials). الهدف من هذة الصفحة توفير موارد عالية الجودة عن طريق مشروع نمباي، سواء للتعلم الذاتي أو لتدريس الفصول الدراسية بتنسيق مذكرات جوبيتر(Jupyter Notebooks). لذا إن كنت مهتمًا بإضافة محتوياتك تحقق من هذا[numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+***
+
+وفيما يلي مختارات من المصادر الخارجية. للمساهمة تفحص [ نهاية هذه الصفحة](#add-to-this-list).
+
+## للمبتدئين
+
+يوجد الكثير من المعلومات حول مشروع نمباي هناك. لذا إن كنت جديدا هنا فنوصيك بهذا بشدة:
+
+ **المحتوى التعليمي**
+
+* [دروس Quickstart](https://numpy.org/devdocs/user/quickstart.html)
+* [توضيح لنمباي: الدليل المرئي لمشروع نمباي *من قبل ليف ماكسيموف*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+* [محاضرات SciPy](https://scipy-lectures.org/)، بجانب التغطية لمشروع نمباي تعرض هذة المحاضرات مقدمة أوسع لمنظومة لغة البايثون العلمية.
+* [نمباى: الأساسيات الثابتة للمبتدئين](https://numpy.org/devdocs/user/absolute_beginners.html)
+* [بالإضافة إلى التعلم الآلي يوجد مقدمة للمصفوفة ndarray](https://www.machinelearningplus.com/python/numpy-tutorial-part1-array-python-examples/)
+* [إدوريكا - تعلم مصفوفات نمباي بالأمثلة ](https://www.edureka.co/blog/python-numpy-tutorial/)
+* [منصةDataquest لعلوم البيانات - البرنامج التعليمي لنمباي: تحليل البيانات باستخدام لغة البايثون](https://www.dataquest.io/blog/numpy-tutorial-python/)
+* [برنامج نمباي التعليمي *من قبل نيكولاس روجير*](https://github.com/rougier/numpy-tutorial)
+* [CS231 لجامعة ستانفورد*من قبل جاستين جونسون*](http://cs231n.github.io/python-numpy-tutorial/)
+* [دليل استخدام نمباي](https://numpy.org/devdocs)
+
+ **الكتب**
+
+* [دليل نمباى *ل ترافيس أوليفانت *](http://web.mit.edu/dvp/Public/numpybook.pdf) وهذا هو الإصدار المجاني 1 من 2006. وللإطلاع على أحدث نسخة (2015)انظر هنا [](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007).
+* [لغة البايثون فى نمباي* ل نيكولاس روجير*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+* [محاضرات SciPy ممتازة](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877)*> لكلا من خوان نونيز إغليسياس وستيفان فان دير والت بالإضافة إلى هارييت داشنوف*
+
+يمكنك أيضا مراجعة [ قائمة القراءات الجيدة(Goodreads list) ](https://www.goodreads.com/shelf/show/python-scipy)حول موضوع "Python+SciPy". وتتحدث معظم الكتب فى هذة القائمة عن النظام البيئى لSciPy والذى يمثل نمباى جوهره.
+
+ **الفيديو**
+
+* [مقدمة للحوسبة الرقمية مع نمباى ](http://youtu.be/ZB7BZMhfPgk) *أليكساندر شابوت لوكلير*
+
+***
+
+## خيارات متقدمة
+
+لفهم أفضل لمفاهيم مشروع نمباى جرب هذة المصادر المتطورة مثل الفهرسة المتقدمة و والتقسيم والتكامل والجبر الخطى و.. إلخ.
+
+ **المحتوى التعليمى**
+
+* [100 تمرين لنمباى](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) * لنيكولاس بي روجير*
+* [مقدمة لنمباى وScipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) * ل ام سكوت شيل*
+* [حقيبة نمباى للإسعافات الأولية ](http://mentat.za.net/numpy/numpy_advanced_slides/) *ل ستيفين فان دير واليت*
+* [نمباى بلغة البايثون(متقدم)](https://www.geeksforgeeks.org/numpy-python-set-2-advanced/)
+* [فهرسة متقدمة](https://www.tutorialspoint.com/numpy/numpy_advanced_indexing.htm)
+* [التعلم الآلى وتحليل البيانات باستخدام نمباى](https://www.machinelearningplus.com/python/numpy-tutorial-python-part2/)
+
+ **الكتب**
+
+* [مرجع البايثون لعلوم البيانات ل ](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057) *جيك فاندربلاس*
+* [بايثون لتحليل البيانات ](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662) *من قبل ويس ماكيني*
+* [الحوسبة العلمية بلغة البايثون: تطبيقات باستخدام نمباى وSciPy ومكتبة Matplotlib المُختصة بالإظهار المرئي للبيانات للحوسبة العلمية وتحليل البيانات](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) * من قبل روبرت جونسون*
+
+ **الفيديو**
+
+* [خيارات نمباي المتقدمة - قواعد البث والمسارات والفهرسة المتقدمة](https://www.youtube.com/watch?v=cYugp9IN1-Q) * لخوان نونيز إغليسياس*
+* [عمليات الفهرسة المتقدمة فى مصفوفات نمباى ](https://www.youtube.com/watch?v=2WTDrSkQBng) *لAmuls Academy*
+
+***
+
+## مناقشات نمباى
+
+* [مستقبل فهرسة نمباى](https://www.youtube.com/watch?v=o0EacbIbf58) * ل جيمي فيرنانديز*(2016)
+* [تطور حوسبة المصفوفات بلغة البايثون](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) * بواسطة رالف غومرس*(2019)
+* [نمباى: إلى أى مدى تغير نمباى وما هى التغييرات المستقبلية له؟](https://www.youtube.com/watch?v=YFLVQFjRmPY) *ل ماتى بيكاس* (2019)
+* [محتوى نمباى](https://www.youtube.com/watch?v=dBTJD_FDVjU) *بواسطة رالف غومرس وسيباستيان بيرغ وماتى بيكاس وتايلر ريدي وستيفان فان دير والت وتشارلز هاريس* (2019)
+* [مراجعة موجزة لحوسبة المصفوفات بلغة البايثون ](https://www.youtube.com/watch?v=f176j2g2eNc) *لترافيس أوليفانت* (2019)
+
+***
+
+## الاستشهاد بنمباى
+
+إذا كان لنمباى دور كبير فى بحثك وتود الإشارة إليه فى منشورك الأكاديمى،فيرجى الاطلاع على[ معلومات الاستشهاد هذة](/citing-numpy).
+
+## المساهمة فى هذة القائمة
+
+
+للإضافة إلى هذة المجموعة، قم بتقديم توصية [ عن طريق طلب سحب](https://github.com/numpy/numpy.org/blob/master/content/en/learn.md). اذكر لماذا تستحق توصيتك الذكر فى هذة الصفحة وأيضا من الجمهور الأكثر استفادة.
diff --git a/content/ar/news.md b/content/ar/news.md
new file mode 100644
index 0000000000..103bba370f
--- /dev/null
+++ b/content/ar/news.md
@@ -0,0 +1,145 @@
+---
+title: الأخبار
+sidebar: false
+newsHeader: NumPy 1.22.0 released
+date:
+---
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+## الإصدارات
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/ar/press-kit.md b/content/ar/press-kit.md
new file mode 100644
index 0000000000..f923ebe884
--- /dev/null
+++ b/content/ar/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: الملف الصحفى
+sidebar: false
+---
+
+نرحب بتسهيل إدراج مشروع نمباى عليك سواء فى بحثك الأكاديمى أو كمادة دراسية أو كعرض.
+
+سوف تجد عدة إصدارات عالية الدقة من شعار الأرقام [هنا](https://github.com/numpy/numpy/tree/main/branding/logo). وعليك أن تلاحظ أنه باستخدام موارد numpy.org فأنت توافق على[ قواعد السلوك لنمباى](/code-of-conduct).
diff --git a/content/ar/privacy.md b/content/ar/privacy.md
new file mode 100644
index 0000000000..93c6c713df
--- /dev/null
+++ b/content/ar/privacy.md
@@ -0,0 +1,8 @@
+---
+title: سياسة الخصوصية
+sidebar: false
+---
+
+**numpy.org** يتم تشغيلة بواسطة [NumFOCUS, Inc.](https://numfocus.org), الراعى المالى لمشروع نمباى. للوصول إلى سياسة الخصوصية لهذا الموقع برجاء زيارة https://numfocus.org/privacy-policy.
+
+إذا كان لديك أسئلة بخصوص سياسة أو جمع بيانات NumFOCUS واستخدامها بالإضافة إلى ممارسات الإفصاح، يرجى الاتصال بموظفى NumFOCUS على موقع privacy@numfocus.org.
diff --git a/content/ar/report-handling-manual.md b/content/ar/report-handling-manual.md
new file mode 100644
index 0000000000..c94be4486f
--- /dev/null
+++ b/content/ar/report-handling-manual.md
@@ -0,0 +1,95 @@
+---
+title: قواعد السلوك لنمباي - كيفية متابعة تقرير
+sidebar: false
+---
+
+This is the manual followed by NumPy’s Code of Conduct Committee. It’s used when we respond to an issue to make sure we’re consistent and fair.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+* Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+* Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+* We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+* Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+* Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+* Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+* Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+
+## Mediation
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+* Find a candidate who can serve as a mediator.
+* Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+* Obtain the agreement of the reported person(s).
+* Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+* Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+
+## How the Committee will respond to reports
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+
+## Clear and severe breach actions
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+* Immediately disconnect the originator from all NumPy communication channels.
+* Reply to the reporter that their report has been received and that the originator has been disconnected.
+* In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+* The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+
+## Report handling
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+* What happened.
+* Whether this event constitutes a Code of Conduct violation.
+* Who are the responsible party(ies).
+* Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+
+## Resolutions
+
+The Committee must agree on a resolution by consensus. If the group cannot reach consensus and deadlocks for over a week, the group will turn the matter over to the Steering Council for resolution.
+
+Possible responses may include:
+
+* Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+* Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+* Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+* A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+* A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+* A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+* A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+* A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+Finally, the Committee will make a report to the NumPy Steering Council (as well as the NumPy core team in the event of an ongoing resolution, such as a ban).
+
+The Committee will never publicly discuss the issue; all public statements will be made by the chair of the Code of Conduct Committee or the NumPy Steering Council.
+
+
+## Conflicts of Interest
+
+In the event of any conflict of interest, a Committee member must immediately notify the other members, and recuse themselves if necessary.
diff --git a/content/ar/tabcontents.yaml b/content/ar/tabcontents.yaml
new file mode 100644
index 0000000000..3f5d82e888
--- /dev/null
+++ b/content/ar/tabcontents.yaml
@@ -0,0 +1,219 @@
+---
+machinelearning:
+ paras:
+ -
+ para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://github.com/apache/incubator-mxnet) is another AI package, providing blueprints and templates for deep learning.
+ para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+arraylibraries:
+ intro:
+ -
+ text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ -
+ text: Array Library
+ -
+ text: Capabilities & Application areas
+ libraries:
+ -
+ title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ -
+ title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.chainer.org
+ -
+ title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://github.com/google/jax
+ -
+ title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ -
+ title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ -
+ title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ -
+ title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ -
+ title: MXNet
+ text: Deep learning framework suited for flexible research prototyping and production.
+ img: /images/content_images/arlib/mxnet_logo.png
+ alttext: MXNet
+ url: https://mxnet.apache.org/
+ -
+ title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://github.com/apache/arrow
+ -
+ title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ -
+ title: XND
+ text: Develop libraries for array computing, recreating NumPy's foundational concepts.
+ img: /images/content_images/arlib/xnd.png
+ alttext: xnd
+ url: https://xnd.io
+ -
+ title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ -
+ title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+scientificdomains:
+ intro:
+ -
+ text: Nearly every scientist working in Python draws on the power of NumPy.
+ -
+ text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ librariesrow1:
+ -
+ title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ -
+ title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ -
+ title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ -
+ title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ -
+ title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ -
+ title: Astronomy Processes
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ -
+ title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ librariesrow2:
+ -
+ title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ -
+ title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ -
+ title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ -
+ title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ -
+ title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ -
+ title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ -
+ title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ -
+ img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ -
+ img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ -
+ text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ -
+ text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ -
+ text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ -
+ text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ content:
+ -
+ text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org) and [Prefect](https://www.prefect.io)).
+visualization:
+ images:
+ -
+ url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ -
+ url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ -
+ url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ -
+ url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ -
+ url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ -
+ url: https://docs.pyvista.org/examples/index.html
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ -
+ url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ -
+ url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ -
+ text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), and [PyVista](https://github.com/pyvista/pyvista), to name a few.
+ -
+ text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/ar/teams.md b/content/ar/teams.md
new file mode 100644
index 0000000000..0c24455d18
--- /dev/null
+++ b/content/ar/teams.md
@@ -0,0 +1,20 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research communities worldwide by building quality, open-source software. [Join us]({{< relref "/contribute" >}})!
+
+{{< include-html "static/gallery/maintainers.html" >}}
+
+{{< include-html "static/gallery/web-team.html" >}}
+
+{{< include-html "static/gallery/triage-team.html" >}}
+
+{{< include-html "static/gallery/survey-team.html" >}}
+
+{{< include-html "static/gallery/emeritus-maintainers.html" >}}
+
+# Governance
+
+For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/ar/terms.md b/content/ar/terms.md
new file mode 100644
index 0000000000..9a66045505
--- /dev/null
+++ b/content/ar/terms.md
@@ -0,0 +1,178 @@
+---
+title: Terms of Use
+sidebar: false
+---
+
+*Last updated January 4, 2020*
+
+
+## AGREEMENT TO TERMS
+
+These Terms of Use constitute a legally binding agreement made between you, whether personally or on behalf of an entity (“you”) and NumPy ("**Project**", “**we**”, “**us**”, or “**our**”), concerning your access to and use of the numpy.org website as well as any other media form, media channel, mobile website or mobile application related, linked, or otherwise connected thereto (collectively, the “Site”). You agree that by accessing the Site, you have read, understood, and agreed to be bound by all of these Terms of Use. IF YOU DO NOT AGREE WITH ALL OF THESE TERMS OF USE, THEN YOU ARE EXPRESSLY PROHIBITED FROM USING THE SITE AND YOU MUST DISCONTINUE USE IMMEDIATELY.
+
+
+
+Supplemental terms and conditions or documents that may be posted on the Site from time to time are hereby expressly incorporated herein by reference. We reserve the right, in our sole discretion, to make changes or modifications to these Terms of Use at any time and for any reason. We will alert you about any changes by updating the “Last updated” date of these Terms of Use, and you waive any right to receive specific notice of each such change. It is your responsibility to periodically review these Terms of Use to stay informed of updates. You will be subject to, and will be deemed to have been made aware of and to have accepted, the changes in any revised Terms of Use by your continued use of the Site after the date such revised Terms of Use are posted.
+
+
+
+The information provided on the Site is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to law or regulation or which would subject us to any registration requirement within such jurisdiction or country. Accordingly, those persons who choose to access the Site from other locations do so on their own initiative and are solely responsible for compliance with local laws, if and to the extent local laws are applicable.
+
+
+## USER REPRESENTATIONS
+
+By using the Site, you represent and warrant that: (1) you have the legal capacity and you agree to comply with these Terms of Use; (2) you will not use the Site for any illegal or unauthorized purpose; and (3) your use of the Site will not violate any applicable law or regulation.
+
+
+If you provide any information that is untrue, inaccurate, not current, or incomplete, we have the right to refuse any and all current or future use of the Site (or any portion thereof).
+
+
+## PROHIBITED ACTIVITIES
+
+You may not access or use the Site for any purpose other than that for which we make the Site available.
+
+As a user of the Site, you agree not to:
+
+1. Systematically retrieve data or other content from the Site to create or compile, directly or indirectly, a collection, compilation, database, or directory without written permission from us.
+
+2. Make any unauthorized use of the Site, including collecting usernames and/or email addresses of users by electronic or other means for the purpose of sending unsolicited email, or creating user accounts by automated means or under false pretenses.
+
+3. Use the Site to advertise or offer to sell goods and services.
+
+4. Circumvent, disable, or otherwise interfere with security-related features of the Site.
+
+5. Engage in unauthorized framing of or linking to the Site.
+
+6. Trick, defraud, or mislead us and other users, especially in any attempt to learn sensitive account information such as user passwords.
+
+7. Make improper use of our support services or submit false reports of abuse or misconduct.
+
+8. Engage in any automated use of the system, such as using scripts to send comments or messages, or using any data mining, robots, or similar data gathering and extraction tools.
+
+9. Interfere with, disrupt, or create an undue burden on the Site or the networks or services connected to the Site.
+
+10. Attempt to impersonate another user or person or use the username of another user.
+
+11. Use any information obtained from the Site in order to harass, abuse, or harm another person.
+
+12. Disparage, tarnish, or otherwise harm, in our opinion, us and/or the Site.
+
+13. Except as may be the result of standard search engine or Internet browser usage, use, launch, develop, or distribute any automated system, including without limitation, any spider, robot, cheat utility, scraper, or offline reader that accesses the Site, or using or launching any unauthorized script or other software.
+
+14. Upload or transmit (or attempt to upload or to transmit) any material that acts as a passive or active information collection or transmission mechanism, including without limitation, clear graphics interchange formats (“gifs”), 1×1 pixels, web bugs, cookies, or other similar devices (sometimes referred to as “spyware” or “passive collection mechanisms” or “pcms”).
+
+15. Upload or transmit (or attempt to upload or to transmit) viruses, Trojan horses, or other material, including excessive use of capital letters and spamming (continuous posting of repetitive text), that interferes with any party’s uninterrupted use and enjoyment of the Site or modifies, impairs, disrupts, alters, or interferes with the use, features, functions, operation, or maintenance of the Site.
+
+16. Harass, annoy, intimidate, or threaten any of our employees or agents engaged in providing any portion of the Site to you.
+
+17. Attempt to bypass any measures of the Site designed to prevent or restrict access to the Site, or any portion of the Site.
+
+
+## SUBMISSIONS
+
+You acknowledge and agree that any questions, comments, suggestions, ideas, feedback, or other information regarding the Site ("Submissions") provided by you to us are non-confidential and shall become our sole property. We shall own exclusive rights, including all intellectual property rights, and shall be entitled to the unrestricted use and dissemination of these Submissions for any lawful purpose, commercial or otherwise, without acknowledgment or compensation to you. You hereby waive all moral rights to any such Submissions, and you hereby warrant that any such Submissions are original with you or that you have the right to submit such Submissions. You agree there shall be no recourse against us for any alleged or actual infringement or misappropriation of any proprietary right in your Submissions.
+
+## THIRD-PARTY WEBSITES AND CONTENT
+
+The Site may contain (or you may be sent via the Site) links to other websites ("Third-Party Websites") as well as articles, photographs, text, graphics, pictures, designs, music, sound, video, information, applications, software, and other content or items belonging to or originating from third parties ("Third-Party Content"). Such Third-Party Websites and Third-Party Content are not investigated, monitored, or checked for accuracy, appropriateness, or completeness by us, and we are not responsible for any Third-Party Websites accessed through the Site or any Third-Party Content posted on, available through, or installed from the Site, including the content, accuracy, offensiveness, opinions, reliability, privacy practices, or other policies of or contained in the Third-Party Websites or the Third-Party Content. Inclusion of, linking to, or permitting the use or installation of any Third-Party Websites or any Third-Party Content does not imply approval or endorsement thereof by us. If you decide to leave the Site and access the Third-Party Websites or to use or install any Third-Party Content, you do so at your own risk, and you should be aware these Terms of Use no longer govern. You should review the applicable terms and policies, including privacy and data gathering practices, of any website to which you navigate from the Site or relating to any applications you use or install from the Site. Any purchases you make through Third-Party Websites will be through other websites and from other companies, and we take no responsibility whatsoever in relation to such purchases which are exclusively between you and the applicable third party. You agree and acknowledge that we do not endorse the products or services offered on Third-Party Websites and you shall hold us harmless from any harm caused by your purchase of such products or services. Additionally, you shall hold us harmless from any losses sustained by you or harm caused to you relating to or resulting in any way from any Third-Party Content or any contact with Third-Party Websites.
+
+
+## SITE MANAGEMENT
+
+We reserve the right, but not the obligation, to: (1) monitor the Site for violations of these Terms of Use; (2) take appropriate legal action against anyone who, in our sole discretion, violates the law or these Terms of Use, including without limitation, reporting such user to law enforcement authorities; (3) in our sole discretion and without limitation, refuse, restrict access to, limit the availability of, or disable (to the extent technologically feasible) any of your Contributions or any portion thereof; (4) in our sole discretion and without limitation, notice, or liability, to remove from the Site or otherwise disable all files and content that are excessive in size or are in any way burdensome to our systems; and (5) otherwise manage the Site in a manner designed to protect our rights and property and to facilitate the proper functioning of the Site.
+
+
+## PRIVACY POLICY
+
+We care about data privacy and security. Please review our [Privacy Policy](/privacy). By using the Site, you agree to be bound by our Privacy Policy, which is incorporated into these Terms of Use. Please be advised the Site is hosted in the United States. If you access the Site from the European Union, Asia, or any other region of the world with laws or other requirements governing personal data collection, use, or disclosure that differ from applicable laws in the United States, then through your continued use of the Site, you are transferring your data to the United States, and you expressly consent to have your data transferred to and processed in the United States. Further, we do not knowingly accept, request, or solicit information from children or knowingly market to children. Therefore, in accordance with the U.S. Children’s Online Privacy Protection Act, if we receive actual knowledge that anyone under the age of 13 has provided personal information to us without the requisite and verifiable parental consent, we will delete that information from the Site as quickly as is reasonably practical.
+
+## TERM AND TERMINATION
+
+These Terms of Use shall remain in full force and effect while you use the Site. WITHOUT LIMITING ANY OTHER PROVISION OF THESE TERMS OF USE, WE RESERVE THE RIGHT TO, IN OUR SOLE DISCRETION AND WITHOUT NOTICE OR LIABILITY, DENY ACCESS TO AND USE OF THE SITE (INCLUDING BLOCKING CERTAIN IP ADDRESSES), TO ANY PERSON FOR ANY REASON OR FOR NO REASON, INCLUDING WITHOUT LIMITATION FOR BREACH OF ANY REPRESENTATION, WARRANTY, OR COVENANT CONTAINED IN THESE TERMS OF USE OR OF ANY APPLICABLE LAW OR REGULATION. WE MAY TERMINATE YOUR USE OR PARTICIPATION IN THE SITE OR DELETE ANY CONTENT OR INFORMATION THAT YOU POSTED AT ANY TIME, WITHOUT WARNING, IN OUR SOLE DISCRETION.
+
+
+## MODIFICATIONS AND INTERRUPTIONS
+
+We reserve the right to change, modify, or remove the contents of the Site at any time or for any reason at our sole discretion without notice. However, we have no obligation to update any information on our Site. We also reserve the right to modify or discontinue all or part of the Site without notice at any time. We will not be liable to you or any third party for any modification, suspension, or discontinuance of the Site.
+
+We cannot guarantee the Site will be available at all times. We may experience hardware, software, or other problems or need to perform maintenance related to the Site, resulting in interruptions, delays, or errors. We reserve the right to change, revise, update, suspend, discontinue, or otherwise modify the Site at any time or for any reason without notice to you. You agree that we have no liability whatsoever for any loss, damage, or inconvenience caused by your inability to access or use the Site during any downtime or discontinuance of the Site. Nothing in these Terms of Use will be construed to obligate us to maintain and support the Site or to supply any corrections, updates, or releases in connection therewith.
+
+
+## GOVERNING LAW
+
+These Terms of Use and your use of the Site are governed by and construed in accordance with the laws of the State of Texas applicable to agreements made and to be entirely performed within the State of Texas, without regard to its conflict of law principles.
+
+
+## DISPUTE RESOLUTION
+
+### Informal Negotiations
+
+To expedite resolution and control the cost of any dispute, controversy, or claim related to these Terms of Use (each a "Dispute" and collectively, the “Disputes”) brought by either you or us (individually, a “Party” and collectively, the “Parties”), the Parties agree to first attempt to negotiate any Dispute (except those Disputes expressly provided below) informally for at least thirty (30) days before initiating arbitration. Such informal negotiations commence upon written notice from one Party to the other Party.
+
+
+### Binding Arbitration
+
+If the Parties are unable to resolve a Dispute through informal negotiations, the Dispute (except those Disputes expressly excluded below) will be finally and exclusively resolved by binding arbitration. YOU UNDERSTAND THAT WITHOUT THIS PROVISION, YOU WOULD HAVE THE RIGHT TO SUE IN COURT AND HAVE A JURY TRIAL. The arbitration shall be commenced and conducted under the Commercial Arbitration Rules of the American Arbitration Association ("AAA") and, where appropriate, the AAA’s Supplementary Procedures for Consumer Related Disputes ("AAA Consumer Rules"), both of which are available at the AAA website www.adr.org. Your arbitration fees and your share of arbitrator compensation shall be governed by the AAA Consumer Rules and, where appropriate, limited by the AAA Consumer Rules. If such costs are determined to by the arbitrator to be excessive, we will pay all arbitration fees and expenses. The arbitration may be conducted in person, through the submission of documents, by phone, or online. The arbitrator will make a decision in writing, but need not provide a statement of reasons unless requested by either Party. The arbitrator must follow applicable law, and any award may be challenged if the arbitrator fails to do so. Except where otherwise required by the applicable AAA rules or applicable law, the arbitration will take place in Travis County, Texas. Except as otherwise provided herein, the Parties may litigate in court to compel arbitration, stay proceedings pending arbitration, or to confirm, modify, vacate, or enter judgment on the award entered by the arbitrator.
+
+If for any reason, a Dispute proceeds in court rather than arbitration, the Dispute shall be commenced or prosecuted in the state and federal courts located in Travis County, Texas, and the Parties hereby consent to, and waive all defenses of lack of personal jurisdiction, and forum non conveniens with respect to venue and jurisdiction in such state and federal courts. Application of the United Nations Convention on Contracts for the International Sale of Goods and the the Uniform Computer Information Transaction Act (UCITA) are excluded from these Terms of Use.
+
+In no event shall any Dispute brought by either Party related in any way to the Site be commenced more than one (1) years after the cause of action arose. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+### Restrictions
+
+The Parties agree that any arbitration shall be limited to the Dispute between the Parties individually. To the full extent permitted by law, (a) no arbitration shall be joined with any other proceeding; (b) there is no right or authority for any Dispute to be arbitrated on a class-action basis or to utilize class action procedures; and (c) there is no right or authority for any Dispute to be brought in a purported representative capacity on behalf of the general public or any other persons.
+
+
+### Exceptions to Informal Negotiations and Arbitration
+
+The Parties agree that the following Disputes are not subject to the above provisions concerning informal negotiations and binding arbitration: (a) any Disputes seeking to enforce or protect, or concerning the validity of, any of the intellectual property rights of a Party; (b) any Dispute related to, or arising from, allegations of theft, piracy, invasion of privacy, or unauthorized use; and (c) any claim for injunctive relief. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+## CORRECTIONS
+
+There may be information on the Site that contains typographical errors, inaccuracies, or omissions. We reserve the right to correct any errors, inaccuracies, or omissions and to change or update the information on the Site at any time, without prior notice.
+
+
+## DISCLAIMER
+
+THE SITE IS PROVIDED ON AN AS-IS AND AS-AVAILABLE BASIS. YOU AGREE THAT YOUR USE OF THE SITE AND OUR SERVICES WILL BE AT YOUR SOLE RISK. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THE SITE AND YOUR USE THEREOF, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. WE MAKE NO WARRANTIES OR REPRESENTATIONS ABOUT THE ACCURACY OR COMPLETENESS OF THE SITE’S CONTENT OR THE CONTENT OF ANY WEBSITES LINKED TO THE SITE AND WE WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR ANY (1) ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS, (2) PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM YOUR ACCESS TO AND USE OF THE SITE, (3) ANY UNAUTHORIZED ACCESS TO OR USE OF OUR SECURE SERVERS AND/OR ANY AND ALL PERSONAL INFORMATION AND/OR FINANCIAL INFORMATION STORED THEREIN, (4) ANY INTERRUPTION OR CESSATION OF TRANSMISSION TO OR FROM THE SITE, (5) ANY BUGS, VIRUSES, TROJAN HORSES, OR THE LIKE WHICH MAY BE TRANSMITTED TO OR THROUGH THE SITE BY ANY THIRD PARTY, AND/OR (6) ANY ERRORS OR OMISSIONS IN ANY CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT POSTED, TRANSMITTED, OR OTHERWISE MADE AVAILABLE VIA THE SITE. WE DO NOT WARRANT, ENDORSE, GUARANTEE, OR ASSUME RESPONSIBILITY FOR ANY PRODUCT OR SERVICE ADVERTISED OR OFFERED BY A THIRD PARTY THROUGH THE SITE, ANY HYPERLINKED WEBSITE, OR ANY WEBSITE OR MOBILE APPLICATION FEATURED IN ANY BANNER OR OTHER ADVERTISING, AND WE WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY TRANSACTION BETWEEN YOU AND ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR SERVICES. AS WITH THE PURCHASE OF A PRODUCT OR SERVICE THROUGH ANY MEDIUM OR IN ANY ENVIRONMENT, YOU SHOULD USE YOUR BEST JUDGMENT AND EXERCISE CAUTION WHERE APPROPRIATE.
+
+
+## LIMITATIONS OF LIABILITY
+
+IN NO EVENT WILL WE OR OUR DIRECTORS, EMPLOYEES, OR AGENTS BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING LOST PROFIT, LOST REVENUE, LOSS OF DATA, OR OTHER DAMAGES ARISING FROM YOUR USE OF THE SITE, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED HEREIN, OUR LIABILITY TO YOU FOR ANY CAUSE WHATSOEVER AND REGARDLESS OF THE FORM OF THE ACTION, WILL AT ALL TIMES BE LIMITED TO THE AMOUNT PAID, IF ANY, BY YOU TO US DURING THE SIX (6) MONTH PERIOD PRIOR TO ANY CAUSE OF ACTION ARISING. CERTAIN STATE LAWS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EXCLUSION OR LIMITATION OF CERTAIN DAMAGES. IF THESE LAWS APPLY TO YOU, SOME OR ALL OF THE ABOVE DISCLAIMERS OR LIMITATIONS MAY NOT APPLY TO YOU, AND YOU MAY HAVE ADDITIONAL RIGHTS.
+
+
+## INDEMNIFICATION
+
+You agree to defend, indemnify, and hold us harmless, including our subsidiaries, affiliates, and all of our respective officers, agents, partners, and employees, from and against any loss, damage, liability, claim, or demand, including reasonable attorneys’ fees and expenses, made by any third party due to or arising out of: (1) use of the Site; (2) breach of these Terms of Use; (3) any breach of your representations and warranties set forth in these Terms of Use; (4) your violation of the rights of a third party, including but not limited to intellectual property rights; or (5) any overt harmful act toward any other user of the Site with whom you connected via the Site. Notwithstanding the foregoing, we reserve the right, at your expense, to assume the exclusive defense and control of any matter for which you are required to indemnify us, and you agree to cooperate, at your expense, with our defense of such claims. We will use reasonable efforts to notify you of any such claim, action, or proceeding which is subject to this indemnification upon becoming aware of it.
+
+
+## USER DATA
+
+We will maintain certain data that you transmit to the Site for the purpose of managing the performance of the Site, as well as data relating to your use of the Site. Although we perform regular routine backups of data, you are solely responsible for all data that you transmit or that relates to any activity you have undertaken using the Site. You agree that we shall have no liability to you for any loss or corruption of any such data, and you hereby waive any right of action against us arising from any such loss or corruption of such data.
+
+
+## ELECTRONIC COMMUNICATIONS, TRANSACTIONS, AND SIGNATURES
+
+Visiting the Site, sending us emails, and completing online forms constitute electronic communications. You consent to receive electronic communications, and you agree that all agreements, notices, disclosures, and other communications we provide to you electronically, via email and on the Site, satisfy any legal requirement that such communication be in writing. YOU HEREBY AGREE TO THE USE OF ELECTRONIC SIGNATURES, CONTRACTS, ORDERS, AND OTHER RECORDS, AND TO ELECTRONIC DELIVERY OF NOTICES, POLICIES, AND RECORDS OF TRANSACTIONS INITIATED OR COMPLETED BY US OR VIA THE SITE. You hereby waive any rights or requirements under any statutes, regulations, rules, ordinances, or other laws in any jurisdiction which require an original signature or delivery or retention of non-electronic records, or to payments or the granting of credits by any means other than electronic means.
+
+
+## CALIFORNIA USERS AND RESIDENTS
+
+If any complaint with us is not satisfactorily resolved, you can contact the Complaint Assistance Unit of the Division of Consumer Services of the California Department of Consumer Affairs in writing at 1625 North Market Blvd., Suite N 112, Sacramento, California 95834 or by telephone at (800) 952-5210 or (916) 445-1254.
+
+
+## MISCELLANEOUS
+
+These Terms of Use and any policies or operating rules posted by us on the Site or in respect to the Site constitute the entire agreement and understanding between you and us. Our failure to exercise or enforce any right or provision of these Terms of Use shall not operate as a waiver of such right or provision. These Terms of Use operate to the fullest extent permissible by law. We may assign any or all of our rights and obligations to others at any time. We shall not be responsible or liable for any loss, damage, delay, or failure to act caused by any cause beyond our reasonable control. If any provision or part of a provision of these Terms of Use is determined to be unlawful, void, or unenforceable, that provision or part of the provision is deemed severable from these Terms of Use and does not affect the validity and enforceability of any remaining provisions. There is no joint venture, partnership, employment or agency relationship created between you and us as a result of these Terms of Use or use of the Site. You agree that these Terms of Use will not be construed against us by virtue of having drafted them. You hereby waive any and all defenses you may have based on the electronic form of these Terms of Use and the lack of signing by the parties hereto to execute these Terms of Use.
+
+## CONTACT US
+
+In order to resolve a complaint regarding the Site or to receive further information regarding use of the Site, please contact us at:
+
+NumFOCUS, Inc. P.O. Box 90596 Austin, TX, USA 78709 info@numfocus.org +1 (512) 222-5449
+
+
+
diff --git a/content/ar/user-survey-2020.md b/content/ar/user-survey-2020.md
new file mode 100644
index 0000000000..495e405096
--- /dev/null
+++ b/content/ar/user-survey-2020.md
@@ -0,0 +1,16 @@
+---
+title: استطلاع مجتمع نمباي لعام 2020
+sidebar: false
+---
+
+في عام 2020، شارك فريق استطلاع نمباي بإجراء أول دراسة استقصائية رسمية للمجتمع مع الطلاب وأعضاء هيئة التدريس الملتحقين ببرنامج ماجستير في منهجية الاستطلاع الذي تستضيفه جامعتي ميتشيجان وميريلاند. شارك أكثر من 1200 مستخدم من 75 دولة لمساعدتنا في تصميم مخطط لمجتمع نمباي كما عبروا عن أفكارهم حول مستقبل المشروع.
+
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 NumPy user survey report, titled 'NumPy Community Survey 2020 - results'" width="250">}}
+
+**[قم بتحميل هذا التقرير ](/surveys/NumPy_usersurvey_2020_report.pdf)** لإلقاء نظرة أدق على نتائج الاستطلاع.
+
+
+للنقاط الأكثر أهمية، تحقق من **[هذة التصاميم التي تتضمن معلومات](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+أمستعد لأكثر من ذلك؟ قم بزيارة **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/ar/user-surveys.md b/content/ar/user-surveys.md
new file mode 100644
index 0000000000..89a2aa0460
--- /dev/null
+++ b/content/ar/user-surveys.md
@@ -0,0 +1,10 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020** The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/es/404.md b/content/es/404.md
new file mode 100644
index 0000000000..b38d73b758
--- /dev/null
+++ b/content/es/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+¡Oh, oh! Has llegado a un callejón sin salida.
+
+Si crees que algo debería estar aquí, puedes [reportar este problema](https://github.com/numpy/numpy.org/issues) en GitHub.
diff --git a/content/es/about.md b/content/es/about.md
new file mode 100644
index 0000000000..34880353ec
--- /dev/null
+++ b/content/es/about.md
@@ -0,0 +1,85 @@
+---
+title: Quiénes somos
+sidebar: false
+---
+
+_Información sobre el proyecto y la comunidad NumPy_
+
+NumPy es un proyecto de código abierto cuyo objetivo es facilitar la computación numérica con Python. Se creó en el 2005, a partir de los primeros trabajos de las bibliotecas Numeric y Numarray. NumPy will always be 100% open source software, free for all to use and released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+NumPy se desarrolla de forma abierta en GitHub, mediante el consenso de la comunidad de NumPy y de la comunidad científica de Python en general. Para más información sobre nuestro enfoque de gobernanza, consulta nuestro [Documento de Gobernanza](https://www.numpy.org/devdocs/dev/governance/index.html).
+
+
+## Consejo Directivo
+
+El papel del Consejo Directivo de NumPy es garantizar, a través del trabajo con la comunidad NumPy en general y al servicio de la misma, el bienestar a largo plazo del proyecto, tanto desde el punto de vista técnico como de la comunidad. El Consejo Directivo de NumPy está formado actualmente por los siguientes miembros (en orden alfabético):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Stephan Hoyer
+- Melissa Weber Mendonça
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Eric Wieser
+
+Eméritos:
+
+- Travis Oliphant (fundador del proyecto, 2005-2012)
+- Alex Griffing (2015-2017)
+- Marten van Kerkwijk (2017-2019)
+- Allan Haldane (2015-2021)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Pauli Virtanen (2008-2021)
+- Jaime Fernández del Río (2014-2021)
+
+
+## Equipos
+
+The NumPy project is growing! 🎉 We have teams for:
+
+- código
+- documentación
+- sitio web
+- triaje
+- survey
+- funding and grants
+
+See the [}}">Team]({{< relref) page for individual team members.
+
+## Subcomité NumFOCUS
+
+- Charles Harris
+- Ralf Gommers
+- Melissa Weber Mendonça
+- Sebastian Berg
+- Miembro externo: Thomas Caswell
+
+## Patrocinadores
+
+NumPy recibe financiación directa de las siguientes fuentes:
+{{< sponsors >}}
+
+
+## Socios institucionales
+
+Los socios institucionales son organizaciones que apoyan el proyecto empleando a personas que contribuyen a NumPy como parte de su trabajo. Entre los actuales socios institucionales se encuentran:
+
+- UC Berkeley (Stéfan van der Walt, Sebastian Berg, Ross Barnowski)
+- Quansight (Ralf Gommers, Melissa Weber Mendonça, Mars Lee, Matti Picus, Pearu Peterson)
+
+{{< partners >}}
+
+
+## Donar
+
+Si has encontrado NumPy útil en tu trabajo, investigación o empresa, por favor considera una donación al proyecto proporcional a tus recursos. ¡Cualquier cantidad ayuda! Todas las donaciones se utilizarán estrictamente para financiar el desarrollo del software de código abierto, la documentación y la comunidad de NumPy.
+
+NumPy es un proyecto patrocinado por NumFOCUS, una organización benéfica sin fines de lucro 501(c)(3) de Estados Unidos. NumFOCUS proporciona a NumPy apoyo fiscal, legal y administrativo para ayudar a garantizar el bienestar y la sostenibilidad del proyecto. Visita [numfocus.org](https://numfocus.org) para más información.
+
+Las donaciones a NumPy son gestionadas por [NumFOCUS](https://numfocus.org). Para los donantes de Estados Unidos, su donación es deducible de impuestos en la medida prevista por la ley. Al igual que con cualquier donación, debes consultar a tu asesor de impuestos sobre tu situación fiscal particular.
+
+El Consejo Directivo de NumPy tomará las decisiones sobre el mejor uso de los fondos recibidos. Las prioridades técnicas y de infraestructura están documentadas en la [Hoja de ruta de NumPy](https://www.numpy.org/neps/index.html#roadmap).
+{{< numfocus >}}
diff --git a/content/es/arraycomputing.md b/content/es/arraycomputing.md
new file mode 100644
index 0000000000..11877b3847
--- /dev/null
+++ b/content/es/arraycomputing.md
@@ -0,0 +1,21 @@
+---
+title: Cómputo vectorial
+sidebar: false
+---
+
+*El cómputo vectorial es la base del cómputo estadístico, matemático y científico en varias aplicaciones contemporáneas de ciencia de datos y análisis, como la visualización de datos, el procesamiento digital de señales, el procesamiento de imágenes, la bioinformática el aprendizaje automático, la IA y muchas otras.*
+
+La manipulación y transformación de datos a gran escala depende de una computación vectorial eficiente y de alto rendimiento. El lenguaje de elección para el análisis de datos, el aprendizaje automático y el cómputo numérico productivo es **Python.**
+
+**Num**erical **Py**thon o NumPy es la biblioteca estándar de facto del lenguaje de programación Python que soporta matrices y arreglos multidimensionales de gran tamaño, y viene con una amplia colección de funciones matemáticas de alto nivel para operar sobre estos arreglos.
+
+Tras el lanzamiento de NumPy en 2006, Pandas apareció en el panorama en 2008, y no fue hasta hace un par de años que aparecieron sucesivamente varias bibliotecas de cómputo vectorial, poblando este escenario. Muchas de estas nuevas bibliotecas imitan las características y capacidades de NumPy, y contienen nuevos algoritmos y características orientadas a las aplicaciones de aprendizaje automático e inteligencia artificial.
+
+
+
+El **cómputo vectorial** está basado en los **arreglos** como estructura de datos. *Los arreglos* se utilizan para organizar grandes cantidades de datos de manera que un conjunto de valores relacionados pueda ordenarse, buscarse, manipularse matemáticamente y transformarse con facilidad y rapidez.
+
+La computación vectorial es *única* ya que implica operar sobre los arreglos de datos *de una vez*. Esto significa que cualquier operación de arreglos se aplica a un conjunto completo de valores de una sola vez. Este enfoque vectorial proporciona velocidad y simplicidad al permitir a los programadores codificar y trabajar sobre los datos agregados, sin tener que utilizar bucles de instrucciones escalares individuales.
diff --git a/content/es/case-studies/blackhole-image.md b/content/es/case-studies/blackhole-image.md
new file mode 100644
index 0000000000..0392434d67
--- /dev/null
+++ b/content/es/case-studies/blackhole-image.md
@@ -0,0 +1,70 @@
+---
+title: "Estudio de caso: La primera imagen de un agujero negro"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**Agujero Negro M87**" alt=black hole image" attr="*(Créditos de imagen: Colaboración del Telescopio de Horizonte de Sucesos)*" attrlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg">}}
+
+
+
Retratar el agujero negro M87 es como tratar de ver algo que por definición es imposible de ver.
+
+
+
+## Un telescopio del tamaño del mundo
+
+El [ telescopio del Horizonte de Sucesos (EHT) ](https://eventhorizontelescope.org), es un arreglo de ocho radiotelescopios terrestres que forman un telescopio computacional del tamaño del mundo, estudiando el universo con una sensibilidad y resolución sin precedente. El enorme telescopio virtual, que utiliza una técnica llamada interferometría de línea de base muy larga (VLBI), tiene una resolución angular de [20 microsegundos de arco][resolution] — ¡suficiente para leer un periódico en Nueva York desde un café en la acera en París!
+
+### Objetivos clave y resultados
+
+* **Una nueva vista del universo:** El trabajo preliminar para la innovadora imagen de EHT se había establecido 100 años antes, cuando [Sir Arthur Eddington][eddington] dio el primer apoyo observacional a la teoría de la relatividad general de Einstein.
+
+* **El agujero negro:** EHT apuntó a un enorme agujero negro aproximadamente a 55 millones de años luz de la tierra, situada en el centro de la galaxia Messier 87 (M87) en el cúmulo de Virgo. Su masa es 6.5 mil millones de veces la del sol. Se había estudiado por [más de 100 años](https://www.jpl.nasa.gov/news/news.php?feature=7385), pero nunca antes se había observado un agujero negro.
+
+* **Comparando las observaciones con la teoría:** A partir de la teoría de la relatividad general de Einstein, los científicos esperaban encontrar una región similar a las sombras causada por la flexión gravitacional y la captura de la luz. Los científicos pudieron utilizarla para medir la enorme masa del agujero negro.
+
+### Los desafíos
+
+* **Escala computacional**
+
+ EHT plantea desafíos de procesamiento de datos masivos, incluyendo rápidas fluctuaciones de fase atmosféricas, amplio ancho de banda de registro, y telescopios que son ampliamente disímiles y geográficamente dispersos.
+
+* **Demasiada información**
+
+ Cada día EHT genera más de 350 terabytes de observaciones, almacenados en discos duros llenos de helio. Reducir el volumen y complejidad de estos datos es enormemente difícil.
+
+* **Hacia lo desconocido**
+
+ Cuando el objetivo es ver algo nunca antes visto, ¿cómo pueden los científicos estar seguros de que la imagen es correcta?
+
+{{< figure src="/images/content_images/cs/dataprocessbh.png" class="csfigcaption" caption="**Pipeline de procesamiento de datos de EHT**" alt="data pipeline" align="middle" attr="(Créditos del diagrama: The Astrophysical Journal, Event Horizon Telescope Collaboration)" attrlink="https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57" >}}
+
+## El rol de NumPy
+
+¿Qué pasa si hay un problema con los datos? O tal vez un algoritmo depende demasiado de un supuesto en particular. ¿Cambiará drásticamente la imagen si se cambia un sólo parámetro?
+
+La alianza de EHT respondió a estos desafíos haciendo que los equipos independientes evalúen los datos, utilizando técnicas establecidas y de reconstrucción de imagen de vanguardia. Cuando los resultados se mostraron consistentes, se combinaron para producir la primera imagen de un agujero negro.
+
+Su trabajo ilustra el rol que desempeña el ecosistema científico de Python en el avance de la ciencia a través del análisis de datos colaborativos.
+
+{{< figure src="/images/content_images/cs/bh_numpy_role.png" class="fig-center" alt="role of numpy" caption="**El rol de NumPy en la fotografía del Agujero Negro**" >}}
+
+Por ejemplo, el paquete de Python [`eht-imaging`][ehtim] proporciona herramientas para simular y realizar reconstrucción de imágenes en datos VLBI. NumPy está en el núcleo del procesamiento de datos de arreglos utilizados en este paquete, como se muestra en el gráfico de dependencias de software parcial a continuación.
+
+{{< figure src="/images/content_images/cs/ehtim_numpy.png" class="fig-center" alt="ehtim dependency map highlighting numpy" caption="**Gráfico de dependencias de software del paquete ehtim destacando NumPy**" >}}
+
+Además de NumPy, muchos otros paquetes, como [SciPy](https://www.scipy.org) y [Pandas](https://pandas.io), son parte del pipeline de procesamiento de datos para fotografiar el agujero negro. Los formatos de archivo astronómicos estándar y transformaciones de tiempo/coordenadas fueron manejados por [Astropy][astropy], mientras que [Matplotlib][mpl] fue utilizado en la visualización de datos a través del pipeline de análisis, incluyendo la generación de la imagen final del agujero negro.
+
+## Resumen
+
+El arreglo n-dimensional eficiente y adaptable que es la característica central de NumPy permitió a los investigadores manipular grandes conjuntos de datos numéricos, proporcionando una base para la primera imagen de un agujero negro. Un momento emblemático en la ciencia, ofrece una impresionante evidencia visual de la teoría de Einstein. El logro abarca no sólo los avances tecnológicos sino también la colaboración internacional entre más de 200 científicos y algunos de los mejores observatorios radiofónicos del mundo. Los algoritmos innovadores y técnicas de procesamiento de datos, mejorando los modelos astronómicos existentes, ayudaron a desarrollar un misterio del universo.
+
+{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="numpy benefits" caption="**Capacidades clave de NumPy utilizadas**" >}}
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
diff --git a/content/es/case-studies/cricket-analytics.md b/content/es/case-studies/cricket-analytics.md
new file mode 100644
index 0000000000..d6f01bec93
--- /dev/null
+++ b/content/es/case-studies/cricket-analytics.md
@@ -0,0 +1,64 @@
+---
+title: "Estudio de caso: Análisis de críquet, ¡el cambio radical!"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/ipl-stadium.png" caption="**IPLT20, el festival de críquet más grande en India**" alt="Copa y estadio de la Premier League de Críquet de India" attr="*(Créditos de imagen: IPLT20 (copa y logo) & Akash Yadav (estadio))*" attrlink="https://unsplash.com/@aksh1802" >}}
+
+
+
No juegas para el público, juegas para el país.
+
+
+
+## Acerca del críquet
+
+Sería una subestimación decir que a los indios les encanta el críquet. El juego se juega en casi cada rincón de India, rural o urbano, popular entre los jóvenes y ancianos por igual, conectando miles de millones en India a diferencia de cualquier otro deporte. El críquet disfruta de una gran atención mediática. Hay una cantidad importante de [dinero](https://www.statista.com/topics/4543/indian-premier-league-ipl/) y fama en juego. Durante los últimos años, la tecnología ha sido literalmente un punto de inflexión. El público está plagado de opciones con los medios de streaming, los torneos, acceso asequible a la observación de críquet en vivo basado en móviles, y más.
+
+La Premier League de India (IPL) es una liga de críquet Twenty20, fundada en 2008. Es uno de los eventos de críquet más concurridos en el mundo, valorado en [$6.7 mil millones de dólares](https://en.wikipedia.org/wiki/Indian_Premier_League) en 2019.
+
+El críquet es un juego de números - las carreras anotadas por un bateador, los wickets alcanzados por un lanzador, los partidos ganados por un equipo de críquet, el número de veces que un bateador responde de cierta manera a un tipo de ataque de lanzamiento, etc. La capacidad de cavar en los números del críquet para mejorar el rendimiento y estudiar las oportunidades de negocio, el mercado en general y la economía del críquet a través de potentes herramientas de análisis, alimentadas por software de cálculo numérico como NumPy, es un gran negocio. El análisis del críquet proporciona ideas interesantes sobre el juego e inteligencia predictiva respecto a los resultados del juego.
+
+Today, there are rich and almost infinite troves of cricket game records and statistics available, e.g., [ESPN cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) and [cricsheet](https://cricsheet.org). These and several such cricket databases have been used for [cricket analysis](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances) using the latest machine learning and predictive modelling algorithms. Media and entertainment platforms along with professional sports bodies associated with the game use technology and analytics for determining key metrics for improving match winning chances:
+
+* batting performance moving average,
+* score forecasting,
+* gaining insights into fitness and performance of a player against different opposition,
+* player contribution to wins and losses for making strategic decisions on team composition
+
+{{< figure src="/images/content_images/cs/cricket-pitch.png" class="csfigcaption" caption="**Cricket Pitch, the focal point in the field**" alt="A cricket pitch with bowler and batsmen" align="middle" attr="*(Image credit: Debarghya Das)*" attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
+
+### Key Data Analytics Objectives
+
+* Sports data analytics are used not only in cricket but many [other sports](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) for improving the overall team performance and maximizing winning chances.
+* Real-time data analytics can help in gaining insights even during the game for changing tactics by the team and by associated businesses for economic benefits and growth.
+* Besides historical analysis, predictive models are harnessed to determine the possible match outcomes that require significant number crunching and data science know-how, visualization tools and capability to include newer observations in the analysis.
+
+{{< figure src="/images/content_images/cs/player-pose-estimator.png" class="fig-center" alt="pose estimator" caption="**Cricket Pose Estimator**" attr="*(Image credit: connect.vin)*" attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
+
+### The Challenges
+
+* **Data Cleaning and preprocessing**
+
+ IPL has expanded cricket beyond the classic test match format to a much larger scale. The number of matches played every season across various formats has increased and so has the data, the algorithms, newer sports data analysis technologies and simulation models. Cricket data analysis requires field mapping, player tracking, ball tracking, player shot analysis, and several other aspects involved in how the ball is delivered, its angle, spin, velocity, and trajectory. All these factors together have increased the complexity of data cleaning and preprocessing.
+
+* **Dynamic Modeling**
+
+ In cricket, just like any other sport, there can be a large number of variables related to tracking various numbers of players on the field, their attributes, the ball, and several possibilities of potential actions. The complexity of data analytics and modeling is directly proportional to the kind of predictive questions that are put forth during analysis and are highly dependent on data representation and the model. Things get even more challenging in terms of computation, data comparisons when dynamic cricket play predictions are sought such as what would have happened if the batsman had hit the ball at a different angle or velocity.
+
+* **Predictive Analytics Complexity**
+
+ Much of the decision making in cricket is based on questions such as "how often does a batsman play a certain kind of shot if the ball delivery is of a particular type", or "how does a bowler change his line and length if the batsman responds to his delivery in a certain way". This kind of predictive analytics query requires highly granular dataset availability and the capability to synthesize data and create generative models that are highly accurate.
+
+## NumPy’s Role in Cricket Analytics
+
+Sports Analytics is a thriving field. Many researchers and companies [use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter, besides using the latest machine learning and AI techniques. NumPy has been used for various kinds of cricket related sporting analytics such as:
+
+* **Statistical Analysis:** NumPy's numerical capabilities help estimate the statistical significance of observational data or match events in the context of various player and game tactics, estimating the game outcome by comparison with a generative or static model. [Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation) and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/) are used for tactical analysis.
+
+* **Data Visualization:** Data graphing and [visualization](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) provide useful insights into relationship between various datasets.
+
+## Summary
+
+Sports Analytics is a game changer when it comes to how professional games are played, especially how strategic decision making happens, which until recently was primarily done based on “gut feeling" or adherence to past traditions. NumPy forms a solid foundation for a large set of Python packages which provide higher level functions related to data analytics, machine learning, and AI algorithms. These packages are widely deployed to gain real-time insights that help in decision making for game-changing outcomes, both on field as well as to draw inferences and drive business around the game of cricket. Finding out the hidden parameters, patterns, and attributes that lead to the outcome of a cricket match helps the stakeholders to take notice of game insights that are otherwise hidden in numbers and statistics.
+
+{{< figure src="/images/content_images/cs/numpy_ca_benefits.png" class="fig-center" alt="Diagram showing benefits of using NumPy for cricket analytics" caption="**Key NumPy Capabilities utilized**" >}}
diff --git a/content/es/case-studies/deeplabcut-dnn.md b/content/es/case-studies/deeplabcut-dnn.md
new file mode 100644
index 0000000000..b40ed2af50
--- /dev/null
+++ b/content/es/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,90 @@
+---
+title: "Case Study: DeepLabCut 3D Pose Estimation"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Analyzing mice hand-movement using DeepLapCut**" alt="micehandanim" attr="*(Source: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut">}}
+
+
+
Open Source Software is accelerating Biomedicine. DeepLabCut enables automated video analysis of animal behavior using Deep Learning.
+
+
+
+## About DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
+
+Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
+
+{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**Colored dots track the positions of a racehorse’s body part**" alt="horserideranim" attr="*(Source: Mackenzie Mathis)*">}}
+
+DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
+
+DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
+
+Recently, the [DeepLabCut model zoo](http://www.mousemotorlab.org/dlc-modelzoo) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
+
+### Key Goals and Results
+
+* **Automation of animal pose analysis for scientific studies:**
+
+ The primary objective of DeepLabCut technology is to measure and track posture of animals in a diverse settings. This data can be used, for example, in neuroscience studies to understand how the brain controls movement, or to elucidate how animals socially interact. Researchers have observed a [tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1) with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second (FPS).
+
+* **Creation of an easy-to-use Python toolkit for pose estimation:**
+
+ DeepLabCut wanted to share their animal pose-estimation technology in the form of an easy to use tool that can be adopted by researchers easily. So they have created a complete, easy-to-use Python toolbox with project management features as well. These enable not only automation of pose-estimation but also managing the project end-to-end by helping the DeepLabCut Toolkit user right from the dataset collection stage to creating shareable and reusable analysis pipelines.
+
+ Their [toolkit][DLCToolkit] is now available as open source.
+
+ A typical DeepLabCut Workflow includes:
+
+ - creation and refining of training sets via active learning
+ - creation of tailored neural networks for specific animals and scenarios
+ - code for large-scale inference on videos
+ - draw inferences using integrated visualization tools
+
+{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**Pose estimation steps with DeepLabCut**" alt="dlcsteps" align="middle" attr="(Source: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
+
+### The Challenges
+
+* **Speed**
+
+ Fast processing of animal behavior videos in order to measure their behavior and at the same time make scientific experiments more efficient, accurate. Extracting detailed animal poses for laboratory experiments, without markers, in dynamically changing backgrounds, can be challenging, both technically as well as in terms of resource needs and training data required. Coming up with a tool that is easy to use without the need for skills such as computer vision expertise that enables scientists to do research in more real-world contexts, is a non-trivial problem to solve.
+
+* **Combinatorics**
+
+ Combinatorics involves assembly and integration of movement of multiple limbs into individual animal behavior. Assembling keypoints and their connections into individual animal movements and linking them across time is a complex process that requires heavy-duty numerical analysis, especially in case of multi-animal movement tracking in experiment videos.
+
+* **Data Processing**
+
+ Last but not the least, array manipulation - processing large stacks of arrays corresponding to various images, target tensors and keypoints is fairly challenging.
+
+{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**Pose estimation variety and complexity**" alt="challengesfig" align="middle" attr="(Source: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
+
+## NumPy's Role in meeting Pose Estimation Challenges
+
+NumPy addresses DeepLabCut technology's core need of numerical computations at high speed for behavioural analytics. Besides NumPy, DeepLabCut employs various Python software that utilize NumPy at their core, such as [SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org), [matplotlib](https://matplotlib.org), [Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug), [scikit-learn](https://scikit-learn.org/stable/), [scikit-image](https://scikit-image.org) and [Tensorflow](https://www.tensorflow.org).
+
+The following features of NumPy played a key role in addressing the image processing, combinatorics requirements and need for fast computation in DeepLabCut pose estimation algorithms:
+
+* Vectorization
+* Masked Array Operations
+* Linear Algebra
+* Random Sampling
+* Reshaping of large arrays
+
+DeepLabCut utilizes NumPy’s array capabilities throughout the workflow offered by the toolkit. In particular, NumPy is used for sampling distinct frames for human annotation labeling, and for writing, editing and processing annotation data. Within TensorFlow the neural network is trained by DeepLabCut technology over thousands of iterations to predict the ground truth annotations from frames. For this purpose, target densities (scoremaps) are created to cast pose estimation as a image-to-image translation problem. To make the neural networks robust, data augmentation is employed, which requires the calculation of target scoremaps subject to various geometric and image processing steps. To make training fast, NumPy’s vectorization capabilities are leveraged. For inference, the most likely predictions from target scoremaps need to extracted and one needs to efficiently “link predictions to assemble individual animals”.
+
+{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**DeepLabCut Workflow**" alt="workflow" attr="*(Source: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
+
+## Summary
+
+Observing and efficiently describing behavior is a core tenant of modern ethology, neuroscience, medicine, and technology. [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior. With only a small set of training images, the DeepLabCut Python toolbox allows training a neural network to within human level labeling accuracy, thus expanding its application to not only behavior analysis in the laboratory, but to potentially also in sports, gait analysis, medicine and rehabilitation studies. Complex combinatorics, data processing challenges faced by DeepLabCut algorithms are addressed through the use of NumPy's array manipulation capabilities.
+
+{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
diff --git a/content/es/case-studies/gw-discov.md b/content/es/case-studies/gw-discov.md
new file mode 100644
index 0000000000..b992584c87
--- /dev/null
+++ b/content/es/case-studies/gw-discov.md
@@ -0,0 +1,69 @@
+---
+title: "Case Study: Discovery of Gravitational Waves"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/gw_sxs_image.png" class="fig-center" caption="**Gravitational Waves**" alt="binary coalesce black hole generating gravitational waves" attr="*(Image Credits: The Simulating eXtreme Spacetimes (SXS) Project at LIGO)*" attrlink="https://youtu.be/Zt8Z_uzG71o" >}}
+
+
+
The scientific Python ecosystem is critical infrastructure for the research done at LIGO.
+
+
+
+## About [Gravitational Waves](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) and [LIGO](https://www.ligo.caltech.edu)
+
+Gravitational waves are ripples in the fabric of space and time, generated by cataclysmic events in the universe such as collision and merging of two black holes or coalescing binary stars or supernovae. Observing GW can not only help in studying gravity but also in understanding some of the obscure phenomena in the distant universe and its impact.
+
+The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu) was designed to open the field of gravitational-wave astrophysics through the direct detection of gravitational waves predicted by Einstein’s General Theory of Relativity. It comprises two widely separated interferometers within the United States — one in Hanford, Washington and the other in Livingston, Louisiana — operated in unison to detect gravitational waves. Each of them has multi-kilometer-scale gravitational wave detectors that use laser interferometry. The LIGO Scientific Collaboration (LSC), is a group of more than 1000 scientists from universities around the United States and in 14 other countries supported by more than 90 universities and research institutes; approximately 250 students actively contributing to the collaboration. The new LIGO discovery is the first observation of gravitational waves themselves, made by measuring the tiny disturbances the waves make to space and time as they pass through the earth. It has opened up new astrophysical frontiers that explore the warped side of the universe—objects and phenomena that are made from warped spacetime.
+
+
+### Key Objectives
+
+* Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to detect gravitational waves from some of the most violent and energetic processes in the Universe, the data LIGO collects may have far-reaching effects on many areas of physics including gravitation, relativity, astrophysics, cosmology, particle physics, and nuclear physics.
+* Crunch observed data via numerical relativity computations that involves complex maths in order to discern signal from noise, filter out relevant signal and statistically estimate significance of observed data
+* Data visualization so that the binary / numerical results can be comprehended.
+
+
+
+### The Challenges
+
+* **Computation**
+
+ Gravitational Waves are hard to detect as they produce a very small effect and have tiny interaction with matter. Processing and analyzing all of LIGO's data requires a vast computing infrastructure.After taking care of noise, which is billions of times of the signal, there is still very complex relativity equations and huge amounts of data which present a computational challenge: [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI) spread on 6 dedicated LIGO clusters
+
+* **Data Deluge**
+
+ As observational devices become more sensitive and reliable, the challenges posed by data deluge and finding a needle in a haystack rise multi-fold. LIGO generates terabytes of data every day! Making sense of this data requires an enormous effort for each and every detection. For example, the signals being collected by LIGO must be matched by supercomputers against hundreds of thousands of templates of possible gravitational-wave signatures.
+
+* **Visualization**
+
+ Once the obstacles related to understanding Einstein’s equations well enough to solve them using supercomputers are taken care of, the next big challenge was making data comprehensible to the human brain. Simulation modeling as well as signal detection requires effective visualization techniques. Visualization also plays a role in lending more credibility to numerical relativity in the eyes of pure science aficionados, who did not give enough importance to numerical relativity until imaging and simulations made it easier to comprehend results for a larger audience. Speed of complex computations and rendering, re-rendering images and simulations using latest experimental inputs and insights can be a time consuming activity that challenges researchers in this domain.
+
+{{< figure src="/images/content_images/cs/gw_strain_amplitude.png" class="fig-center" alt="gravitational waves strain amplitude" caption="**Estimated gravitational-wave strain amplitude from GW150914**" attr="(**Graph Credits:** Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)" attrlink="https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger" >}}
+
+## NumPy’s Role in the Detection of Gravitational Waves
+
+Gravitational waves emitted from the merger cannot be computed using any technique except brute force numerical relativity using supercomputers. The amount of data LIGO collects is as incomprehensibly large as gravitational wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by the software used for various tasks performed during the GW detection project at LIGO. NumPy helped in solving complex maths and data manipulation at high speed. Here are some examples:
+
+* [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+* Data retrieval: Deciding which data can be analyzed, figuring out whether it contains a signal - needle in a haystack
+* Statistical analysis: estimate the statistical significance of observational data, estimating the signal parameters (e.g. masses of stars, spin velocity, and distance) by comparison with a model.
+* Visualization of data
+ - Time series
+ - Spectrograms
+* Compute Correlations
+* Key [Software](https://github.com/lscsoft) developed in GW data analysis such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for providing object based interfaces to utilities, tools, and methods for studying data from gravitational-wave detectors.
+
+{{< figure src="/images/content_images/cs/gwpy-numpy-dep-graph.png" class="fig-center" alt="gwpy-numpy depgraph" caption="**Dependency graph showing how GwPy package depends on NumPy**" >}}
+
+----
+
+{{< figure src="/images/content_images/cs/PyCBC-numpy-dep-graph.png" class="fig-center" alt="PyCBC-numpy depgraph" caption="**Dependency graph showing how PyCBC package depends on NumPy**" >}}
+
+## Summary
+
+GW detection has enabled researchers to discover entirely unexpected phenomena while providing new insight into many of the most profound astrophysical phenomena known. Number crunching and data visualization is a crucial step that helps scientists gain insights into data gathered from the scientific observations and understand the results. The computations are complex and cannot be comprehended by humans unless it is visualized using computer simulations that are fed with the real observed data and analysis. NumPy along with other Python packages such as matplotlib, pandas, and scikit-learn is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to answer complex questions and discover new horizons in our understanding of the universe.
+
+{{< figure src="/images/content_images/cs/numpy_gw_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
diff --git a/content/es/citing-numpy.md b/content/es/citing-numpy.md
new file mode 100644
index 0000000000..486e90ddd0
--- /dev/null
+++ b/content/es/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: Citando a NumPy
+sidebar: false
+---
+
+Si NumPy ha sido importante en tu investigación y deseas reconocer el proyecto en tu publicación académica, te sugerimos que cites el siguiente documento:
+
+* Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Enlace del editor](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_En formato BibTeX:_
+
+ ```
+@Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+}
+```
diff --git a/content/es/code-of-conduct.md b/content/es/code-of-conduct.md
new file mode 100644
index 0000000000..6bb0dfa637
--- /dev/null
+++ b/content/es/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: Código de conducta de NumPy
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### Introducción
+
+Este Código de Conducta se aplica a todos los espacios gestionados por el proyecto NumPy, incluyendo todas las listas de correo públicas y privadas, gestores de incidencias, wikis, blogs, Twitter y cualquier otro canal de comunicación utilizado por nuestra comunidad. El proyecto NumPy no organiza eventos en persona, sin embargo los eventos relacionados con nuestra comunidad deben tener un código de conducta similar a este.
+
+Este Código de Conducta debe ser respetado por todos los que participan en la comunidad NumPy formalmente o informalmente, o reclaman cualquier afiliación con el proyecto, en cualquier actividad relacionada con el proyecto y especialmente cuando representan el proyecto, de cualquier manera.
+
+Este código no es exhaustivo ni completo. Sirve para sintetizar nuestro entendimiento común de un entorno y unos objetivos compartidos y de colaboración. Por favor, intenta seguir este código tanto en el espíritu como en la letra, para crear un ambiente cordial y productivo que enriquezca a la comunidad circundante.
+
+### Directrices Específicas
+
+Nos esforzamos por:
+
+1. Ser abiertos. Invitamos a todas las personas a participar en nuestra comunidad. Preferimos utilizar métodos de comunicación públicos para los mensajes relacionados con el proyecto, a menos que se trate de algo delicado. Esto se aplica también a los mensajes de ayuda o soporte relacionados con el proyecto; no sólo es mucho más probable que una solicitud de soporte pública dé lugar a una respuesta a una pregunta, sino que también garantiza que cualquier error involuntario en la respuesta se detecte y corrija más fácilmente.
+2. Ser empáticos, receptivos, amables y pacientes. Trabajamos juntos para resolver los conflictos y asumimos que hay buenas intenciones. Todos podemos experimentar cierta frustración de vez en cuando, pero no permitimos que la frustración se convierta en un ataque personal. Una comunidad en la que la gente se siente incómoda o amenazada no es productiva.
+3. Ser colaborativos. Nuestro trabajo será utilizado por otras personas, y a su vez dependeremos del trabajo de otros. Cuando hacemos algo en beneficio del proyecto, estamos dispuestos a explicar a otros cómo funciona. para que puedan aprovechar el trabajo y hacerlo aún mejor. Cualquier decisión que tomemos afectará a usuarios y colegas, y nos tomaremos en serio esas consecuencias a la hora de tomar decisiones.
+4. Ser curiosos. ¡Nadie lo sabe todo! Plantear las preguntas con antelación evita muchos problemas posteriores, por lo que fomentamos las preguntas, aunque es conveniente dirigirlas al foro adecuado. Nos esforzaremos por ser receptivos y útiles.
+5. Ser cuidadosos con las palabras que elijamos. Somos cuidadosos y respetuosos en nuestra comunicación, y asumimos la responsabilidad del lenguaje que utilizamos. Somos amables con los demás. No insultes ni menosprecies a los demás participantes. No aceptaremos el acoso ni otros comportamientos excluyentes, como:
+ * Amenazas o expresiones violentas dirigidas a otra persona.
+ * Bromas y lenguaje sexista, racista o discriminatorio.
+ * Publicar material sexualmente explícito o violento.
+ * Publicar (o amenazar con publicar) información de identificación personal de otras personas ("doxing").
+ * Compartir contenido privado, como correos electrónicos enviados de forma privada o no pública, o foros no registrados como el historial de canales IRC, sin el consentimiento del remitente.
+ * Insultos personales, especialmente aquellos que utilizan términos racistas o sexistas.
+ * Atención sexual no deseada.
+ * Uso excesivo de lenguaje inapropiado. Por favor, evite las palabras soeces; las personas difieren mucho en su sensibilidad a las palabrotas.
+ * Acoso reiterado a los demás. En general, si alguien le pide que se detenga, entonces pare.
+ * Defender o fomentar cualquiera de las conductas anteriores.
+
+### Declaración de diversidad
+
+El proyecto NumPy acoge con satisfacción y fomenta la participación de todos. Estamos comprometidos a ser una comunidad de la que todo el mundo disfruta ser parte. Aunque puede que no siempre seamos capaces de satisfacer las preferencias de cada individuo, intentamos lo mejor para tratar a todo el mundo con amabilidad.
+
+No importa cómo te identifiques o cómo te perciban los demás: te damos la bienvenida. Aunque ninguna lista puede esperar ser exhaustiva, honramos explícitamente la diversidad en: edad, cultura, etnia, genotipo, identidad o expresión de género, lengua, origen nacional, neurotipo, fenotipo, creencias políticas, profesión, raza, religión, orientación sexual, estatus socioeconómico, subcultura y capacidad técnica, en la medida en que no entren en conflicto con este código de conducta.
+
+Aunque aceptamos a personas con dominio de cualquier idioma, el desarrollo de NumPy se lleva a cabo en inglés.
+
+Los estándares de comportamiento en la comunidad NumPy se detallan en el Código de Conducta anterior. Los participantes en nuestra comunidad deben mantener estas normas en todas sus interacciones y ayudar a los demás a hacer lo mismo (véase la siguiente sección).
+
+### Directrices para Informar Incidentes
+
+Sabemos que es dolorosamente común que la comunicación en Internet comience o se convierta en un abuso evidente y flagrante. También reconocemos que a veces la gente puede tener un mal día, o no ser consciente de algunas de las directrices de este Código de Conducta. Por favor, tenga esto en cuenta a la hora de decidir cómo responder a una violación de este Código.
+
+En caso de infracciones claramente intencionadas, informe de las mismas al Comité del Código de Conducta (ver más abajo). Para infracciones posiblemente no intencionadas, Usted puede responder a la persona y señalar este código de conducta (tanto en público como en privado, lo que sea más apropiado). Si prefiere no hacerlo, no dude en informar directamente al Comité del Código de Conducta o pedirle consejo, de forma confidencial.
+
+Puede informar de los problemas al Comité del Código de Conducta de NumPy en numpy-conduct@googlegroups.com.
+
+Actualmente, la comisión está formada por:
+
+* Stefan van der Walt
+* Melissa Weber Mendonça
+* Anirudh Subramanian
+
+Si tu informe implica a algún miembro del Comité, o si éste considera que tiene un conflicto de intereses en su tramitación, se abstendrán de examinar tu denuncia. Si por alguna razón le incomoda hacer un informe al Comité, también puede ponerse en contacto con el personal superior de NumFOCUS en [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### Resolución de informes de incidentes y aplicación del Código de Conducta
+
+_Esta sección resume los puntos más importantes, se pueden encontrar más detalles en el_ [Código de Conducta NumPy - Cómo hacer seguimiento de un incidente](/report-handling-manual).
+
+Vamos a investigar y responder a todas las reclamaciones. El Comité del Código de Conducta de NumPy y el Comité Directivo de NumPy (si está involucrado) protegerán la identidad del denunciante y tratarán el contenido de las denuncias como confidencial (a menos que el denunciante esté de acuerdo con lo contrario).
+
+En caso de infracciones graves y evidentes, por ejemplo, amenazas personales o lenguaje violento, sexista o racista, desconectaremos inmediatamente al emisor de los canales de comunicación de NumPy; consulte el manual para obtener más detalles.
+
+En los casos que no impliquen infracciones claras, graves y evidentes de este Código de Conducta, el proceso para actuar sobre cualquier informe de infracción del Código de Conducta recibido será:
+
+1. acusar recibo del informe,
+2. un intercambio de opiniones razonable,
+3. mediación (si la retroalimentación no ha servido de nada, y sólo si tanto el denunciante como el denunciado están de acuerdo con ello),
+4. aplicación a través de una decisión transparente (ver [Resoluciones](/report-handling-manual#resolutions)) hechas por el Comité del Código de conducta.
+
+El Comité responderá a cualquier informe lo antes posible y como máximo dentro de 72 horas.
+
+### Nota final
+
+Damos las gracias a los grupos que están detrás de los siguientes documentos, de los que hemos sacado contenido e inspiración:
+
+- [El Código de Conducta de SciPy](https://docs.scipy.org/doc/scipy/reference/dev/conduct/code_of_conduct.html)
diff --git a/content/es/community.md b/content/es/community.md
new file mode 100644
index 0000000000..1ca7f93870
--- /dev/null
+++ b/content/es/community.md
@@ -0,0 +1,65 @@
+---
+title: Community
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). El liderazgo de NumPy se ha comprometido firmemente a crear una comunidad abierta, inclusiva y positiva. Por favor, lee el [Código de Conducta NumPy](/code-of-conduct) para obtener orientación sobre cómo interactuar con los demás de una manera que haga que la comunidad prospere.
+
+Ofrecemos varios canales de comunicación para aprender, compartir conocimientos y conectarse con otros dentro de la comunidad NumPy.
+
+
+## Participar en línea
+
+Las siguientes son formas de relacionarse directamente con el proyecto y la comunidad NumPy. _Ten en cuenta que animamos a los usuarios y a los miembros de la comunidad a apoyarse mutuamente por preguntas de uso - ver [Obtener ayuda](/gethelp)._
+
+
+### [Lista de correo de NumPy](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+Esta lista es el foro principal para discusiones más largas, como añadir nuevas características a NumPy, hacer cambios en el mapa de ruta de NumPy, y todo tipo de proceso de toma de decisiones a nivel de proyecto. Los anuncios sobre NumPy, tales como lanzamientos, reuniones de desarrolladores, sprints o conferencias también se hacen en esta lista.
+
+En esta lista, por favor, utilice el envío inferior, responda a la lista (en lugar de a otro remitente), y no responda a los resúmenes. A searchable archive of this list is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [Seguimiento de incidencias en GitHub](https://github.com/numpy/numpy/issues)
+
+- Para informes de error (por ejemplo, "`np.arange(3).shape` devuelve `(5,)`, donde debería devolver `(3,)`");
+- problemas de documentación (por ejemplo, "Esta sección me pareció poco clara");
+- y solicitudes de funcionalidades (por ejemplo, "Me gustaría tener un nuevo método de interpolación en `np.percentile`").
+
+_Ten en cuenta que GitHub no es el lugar adecuado para reportar una vulnerabilidad de seguridad. Si crees que has encontrado una vulnerabilidad de seguridad en NumPy, por favor repórtalo [aquí](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+Una sala de chat en tiempo real para hacer preguntas sobre las _contribuciones_ a NumPy. Este es un espacio privado, destinado específicamente a las personas que no se atreven a plantear sus preguntas o ideas en una gran lista de correo pública o en GitHub. Por favor, mira [aquí](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) para más detalles y cómo obtener una invitación.
+
+
+## Grupos de estudio y reuniones
+
+Si desea encontrar un grupo de estudio o reunión local para aprender más sobre NumPy y el ecosistema más amplio de paquetes de Python para la ciencia de los datos y la computación científica, le recomendamos que explore los [PyData meetups](https://www.meetup.com/pro/pydata/) (más de 150 reuniones, más de 100.000 miembros).
+
+NumPy también organiza sprints en persona para su equipo y colaboradores interesados de vez en cuando. Normalmente se planifican con varios meses de antelación y se anunciarán en la [lista de correo](https://mail.python.org/mailman/listinfo/numpy-discussion) y en [Twitter](https://twitter.com/numpy_team).
+
+
+## Conferencias
+
+El proyecto NumPy no organiza sus propias conferencias. Las conferencias que tradicionalmente han sido más populares entre los mantenedores, colaboradores y usuarios de NumPy son la serie de conferencias SciPy y PyData:
+
+- [SciPy US](https://conference.scipy.org)
+- [EuroSciPy](https://www.euroscipy.org)
+- [SciPy Latinoamérica](https://www.scipyla.org)
+- [SciPy India](https://scipy.in)
+- [SciPy Japón](https://conference.scipy.org)
+- [Conferencias PyData](https://pydata.org/event-schedule/) (15 eventos al año repartidos en muchos países)
+
+Muchas de estas conferencias incluyen tutoriales y/o sprints que cubren NumPy donde puedes aprender cómo contribuir a Numpy o proyectos de código abierto relacionados.
+
+
+## Únete a la comunidad Numpy
+
+Para prosperar, el proyecto NumPy necesita tu experiencia y entusiasmo. ¿No sabes programar? ¡Ningún problema! Hay muchas maneras de contribuir a NumPy.
+
+Si te interesa colaborar en NumPy (¡yupi!) te recomendamos que visites nuestra página [Contribuir](/contribuir).
+
diff --git a/content/es/config.yaml b/content/es/config.yaml
new file mode 100644
index 0000000000..01b9b93562
--- /dev/null
+++ b/content/es/config.yaml
@@ -0,0 +1,165 @@
+---
+languageName: Inglés
+params:
+ description: '¿Por qué NumPy? Potentes matrices n-dimensionales. Herramientas de cálculo numérico. Interoperable. Rendimiento. Código abierto.'
+ navbarlogo:
+ image: logo.svg
+ link: /
+ hero:
+ #Main hero title
+ title: NumPy
+ #Hero subtitle (optional)
+ subtitle: El paquete fundamental para la computación científica con Python
+ #Button text
+ buttontext: Para empezar
+ #Where the main hero button links to
+ buttonlink: "/install"
+ #Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: marcador de posición
+ promptlabel: apuntador interactivo de la consola
+ button:
+ -
+ label: Activa el terminal interactivo del tutorial
+ text: Habilitar
+ shellcontent:
+ intro:
+ -
+ title: Prueba NumPy
+ text: Activa el terminal interactivo
+ loading:
+ -
+ title: Mientras esperamos...
+ text: Iniciando contenedor en mybinder.org...
+ docslink: No te olvides de echar un vistazo a los documentos.
+ casestudies:
+ title: CASE STUDIES
+ features:
+ -
+ title: First Image of a Black Hole
+ text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: First image of a black hole. It is an orange circle in a black background.
+ url: /case-studies/blackhole-image
+ -
+ title: Detection of Gravitational Waves
+ text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Two orbs orbiting each other. They are displacing gravity around them.
+ url: /case-studies/gw-discov
+ -
+ title: Sports Analytics
+ text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Cricket ball on green field.
+ url: /case-studies/cricket-analytics
+ -
+ title: Pose Estimation using deep learning
+ text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Cheetah pose analysis
+ url: /case-studies/deeplabcut-dnn
+ keyfeatures:
+ features:
+ -
+ title: Powerful N-dimensional arrays
+ text: Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
+ -
+ title: Numerical computing tools
+ text: NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
+ -
+ title: Interoperable
+ text: NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
+ -
+ title: Performant
+ text: The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
+ -
+ title: Easy to use
+ text: NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
+ -
+ title: Open source
+ text: Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+ tabs:
+ title: ECOSYSTEM
+ section5: false
+navbar:
+ -
+ title: Install
+ url: /install
+ -
+ title: Documentation
+ url: https://numpy.org/doc/stable
+ -
+ title: Learn
+ url: /learn
+ -
+ title: Community
+ url: /community
+ -
+ title: About Us
+ url: /about
+ -
+ title: Contribute
+ url: /contribute
+footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ -
+ link: https://github.com/numpy/numpy
+ icon: github
+ -
+ link: https://twitter.com/numpy_team
+ icon: twitter
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ -
+ text: Install
+ link: /install
+ -
+ text: Documentation
+ link: https://numpy.org/doc/stable
+ -
+ text: Learn
+ link: /learn
+ -
+ text: Citing Numpy
+ link: /citing-numpy
+ -
+ text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ -
+ text: About us
+ link: /about
+ -
+ text: Community
+ link: /community
+ -
+ text: User surveys
+ link: /user-surveys
+ -
+ text: Contribute
+ link: /contribute
+ -
+ text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ -
+ text: Get help
+ link: /gethelp
+ -
+ text: Terms of use
+ link: /terms
+ -
+ text: Privacy
+ link: /privacy
+ -
+ text: Press kit
+ link: /press-kit
+
diff --git a/content/es/contribute.md b/content/es/contribute.md
new file mode 100644
index 0000000000..2533761d12
--- /dev/null
+++ b/content/es/contribute.md
@@ -0,0 +1,78 @@
+- - -
+title: Contribute to NumPy sidebar: false
+- - -
+
+The NumPy project welcomes your expertise and enthusiasm! Your choices aren't limited to programming -- in addition to
+
+- [Writing code](#writing-code)
+
+you can
+
+- [Review pull requests](#reviewing-pull-requests)
+- [Develop tutorials, presentations, and other educational material](#developing-educational-materials)
+- [Triage issues](#issue-triaging)
+- [Work on our website](#website-development)
+- [Contribute graphic design](#graphic-design)
+- [Translate website content](#translating-website-content)
+- [Serve as a community coordinator](#community-coordination-and-outreach)
+- [Write grant proposals and help with other fundraising](#fundraising)
+
+If you're unsure where to start or how your skills fit in, _reach out!_ You can ask on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion) or [GitHub](http://github.com/numpy/numpy) (open an [issue](https://github.com/numpy/numpy/issues) or comment on a relevant issue).
+
+Those are our preferred channels (open source is open by nature), but if you prefer to talk privately, contact our community coordinators at or on [Slack](https://numpy-team.slack.com) (write for an invite).
+
+We also have a biweekly _community call_, details of which are announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion). You are very welcome to join. If you are new to contributing to open source, we also highly recommend reading [this guide](https://opensource.guide/how-to-contribute/).
+
+Our community aspires to treat everyone equally and to value all contributions. We have a [Code of Conduct](/code-of-conduct) to foster an open and welcoming environment.
+
+### Writing code
+
+Programmers, this [guide](https://numpy.org/devdocs/dev/index.html#development-process-summary) explains how to contribute to the codebase.
+
+### Reviewing pull requests
+The project has more than 250 open pull requests -- meaning many potential improvements and many open-source contributors waiting for feedback. If you're a developer who knows NumPy, you can help even if you're not familiar with the codebase. You can:
+* summarize a long-running discussion
+* triage documentation PRs
+* test proposed changes
+
+
+### Developing educational materials
+
+NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation. We're in need of new tutorials, how-to's, and deep-dive explanations, and the site needs restructuring. Opportunities aren't limited to writers. We'd also welcome worked examples, notebooks, and videos. [NEP 44 — Restructuring the NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html) lays out our ideas -- and you may have others.
+
+
+### Issue triaging
+
+The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_ of open issues. Some are no longer valid, some should be prioritized, and some would make good issues for new contributors. You can:
+
+* check if older bugs are still present
+* find duplicate issues and link related ones
+* add good self-contained reproducers to issues
+* label issues correctly (this requires triage rights -- just ask)
+
+Please just dive in.
+
+
+### Website development
+
+We've just revamped our website, but we're far from done. If you love web development, these [issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign) list some of our unmet needs -- and feel free to share your own ideas.
+
+
+### Graphic design
+
+We can barely begin to list the contributions a graphic designer can make here. Our docs are parched for illustration; our growing website craves images -- opportunities abound.
+
+
+### Translating website content
+
+We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy accessible to users in their native language. Volunteer translators are at the heart of this effort. See [here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n) for background; comment on [this GitHub issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
+
+
+### Community coordination and outreach
+
+Through community contact we share our work more widely and learn where we're falling short. We're eager to get more people involved in efforts like our [Twitter](https://twitter.com/numpy_team) account, organizing NumPy [code sprints](https://scisprints.github.io/), a newsletter, and perhaps a blog.
+
+### Fundraising
+
+NumPy was all-volunteer for many years, but as its importance grew it became clear that to ensure stability and growth we'd need financial support. [This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference that support has made. Like all the nonprofit world, we're constantly searching for grants, sponsorships, and other kinds of support. We have a number of ideas and of course we welcome more. Fundraising is a scarce skill here -- we'd appreciate your help.
+
diff --git a/content/es/diversity_sep2020.md b/content/es/diversity_sep2020.md
new file mode 100644
index 0000000000..ef3030d5f7
--- /dev/null
+++ b/content/es/diversity_sep2020.md
@@ -0,0 +1,48 @@
+---
+title: NumPy Diversity and Inclusion Statement
+sidebar: false
+---
+
+
+_In light of the foregoing discussion on social media after publication of the NumPy paper in Nature and the concerns raised about the state of diversity and inclusion on the NumPy team, we would like to issue the following statement:_
+
+
+It is our strong belief that we are at our best, as a team and community, when we are inclusive and equitable. Being an international team from the onset, we recognize the value of collaborating with individuals from diverse backgrounds and expertise. A culture where everyone is welcomed, supported, and valued is at the core of the NumPy project.
+
+## The Past
+
+Contributing to open source has always been a pastime in which most historically marginalized groups, especially women, faced more obstacles to participate due to a number of societal constraints and expectations. Open source has a severe diversity gap that is well documented (see, e.g., the [2017 GitHub Open Source Survey](https://opensourcesurvey.org/2017/) and [this blog post](https://medium.com/tech-diversity-files/if-you-think-women-in-tech-is-just-a-pipeline-problem-you-haven-t-been-paying-attention-cb7a2073b996)).
+
+Since its inception and until 2018, NumPy was maintained by a handful of volunteers often working nights and weekends outside of their day jobs. At any one time, the number of active core developers, the ones doing most of the heavy lifting as well as code review and integration of contributions from the community, was in the range of 4 to 8. The project didn't have a roadmap or mechanism for directing resources, being driven by individual efforts to work on what seemed needed. The authors on the NumPy paper are the individuals who made the most significant and sustained contributions to the project over a period of 15 years (2005 - 2019). The lack of diversity on this author list is a reflection of the formative years of the Python and SciPy ecosystems.
+
+2018 has marked an important milestone in the history of the NumPy project. Receiving funding from The Gordon and Betty Moore Foundation and Alfred P. Sloan Foundation allowed us to provide full-time employment for two software engineers with years of experience contributing to the Python ecosystem. Those efforts brought NumPy to a much healthier technical state.
+
+This funding also created space for NumPy maintainers to focus on project governance, community development, and outreach to underrepresented groups. [The diversity statement](https://figshare.com/articles/online_resource/Diversity_and_Inclusion_Statement_NumPy_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/12980852) written in mid 2019 for the CZI EOSS program grant application details some of the challenges as well as the advances in our efforts to bring in more diverse talent to the NumPy team.
+
+## The Present
+
+Offering employment opportunities is an effective way to attract and retain diverse talent in OSS. Therefore, we used two-thirds of our second grant that became available in Dec 2019 to employ Melissa Weber Mendonça and Mars Lee.
+
+As a result of several initiatives aimed at community development and engagement led by Inessa Pawson and Ralf Gommers, the NumPy project has received a number of valuable contributions from women and other underrepresented groups in open source in 2020:
+
+- Melissa Weber Mendonça gained commit rights, is maintaining numpy.f2py and is leading the documentation team,
+- Shaloo Shalini created all case studies on numpy.org,
+- Mars Lee contributed web design and led our accessibility improvements work,
+- Isabela Presedo-Floyd designed our new logo,
+- Stephanie Mendoza, Xiayoi Deng, Deji Suolang, and Mame Fatou Thiam designed and fielded the first NumPy user survey,
+- Yuki Dunn, Dayane Machado, Mahfuza Humayra Mohona, Sumera Priyadarsini, Shaloo Shalini, and Kriti Singh (former Outreachy intern) helped the survey team to reach out to non-English speaking NumPy users and developers by translating the questionnaire into their native languages,
+- Sayed Adel, Raghuveer Devulapalli, and Chunlin Fang are driving the work on SIMD optimizations in the core of NumPy.
+
+While we still have much more work to do, the NumPy team is starting to look much more representative of our user base. And we can assure you that the next NumPy paper will certainly have a more diverse group of authors.
+
+## The Future
+
+We are fully committed to fostering inclusion and diversity on our team and in our community, and to do our part in building a more just and equitable future.
+
+We are open to dialogue and welcome every opportunity to connect with organizations representing and supporting women and minorities in tech and science. We are ready to listen, learn, and support.
+
+Please get in touch with us on [our mailing list](https://scipy.org/scipylib/mailing-lists.html#mailing-lists), [GitHub](https://github.com/numpy/numpy/issues), [Slack](https://numpy.org/contribute/), in private at numpy-team@googlegroups.com, or join our [bi-weekly community meeting](https://hackmd.io/76o-IxCjQX2mOXO_wwkcpg).
+
+
+_Sayed Adel, Sebastian Berg, Raghuveer Devulapalli, Chunlin Fang, Ralf Gommers, Allan Haldane, Stephan Hoyer, Mars Lee, Melissa Weber Mendonça, Jarrod Millman, Inessa Pawson, Matti Picus, Nathaniel Smith, Julian Taylor, Pauli Virtanen, Stéfan van der Walt, Eric Wieser, on behalf of the NumPy team_
+
diff --git a/content/es/gethelp.md b/content/es/gethelp.md
new file mode 100644
index 0000000000..a427b5b1f5
--- /dev/null
+++ b/content/es/gethelp.md
@@ -0,0 +1,34 @@
+---
+title: Get Help
+sidebar: false
+---
+
+**User questions:** The best way to get help is to post your question to a site like [StackOverflow](http://stackoverflow.com/questions/tagged/numpy), with thousands of users available to answer. Smaller alternatives include [IRC](https://webchat.freenode.net/?channels=%23numpy), [Gitter](https://gitter.im/numpy/numpy), and [Reddit](https://www.reddit.com/r/Numpy/). We wish we could keep an eye on these sites, or answer questions directly, but the volume is just a little overwhelming!
+
+**Development issues:** For NumPy development-related matters (e.g. bug reports), please see [Community](/community).
+
+
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+A forum for asking usage questions, e.g. "How do I do X in NumPy?”. Please [use the `#numpy` tag](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+Another forum for usage questions.
+
+***
+
+### [Gitter](https://gitter.im/numpy/numpy)
+
+A real-time chat room where users and community members help each other.
+
+***
+
+### [IRC](https://webchat.freenode.net/?channels=%23numpy)
+
+Another real-time chat room where users and community members help each other.
+
+***
diff --git a/content/es/history.md b/content/es/history.md
new file mode 100644
index 0000000000..fc79a621af
--- /dev/null
+++ b/content/es/history.md
@@ -0,0 +1,21 @@
+---
+title: History of NumPy
+sidebar: false
+---
+
+NumPy is a foundational Python library that provides array data structures and related fast numerical routines. When started, the library had little funding, and was written mainly by graduate students—many of them without computer science education, and often without a blessing of their advisors. To even imagine that a small group of “rogue” student programmers could upend the already well-established ecosystem of research software—backed by millions in funding and many hundreds of highly qualified engineers — was preposterous. Yet, the philosophical motivations behind a fully open tool stack, in combination with the excited, friendly community with a singular focus, have proven auspicious in the long run. Nowadays, NumPy is relied upon by scientists, engineers, and many other professionals around the world. For example, the published scripts used in the analysis of gravitational waves import NumPy, and the M87 black hole imaging project directly cites NumPy.
+
+For the in-depth account on milestones in the development of NumPy and related libraries please see [arxiv.org](arxiv.org/abs/1907.10121).
+
+If you’d like to obtain a copy of the original Numeric and Numarray libraries, follow the links below:
+
+[Download Page for *Numeric*](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)*
+
+[Download Page for *Numarray*](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)*
+
+*Please note that these older array packages are no longer maintained, and users are strongly advised to use NumPy for any array-related purposes or refactor any pre-existing code to utilize the NumPy library.
+
+### Historic Documentation
+
+[Download *`Numeric'* Manual](static/numeric-manual.pdf)
+
diff --git a/content/es/install.md b/content/es/install.md
new file mode 100644
index 0000000000..9e74270ecf
--- /dev/null
+++ b/content/es/install.md
@@ -0,0 +1,142 @@
+---
+title: Instalando NumPy
+sidebar: false
+---
+
+El único prerequisito para instalar NumPy es Python. Si aún no tiene Python y quiere empezar de la forma más fácil, recomendamos utilizar la [Distribución Anaconda](https://www.anaconda.com/distribution) - ésta incluye Python, NumPy y muchos otros paquetes utilizados comúnmente para computación científica y ciencia de datos.
+
+NumPy se puede instalar con `conda`, con `pip`, con un gestor de paquetes en macOS y Linux, o [a partir del código fuente](https://numpy.org/devdocs/user/building.html). Para instrucciones más detalladas, consulte nuestra [guía de instalación de Python y NumPy](#python-numpy-install-guide) a continuación.
+
+**CONDA**
+
+Si utiliza `conda`, puede instalar NumPy desde los canales `defaults` o `conda-forge`:
+
+```bash
+# La mejor práctica, utilizar un entorno en lugar de instalar en el entorno base
+conda create -n my-env
+conda activate my-env
+# Si quiere instalar desde conda-forge
+conda config --env --add channels conda-forge
+# El verdadero comando de instalación
+conda install numpy
+```
+
+**PIP**
+
+Si utiliza `pip`, puede instalar NumPy con:
+
+```bash
+pip install numpy
+```
+También al utilizar pip, es buena práctica utilizar un entorno virtual - vea [Instalaciones reproducibles](#reproducible-installs) a continuación para saber por qué, y [esta guía](https://dev.to/bowmanjd/python-tools-for-managing-virtual-environments-3bko#howto) para más detalles sobre el uso de entornos virtuales.
+
+
+
+# Python and NumPy installation guide
+
+Installing and managing packages in Python is complicated, there are a number of alternative solutions for most tasks. This guide tries to give the reader a sense of the best (or most popular) solutions, and give clear recommendations. It focuses on users of Python, NumPy, and the PyData (or numerical computing) stack on common operating systems and hardware.
+
+## Recommendations
+
+We'll start with recommendations based on the user's experience level and operating system of interest. If you're in between "beginning" and "advanced", please go with "beginning" if you want to keep things simple, and with "advanced" if you want to work according to best practices that go a longer way in the future.
+
+### Beginning users
+
+On all of Windows, macOS, and Linux:
+
+- Install [Anaconda](https://www.anaconda.com/distribution/) (it installs all packages you need and all other tools mentioned below).
+- For writing and executing code, use notebooks in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/index.html) for exploratory and interactive computing, and [Spyder](https://www.spyder-ide.org/) or [Visual Studio Code](https://code.visualstudio.com/) for writing scripts and packages.
+- Use [Anaconda Navigator](https://docs.anaconda.com/anaconda/navigator/) to manage your packages and start JupyterLab, Spyder, or Visual Studio Code.
+
+
+### Advanced users
+
+#### Windows or macOS
+
+- Install [Miniconda](https://docs.conda.io/en/latest/miniconda.html).
+- Keep the `base` conda environment minimal, and use one or more [conda environments](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) to install the package you need for the task or project you're working on.
+- Unless you're fine with only the packages in the `defaults` channel, make `conda-forge` your default channel via [setting the channel priority](https://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge).
+
+
+#### Linux
+
+If you're fine with slightly outdated packages and prefer stability over being able to use the latest versions of libraries:
+- Use your OS package manager for as much as possible (Python itself, NumPy, and other libraries).
+- Install packages not provided by your package manager with `pip install somepackage --user`.
+
+If you use a GPU:
+- Install [Miniconda](https://docs.conda.io/en/latest/miniconda.html).
+- Keep the `base` conda environment minimal, and use one or more [conda environments](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) to install the package you need for the task or project you're working on.
+- Use the `defaults` conda channel (`conda-forge` doesn't have good support for GPU packages yet).
+
+Otherwise:
+- Install [Miniforge](https://github.com/conda-forge/miniforge).
+- Keep the `base` conda environment minimal, and use one or more [conda environments](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) to install the package you need for the task or project you're working on.
+
+
+#### Alternative if you prefer pip/PyPI
+
+For users who know, from personal preference or reading about the main differences between conda and pip below, they prefer a pip/PyPI-based solution, we recommend:
+- Install Python from [python.org](https://www.python.org/downloads/), [Homebrew](https://brew.sh/), or your Linux package manager.
+- Use [Poetry](https://python-poetry.org/) as the most well-maintained tool that provides a dependency resolver and environment management capabilities in a similar fashion as conda does.
+
+
+## Python package management
+
+Managing packages is a challenging problem, and, as a result, there are lots of tools. For web and general purpose Python development there's a whole [host of tools](https://packaging.python.org/guides/tool-recommendations/) complementary with pip. For high-performance computing (HPC), [Spack](https://github.com/spack/spack) is worth considering. For most NumPy users though, [conda](https://conda.io/en/latest/) and [pip](https://pip.pypa.io/en/stable/) are the two most popular tools.
+
+
+### Pip & conda
+
+The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. We'll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
+
+The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip can't.
+
+The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically "defaults" or "conda-forge"). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+
+### Reproducible installs
+
+As libraries get updated, results from running your code can change, or your code can break completely. It's important to be able to reconstruct the set of packages and versions you're using. Best practice is to:
+
+1. use a different environment per project you're working on,
+2. record package names and versions using your package installer; each has its own metadata format for this:
+ - Conda: [conda environments and environment.yml](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)
+ - Pip: [virtual environments](https://docs.python.org/3/tutorial/venv.html) and [requirements.txt](https://pip.readthedocs.io/en/latest/user_guide/#requirements-files)
+ - Poetry: [virtual environments and pyproject.toml](https://python-poetry.org/docs/basic-usage/)
+
+
+
+## NumPy packages & accelerated linear algebra libraries
+
+NumPy doesn't depend on any other Python packages, however, it does depend on an accelerated linear algebra library - typically [Intel MKL](https://software.intel.com/en-us/mkl) or [OpenBLAS](https://www.openblas.net/). Users don't have to worry about installing those (they're automatically included in all NumPy install methods). Power users may still want to know the details, because the used BLAS can affect performance, behavior and size on disk:
+
+- The NumPy wheels on PyPI, which is what pip installs, are built with OpenBLAS. The OpenBLAS libraries are included in the wheel. This makes the wheel larger, and if a user installs (for example) SciPy as well, they will now have two copies of OpenBLAS on disk.
+
+- In the conda defaults channel, NumPy is built against Intel MKL. MKL is a separate package that will be installed in the users' environment when they install NumPy.
+
+- In the conda-forge channel, NumPy is built against a dummy "BLAS" package. When a user installs NumPy from conda-forge, that BLAS package then gets installed together with the actual library - this defaults to OpenBLAS, but it can also be MKL (from the defaults channel), or even [BLIS](https://github.com/flame/blis) or reference BLAS.
+
+- The MKL package is a lot larger than OpenBLAS, it's about 700 MB on disk while OpenBLAS is about 30 MB.
+
+- MKL is typically a little faster and more robust than OpenBLAS.
+
+Besides install sizes, performance and robustness, there are two more things to consider:
+
+- Intel MKL is not open source. For normal use this is not a problem, but if a user needs to redistribute an application built with NumPy, this could be an issue.
+- Both MKL and OpenBLAS will use multi-threading for function calls like `np.dot`, with the number of threads being determined by both a build-time option and an environment variable. Often all CPU cores will be used. This is sometimes unexpected for users; NumPy itself doesn't auto-parallelize any function calls. It typically yields better performance, but can also be harmful - for example when using another level of parallelization with Dask, scikit-learn or multiprocessing.
+
+
+## Troubleshooting
+
+If your installation fails with the message below, see [Troubleshooting ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html).
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/es/learn.md b/content/es/learn.md
new file mode 100644
index 0000000000..0ad006d0f7
--- /dev/null
+++ b/content/es/learn.md
@@ -0,0 +1,90 @@
+---
+title: Learn
+sidebar: false
+---
+
+For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+## NumPy Tutorials
+
+You can find a set of tutorials and educational materials by the NumPy community at [NumPy Tutorials](https://numpy.org/numpy-tutorials). The goal of this page is to provide high-quality resources by the NumPy project, both for self-learning and for teaching classes with, in the format of Jupyter Notebooks. If you’re interested in adding your own content, check the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+***
+
+Below is a curated collection of external resources. To contribute, see the [end of this page](#add-to-this-list).
+
+## Beginners
+
+There's a ton of information about NumPy out there. If you are new, we'd strongly recommend these:
+
+ **Tutorials**
+
+* [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
+* [NumPy Illustrated: The Visual Guide to NumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+* [SciPy Lectures](https://scipy-lectures.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+* [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
+* [Machine Learning Plus - Introduction to ndarray](https://www.machinelearningplus.com/python/numpy-tutorial-part1-array-python-examples/)
+* [Edureka - Learn NumPy Arrays with Examples ](https://www.edureka.co/blog/python-numpy-tutorial/)
+* [Dataquest - NumPy Tutorial: Data Analysis with Python](https://www.dataquest.io/blog/numpy-tutorial-python/)
+* [NumPy tutorial *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
+* [Stanford CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
+* [NumPy User Guide](https://numpy.org/devdocs)
+
+ **Books**
+
+* [Guide to NumPy *by Travis E. Oliphant*](http://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007).
+* [From Python to NumPy *by Nicolas P. Rougier*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow*
+
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+
+ **Videos**
+
+* [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) *by Alex Chabot-Leclerc*
+
+***
+
+## Advanced
+
+Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
+
+ **Tutorials**
+
+* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *by Nicolas P. Rougier*
+* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) *by M. Scott Shell*
+* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) *by Stéfan van der Walt*
+* [NumPy in Python (Advanced)](https://www.geeksforgeeks.org/numpy-python-set-2-advanced/)
+* [Advanced Indexing](https://www.tutorialspoint.com/numpy/numpy_advanced_indexing.htm)
+* [Machine Learning and Data Analytics with NumPy](https://www.machinelearningplus.com/python/numpy-tutorial-python-part2/)
+
+ **Books**
+
+* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057) *by Jake Vanderplas*
+* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662) *by Wes McKinney*
+* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *by Robert Johansson*
+
+ **Videos**
+
+* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) *by Juan Nunez-Iglesias*
+* [Advanced Indexing Operations in NumPy Arrays](https://www.youtube.com/watch?v=2WTDrSkQBng) *by Amuls Academy*
+
+***
+
+## NumPy Talks
+
+* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
+* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
+* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
+* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris* (2019)
+* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
+
+***
+
+## Citing NumPy
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
+
+## Contribute to this list
+
+
+To add to this collection, submit a recommendation [via a pull request](https://github.com/numpy/numpy.org/blob/master/content/en/learn.md). Say why your recommendation deserves mention on this page and also which audience would benefit most.
diff --git a/content/es/news.md b/content/es/news.md
new file mode 100644
index 0000000000..63410520fc
--- /dev/null
+++ b/content/es/news.md
@@ -0,0 +1,145 @@
+---
+title: News
+sidebar: false
+newsHeader: NumPy 1.22.0 released
+date:
+---
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/es/press-kit.md b/content/es/press-kit.md
new file mode 100644
index 0000000000..2c8970bb29
--- /dev/null
+++ b/content/es/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Press kit
+sidebar: false
+---
+
+We would like to make it easy for you to include the NumPy project identity in your next academic paper, course materials, or presentation.
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). Note that by using the numpy.org resources, you accept the [NumPy Code of Conduct](/code-of-conduct).
diff --git a/content/es/privacy.md b/content/es/privacy.md
new file mode 100644
index 0000000000..6064e4c4f1
--- /dev/null
+++ b/content/es/privacy.md
@@ -0,0 +1,8 @@
+---
+title: Privacy Policy
+sidebar: false
+---
+
+**numpy.org** is operated by [NumFOCUS, Inc.](https://numfocus.org), the fiscal sponsor of the NumPy project. For the Privacy Policy of this website please refer to https://numfocus.org/privacy-policy.
+
+If you have any questions about the policy or NumFOCUS’s data collection, use, and disclosure practices, please contact the NumFOCUS staff at privacy@numfocus.org.
diff --git a/content/es/report-handling-manual.md b/content/es/report-handling-manual.md
new file mode 100644
index 0000000000..5586668cba
--- /dev/null
+++ b/content/es/report-handling-manual.md
@@ -0,0 +1,95 @@
+---
+title: NumPy Code of Conduct - How to follow up on a report
+sidebar: false
+---
+
+This is the manual followed by NumPy’s Code of Conduct Committee. It’s used when we respond to an issue to make sure we’re consistent and fair.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+* Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+* Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+* We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+* Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+* Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+* Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+* Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+
+## Mediation
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+* Find a candidate who can serve as a mediator.
+* Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+* Obtain the agreement of the reported person(s).
+* Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+* Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+
+## How the Committee will respond to reports
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+
+## Clear and severe breach actions
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+* Immediately disconnect the originator from all NumPy communication channels.
+* Reply to the reporter that their report has been received and that the originator has been disconnected.
+* In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+* The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+
+## Report handling
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+* What happened.
+* Whether this event constitutes a Code of Conduct violation.
+* Who are the responsible party(ies).
+* Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+
+## Resolutions
+
+The Committee must agree on a resolution by consensus. If the group cannot reach consensus and deadlocks for over a week, the group will turn the matter over to the Steering Council for resolution.
+
+Possible responses may include:
+
+* Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+* Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+* Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+* A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+* A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+* A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+* A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+* A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+Finally, the Committee will make a report to the NumPy Steering Council (as well as the NumPy core team in the event of an ongoing resolution, such as a ban).
+
+The Committee will never publicly discuss the issue; all public statements will be made by the chair of the Code of Conduct Committee or the NumPy Steering Council.
+
+
+## Conflicts of Interest
+
+In the event of any conflict of interest, a Committee member must immediately notify the other members, and recuse themselves if necessary.
diff --git a/content/es/tabcontents.yaml b/content/es/tabcontents.yaml
new file mode 100644
index 0000000000..3f5d82e888
--- /dev/null
+++ b/content/es/tabcontents.yaml
@@ -0,0 +1,219 @@
+---
+machinelearning:
+ paras:
+ -
+ para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://github.com/apache/incubator-mxnet) is another AI package, providing blueprints and templates for deep learning.
+ para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+arraylibraries:
+ intro:
+ -
+ text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ -
+ text: Array Library
+ -
+ text: Capabilities & Application areas
+ libraries:
+ -
+ title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ -
+ title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.chainer.org
+ -
+ title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://github.com/google/jax
+ -
+ title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ -
+ title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ -
+ title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ -
+ title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ -
+ title: MXNet
+ text: Deep learning framework suited for flexible research prototyping and production.
+ img: /images/content_images/arlib/mxnet_logo.png
+ alttext: MXNet
+ url: https://mxnet.apache.org/
+ -
+ title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://github.com/apache/arrow
+ -
+ title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ -
+ title: XND
+ text: Develop libraries for array computing, recreating NumPy's foundational concepts.
+ img: /images/content_images/arlib/xnd.png
+ alttext: xnd
+ url: https://xnd.io
+ -
+ title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ -
+ title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+scientificdomains:
+ intro:
+ -
+ text: Nearly every scientist working in Python draws on the power of NumPy.
+ -
+ text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ librariesrow1:
+ -
+ title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ -
+ title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ -
+ title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ -
+ title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ -
+ title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ -
+ title: Astronomy Processes
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ -
+ title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ librariesrow2:
+ -
+ title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ -
+ title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ -
+ title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ -
+ title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ -
+ title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ -
+ title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ -
+ title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ -
+ img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ -
+ img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ -
+ text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ -
+ text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ -
+ text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ -
+ text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ content:
+ -
+ text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org) and [Prefect](https://www.prefect.io)).
+visualization:
+ images:
+ -
+ url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ -
+ url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ -
+ url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ -
+ url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ -
+ url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ -
+ url: https://docs.pyvista.org/examples/index.html
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ -
+ url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ -
+ url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ -
+ text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), and [PyVista](https://github.com/pyvista/pyvista), to name a few.
+ -
+ text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/es/teams.md b/content/es/teams.md
new file mode 100644
index 0000000000..0c24455d18
--- /dev/null
+++ b/content/es/teams.md
@@ -0,0 +1,20 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research communities worldwide by building quality, open-source software. [Join us]({{< relref "/contribute" >}})!
+
+{{< include-html "static/gallery/maintainers.html" >}}
+
+{{< include-html "static/gallery/web-team.html" >}}
+
+{{< include-html "static/gallery/triage-team.html" >}}
+
+{{< include-html "static/gallery/survey-team.html" >}}
+
+{{< include-html "static/gallery/emeritus-maintainers.html" >}}
+
+# Governance
+
+For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/es/terms.md b/content/es/terms.md
new file mode 100644
index 0000000000..9a66045505
--- /dev/null
+++ b/content/es/terms.md
@@ -0,0 +1,178 @@
+---
+title: Terms of Use
+sidebar: false
+---
+
+*Last updated January 4, 2020*
+
+
+## AGREEMENT TO TERMS
+
+These Terms of Use constitute a legally binding agreement made between you, whether personally or on behalf of an entity (“you”) and NumPy ("**Project**", “**we**”, “**us**”, or “**our**”), concerning your access to and use of the numpy.org website as well as any other media form, media channel, mobile website or mobile application related, linked, or otherwise connected thereto (collectively, the “Site”). You agree that by accessing the Site, you have read, understood, and agreed to be bound by all of these Terms of Use. IF YOU DO NOT AGREE WITH ALL OF THESE TERMS OF USE, THEN YOU ARE EXPRESSLY PROHIBITED FROM USING THE SITE AND YOU MUST DISCONTINUE USE IMMEDIATELY.
+
+
+
+Supplemental terms and conditions or documents that may be posted on the Site from time to time are hereby expressly incorporated herein by reference. We reserve the right, in our sole discretion, to make changes or modifications to these Terms of Use at any time and for any reason. We will alert you about any changes by updating the “Last updated” date of these Terms of Use, and you waive any right to receive specific notice of each such change. It is your responsibility to periodically review these Terms of Use to stay informed of updates. You will be subject to, and will be deemed to have been made aware of and to have accepted, the changes in any revised Terms of Use by your continued use of the Site after the date such revised Terms of Use are posted.
+
+
+
+The information provided on the Site is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to law or regulation or which would subject us to any registration requirement within such jurisdiction or country. Accordingly, those persons who choose to access the Site from other locations do so on their own initiative and are solely responsible for compliance with local laws, if and to the extent local laws are applicable.
+
+
+## USER REPRESENTATIONS
+
+By using the Site, you represent and warrant that: (1) you have the legal capacity and you agree to comply with these Terms of Use; (2) you will not use the Site for any illegal or unauthorized purpose; and (3) your use of the Site will not violate any applicable law or regulation.
+
+
+If you provide any information that is untrue, inaccurate, not current, or incomplete, we have the right to refuse any and all current or future use of the Site (or any portion thereof).
+
+
+## PROHIBITED ACTIVITIES
+
+You may not access or use the Site for any purpose other than that for which we make the Site available.
+
+As a user of the Site, you agree not to:
+
+1. Systematically retrieve data or other content from the Site to create or compile, directly or indirectly, a collection, compilation, database, or directory without written permission from us.
+
+2. Make any unauthorized use of the Site, including collecting usernames and/or email addresses of users by electronic or other means for the purpose of sending unsolicited email, or creating user accounts by automated means or under false pretenses.
+
+3. Use the Site to advertise or offer to sell goods and services.
+
+4. Circumvent, disable, or otherwise interfere with security-related features of the Site.
+
+5. Engage in unauthorized framing of or linking to the Site.
+
+6. Trick, defraud, or mislead us and other users, especially in any attempt to learn sensitive account information such as user passwords.
+
+7. Make improper use of our support services or submit false reports of abuse or misconduct.
+
+8. Engage in any automated use of the system, such as using scripts to send comments or messages, or using any data mining, robots, or similar data gathering and extraction tools.
+
+9. Interfere with, disrupt, or create an undue burden on the Site or the networks or services connected to the Site.
+
+10. Attempt to impersonate another user or person or use the username of another user.
+
+11. Use any information obtained from the Site in order to harass, abuse, or harm another person.
+
+12. Disparage, tarnish, or otherwise harm, in our opinion, us and/or the Site.
+
+13. Except as may be the result of standard search engine or Internet browser usage, use, launch, develop, or distribute any automated system, including without limitation, any spider, robot, cheat utility, scraper, or offline reader that accesses the Site, or using or launching any unauthorized script or other software.
+
+14. Upload or transmit (or attempt to upload or to transmit) any material that acts as a passive or active information collection or transmission mechanism, including without limitation, clear graphics interchange formats (“gifs”), 1×1 pixels, web bugs, cookies, or other similar devices (sometimes referred to as “spyware” or “passive collection mechanisms” or “pcms”).
+
+15. Upload or transmit (or attempt to upload or to transmit) viruses, Trojan horses, or other material, including excessive use of capital letters and spamming (continuous posting of repetitive text), that interferes with any party’s uninterrupted use and enjoyment of the Site or modifies, impairs, disrupts, alters, or interferes with the use, features, functions, operation, or maintenance of the Site.
+
+16. Harass, annoy, intimidate, or threaten any of our employees or agents engaged in providing any portion of the Site to you.
+
+17. Attempt to bypass any measures of the Site designed to prevent or restrict access to the Site, or any portion of the Site.
+
+
+## SUBMISSIONS
+
+You acknowledge and agree that any questions, comments, suggestions, ideas, feedback, or other information regarding the Site ("Submissions") provided by you to us are non-confidential and shall become our sole property. We shall own exclusive rights, including all intellectual property rights, and shall be entitled to the unrestricted use and dissemination of these Submissions for any lawful purpose, commercial or otherwise, without acknowledgment or compensation to you. You hereby waive all moral rights to any such Submissions, and you hereby warrant that any such Submissions are original with you or that you have the right to submit such Submissions. You agree there shall be no recourse against us for any alleged or actual infringement or misappropriation of any proprietary right in your Submissions.
+
+## THIRD-PARTY WEBSITES AND CONTENT
+
+The Site may contain (or you may be sent via the Site) links to other websites ("Third-Party Websites") as well as articles, photographs, text, graphics, pictures, designs, music, sound, video, information, applications, software, and other content or items belonging to or originating from third parties ("Third-Party Content"). Such Third-Party Websites and Third-Party Content are not investigated, monitored, or checked for accuracy, appropriateness, or completeness by us, and we are not responsible for any Third-Party Websites accessed through the Site or any Third-Party Content posted on, available through, or installed from the Site, including the content, accuracy, offensiveness, opinions, reliability, privacy practices, or other policies of or contained in the Third-Party Websites or the Third-Party Content. Inclusion of, linking to, or permitting the use or installation of any Third-Party Websites or any Third-Party Content does not imply approval or endorsement thereof by us. If you decide to leave the Site and access the Third-Party Websites or to use or install any Third-Party Content, you do so at your own risk, and you should be aware these Terms of Use no longer govern. You should review the applicable terms and policies, including privacy and data gathering practices, of any website to which you navigate from the Site or relating to any applications you use or install from the Site. Any purchases you make through Third-Party Websites will be through other websites and from other companies, and we take no responsibility whatsoever in relation to such purchases which are exclusively between you and the applicable third party. You agree and acknowledge that we do not endorse the products or services offered on Third-Party Websites and you shall hold us harmless from any harm caused by your purchase of such products or services. Additionally, you shall hold us harmless from any losses sustained by you or harm caused to you relating to or resulting in any way from any Third-Party Content or any contact with Third-Party Websites.
+
+
+## SITE MANAGEMENT
+
+We reserve the right, but not the obligation, to: (1) monitor the Site for violations of these Terms of Use; (2) take appropriate legal action against anyone who, in our sole discretion, violates the law or these Terms of Use, including without limitation, reporting such user to law enforcement authorities; (3) in our sole discretion and without limitation, refuse, restrict access to, limit the availability of, or disable (to the extent technologically feasible) any of your Contributions or any portion thereof; (4) in our sole discretion and without limitation, notice, or liability, to remove from the Site or otherwise disable all files and content that are excessive in size or are in any way burdensome to our systems; and (5) otherwise manage the Site in a manner designed to protect our rights and property and to facilitate the proper functioning of the Site.
+
+
+## PRIVACY POLICY
+
+We care about data privacy and security. Please review our [Privacy Policy](/privacy). By using the Site, you agree to be bound by our Privacy Policy, which is incorporated into these Terms of Use. Please be advised the Site is hosted in the United States. If you access the Site from the European Union, Asia, or any other region of the world with laws or other requirements governing personal data collection, use, or disclosure that differ from applicable laws in the United States, then through your continued use of the Site, you are transferring your data to the United States, and you expressly consent to have your data transferred to and processed in the United States. Further, we do not knowingly accept, request, or solicit information from children or knowingly market to children. Therefore, in accordance with the U.S. Children’s Online Privacy Protection Act, if we receive actual knowledge that anyone under the age of 13 has provided personal information to us without the requisite and verifiable parental consent, we will delete that information from the Site as quickly as is reasonably practical.
+
+## TERM AND TERMINATION
+
+These Terms of Use shall remain in full force and effect while you use the Site. WITHOUT LIMITING ANY OTHER PROVISION OF THESE TERMS OF USE, WE RESERVE THE RIGHT TO, IN OUR SOLE DISCRETION AND WITHOUT NOTICE OR LIABILITY, DENY ACCESS TO AND USE OF THE SITE (INCLUDING BLOCKING CERTAIN IP ADDRESSES), TO ANY PERSON FOR ANY REASON OR FOR NO REASON, INCLUDING WITHOUT LIMITATION FOR BREACH OF ANY REPRESENTATION, WARRANTY, OR COVENANT CONTAINED IN THESE TERMS OF USE OR OF ANY APPLICABLE LAW OR REGULATION. WE MAY TERMINATE YOUR USE OR PARTICIPATION IN THE SITE OR DELETE ANY CONTENT OR INFORMATION THAT YOU POSTED AT ANY TIME, WITHOUT WARNING, IN OUR SOLE DISCRETION.
+
+
+## MODIFICATIONS AND INTERRUPTIONS
+
+We reserve the right to change, modify, or remove the contents of the Site at any time or for any reason at our sole discretion without notice. However, we have no obligation to update any information on our Site. We also reserve the right to modify or discontinue all or part of the Site without notice at any time. We will not be liable to you or any third party for any modification, suspension, or discontinuance of the Site.
+
+We cannot guarantee the Site will be available at all times. We may experience hardware, software, or other problems or need to perform maintenance related to the Site, resulting in interruptions, delays, or errors. We reserve the right to change, revise, update, suspend, discontinue, or otherwise modify the Site at any time or for any reason without notice to you. You agree that we have no liability whatsoever for any loss, damage, or inconvenience caused by your inability to access or use the Site during any downtime or discontinuance of the Site. Nothing in these Terms of Use will be construed to obligate us to maintain and support the Site or to supply any corrections, updates, or releases in connection therewith.
+
+
+## GOVERNING LAW
+
+These Terms of Use and your use of the Site are governed by and construed in accordance with the laws of the State of Texas applicable to agreements made and to be entirely performed within the State of Texas, without regard to its conflict of law principles.
+
+
+## DISPUTE RESOLUTION
+
+### Informal Negotiations
+
+To expedite resolution and control the cost of any dispute, controversy, or claim related to these Terms of Use (each a "Dispute" and collectively, the “Disputes”) brought by either you or us (individually, a “Party” and collectively, the “Parties”), the Parties agree to first attempt to negotiate any Dispute (except those Disputes expressly provided below) informally for at least thirty (30) days before initiating arbitration. Such informal negotiations commence upon written notice from one Party to the other Party.
+
+
+### Binding Arbitration
+
+If the Parties are unable to resolve a Dispute through informal negotiations, the Dispute (except those Disputes expressly excluded below) will be finally and exclusively resolved by binding arbitration. YOU UNDERSTAND THAT WITHOUT THIS PROVISION, YOU WOULD HAVE THE RIGHT TO SUE IN COURT AND HAVE A JURY TRIAL. The arbitration shall be commenced and conducted under the Commercial Arbitration Rules of the American Arbitration Association ("AAA") and, where appropriate, the AAA’s Supplementary Procedures for Consumer Related Disputes ("AAA Consumer Rules"), both of which are available at the AAA website www.adr.org. Your arbitration fees and your share of arbitrator compensation shall be governed by the AAA Consumer Rules and, where appropriate, limited by the AAA Consumer Rules. If such costs are determined to by the arbitrator to be excessive, we will pay all arbitration fees and expenses. The arbitration may be conducted in person, through the submission of documents, by phone, or online. The arbitrator will make a decision in writing, but need not provide a statement of reasons unless requested by either Party. The arbitrator must follow applicable law, and any award may be challenged if the arbitrator fails to do so. Except where otherwise required by the applicable AAA rules or applicable law, the arbitration will take place in Travis County, Texas. Except as otherwise provided herein, the Parties may litigate in court to compel arbitration, stay proceedings pending arbitration, or to confirm, modify, vacate, or enter judgment on the award entered by the arbitrator.
+
+If for any reason, a Dispute proceeds in court rather than arbitration, the Dispute shall be commenced or prosecuted in the state and federal courts located in Travis County, Texas, and the Parties hereby consent to, and waive all defenses of lack of personal jurisdiction, and forum non conveniens with respect to venue and jurisdiction in such state and federal courts. Application of the United Nations Convention on Contracts for the International Sale of Goods and the the Uniform Computer Information Transaction Act (UCITA) are excluded from these Terms of Use.
+
+In no event shall any Dispute brought by either Party related in any way to the Site be commenced more than one (1) years after the cause of action arose. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+### Restrictions
+
+The Parties agree that any arbitration shall be limited to the Dispute between the Parties individually. To the full extent permitted by law, (a) no arbitration shall be joined with any other proceeding; (b) there is no right or authority for any Dispute to be arbitrated on a class-action basis or to utilize class action procedures; and (c) there is no right or authority for any Dispute to be brought in a purported representative capacity on behalf of the general public or any other persons.
+
+
+### Exceptions to Informal Negotiations and Arbitration
+
+The Parties agree that the following Disputes are not subject to the above provisions concerning informal negotiations and binding arbitration: (a) any Disputes seeking to enforce or protect, or concerning the validity of, any of the intellectual property rights of a Party; (b) any Dispute related to, or arising from, allegations of theft, piracy, invasion of privacy, or unauthorized use; and (c) any claim for injunctive relief. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+## CORRECTIONS
+
+There may be information on the Site that contains typographical errors, inaccuracies, or omissions. We reserve the right to correct any errors, inaccuracies, or omissions and to change or update the information on the Site at any time, without prior notice.
+
+
+## DISCLAIMER
+
+THE SITE IS PROVIDED ON AN AS-IS AND AS-AVAILABLE BASIS. YOU AGREE THAT YOUR USE OF THE SITE AND OUR SERVICES WILL BE AT YOUR SOLE RISK. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THE SITE AND YOUR USE THEREOF, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. WE MAKE NO WARRANTIES OR REPRESENTATIONS ABOUT THE ACCURACY OR COMPLETENESS OF THE SITE’S CONTENT OR THE CONTENT OF ANY WEBSITES LINKED TO THE SITE AND WE WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR ANY (1) ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS, (2) PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM YOUR ACCESS TO AND USE OF THE SITE, (3) ANY UNAUTHORIZED ACCESS TO OR USE OF OUR SECURE SERVERS AND/OR ANY AND ALL PERSONAL INFORMATION AND/OR FINANCIAL INFORMATION STORED THEREIN, (4) ANY INTERRUPTION OR CESSATION OF TRANSMISSION TO OR FROM THE SITE, (5) ANY BUGS, VIRUSES, TROJAN HORSES, OR THE LIKE WHICH MAY BE TRANSMITTED TO OR THROUGH THE SITE BY ANY THIRD PARTY, AND/OR (6) ANY ERRORS OR OMISSIONS IN ANY CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT POSTED, TRANSMITTED, OR OTHERWISE MADE AVAILABLE VIA THE SITE. WE DO NOT WARRANT, ENDORSE, GUARANTEE, OR ASSUME RESPONSIBILITY FOR ANY PRODUCT OR SERVICE ADVERTISED OR OFFERED BY A THIRD PARTY THROUGH THE SITE, ANY HYPERLINKED WEBSITE, OR ANY WEBSITE OR MOBILE APPLICATION FEATURED IN ANY BANNER OR OTHER ADVERTISING, AND WE WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY TRANSACTION BETWEEN YOU AND ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR SERVICES. AS WITH THE PURCHASE OF A PRODUCT OR SERVICE THROUGH ANY MEDIUM OR IN ANY ENVIRONMENT, YOU SHOULD USE YOUR BEST JUDGMENT AND EXERCISE CAUTION WHERE APPROPRIATE.
+
+
+## LIMITATIONS OF LIABILITY
+
+IN NO EVENT WILL WE OR OUR DIRECTORS, EMPLOYEES, OR AGENTS BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING LOST PROFIT, LOST REVENUE, LOSS OF DATA, OR OTHER DAMAGES ARISING FROM YOUR USE OF THE SITE, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED HEREIN, OUR LIABILITY TO YOU FOR ANY CAUSE WHATSOEVER AND REGARDLESS OF THE FORM OF THE ACTION, WILL AT ALL TIMES BE LIMITED TO THE AMOUNT PAID, IF ANY, BY YOU TO US DURING THE SIX (6) MONTH PERIOD PRIOR TO ANY CAUSE OF ACTION ARISING. CERTAIN STATE LAWS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EXCLUSION OR LIMITATION OF CERTAIN DAMAGES. IF THESE LAWS APPLY TO YOU, SOME OR ALL OF THE ABOVE DISCLAIMERS OR LIMITATIONS MAY NOT APPLY TO YOU, AND YOU MAY HAVE ADDITIONAL RIGHTS.
+
+
+## INDEMNIFICATION
+
+You agree to defend, indemnify, and hold us harmless, including our subsidiaries, affiliates, and all of our respective officers, agents, partners, and employees, from and against any loss, damage, liability, claim, or demand, including reasonable attorneys’ fees and expenses, made by any third party due to or arising out of: (1) use of the Site; (2) breach of these Terms of Use; (3) any breach of your representations and warranties set forth in these Terms of Use; (4) your violation of the rights of a third party, including but not limited to intellectual property rights; or (5) any overt harmful act toward any other user of the Site with whom you connected via the Site. Notwithstanding the foregoing, we reserve the right, at your expense, to assume the exclusive defense and control of any matter for which you are required to indemnify us, and you agree to cooperate, at your expense, with our defense of such claims. We will use reasonable efforts to notify you of any such claim, action, or proceeding which is subject to this indemnification upon becoming aware of it.
+
+
+## USER DATA
+
+We will maintain certain data that you transmit to the Site for the purpose of managing the performance of the Site, as well as data relating to your use of the Site. Although we perform regular routine backups of data, you are solely responsible for all data that you transmit or that relates to any activity you have undertaken using the Site. You agree that we shall have no liability to you for any loss or corruption of any such data, and you hereby waive any right of action against us arising from any such loss or corruption of such data.
+
+
+## ELECTRONIC COMMUNICATIONS, TRANSACTIONS, AND SIGNATURES
+
+Visiting the Site, sending us emails, and completing online forms constitute electronic communications. You consent to receive electronic communications, and you agree that all agreements, notices, disclosures, and other communications we provide to you electronically, via email and on the Site, satisfy any legal requirement that such communication be in writing. YOU HEREBY AGREE TO THE USE OF ELECTRONIC SIGNATURES, CONTRACTS, ORDERS, AND OTHER RECORDS, AND TO ELECTRONIC DELIVERY OF NOTICES, POLICIES, AND RECORDS OF TRANSACTIONS INITIATED OR COMPLETED BY US OR VIA THE SITE. You hereby waive any rights or requirements under any statutes, regulations, rules, ordinances, or other laws in any jurisdiction which require an original signature or delivery or retention of non-electronic records, or to payments or the granting of credits by any means other than electronic means.
+
+
+## CALIFORNIA USERS AND RESIDENTS
+
+If any complaint with us is not satisfactorily resolved, you can contact the Complaint Assistance Unit of the Division of Consumer Services of the California Department of Consumer Affairs in writing at 1625 North Market Blvd., Suite N 112, Sacramento, California 95834 or by telephone at (800) 952-5210 or (916) 445-1254.
+
+
+## MISCELLANEOUS
+
+These Terms of Use and any policies or operating rules posted by us on the Site or in respect to the Site constitute the entire agreement and understanding between you and us. Our failure to exercise or enforce any right or provision of these Terms of Use shall not operate as a waiver of such right or provision. These Terms of Use operate to the fullest extent permissible by law. We may assign any or all of our rights and obligations to others at any time. We shall not be responsible or liable for any loss, damage, delay, or failure to act caused by any cause beyond our reasonable control. If any provision or part of a provision of these Terms of Use is determined to be unlawful, void, or unenforceable, that provision or part of the provision is deemed severable from these Terms of Use and does not affect the validity and enforceability of any remaining provisions. There is no joint venture, partnership, employment or agency relationship created between you and us as a result of these Terms of Use or use of the Site. You agree that these Terms of Use will not be construed against us by virtue of having drafted them. You hereby waive any and all defenses you may have based on the electronic form of these Terms of Use and the lack of signing by the parties hereto to execute these Terms of Use.
+
+## CONTACT US
+
+In order to resolve a complaint regarding the Site or to receive further information regarding use of the Site, please contact us at:
+
+NumFOCUS, Inc. P.O. Box 90596 Austin, TX, USA 78709 info@numfocus.org +1 (512) 222-5449
+
+
+
diff --git a/content/es/user-survey-2020.md b/content/es/user-survey-2020.md
new file mode 100644
index 0000000000..fe431e845c
--- /dev/null
+++ b/content/es/user-survey-2020.md
@@ -0,0 +1,16 @@
+---
+title: 2020 NUMPY COMMUNITY SURVEY
+sidebar: false
+---
+
+In 2020, the NumPy survey team in partnership with students and faculty from a Master’s course in Survey Methodology jointly hosted by the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Over 1,200 users from 75 countries participated to help us map out a landscape of the NumPy community and voiced their thoughts about the future of the project.
+
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 NumPy user survey report, titled 'NumPy Community Survey 2020 - results'" width="250">}}
+
+**[Download the report](/surveys/NumPy_usersurvey_2020_report.pdf)** to take a closer look at the survey findings.
+
+
+For the highlights, check out **[this infographic](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+Ready for a deep dive? Visit **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/es/user-surveys.md b/content/es/user-surveys.md
new file mode 100644
index 0000000000..89a2aa0460
--- /dev/null
+++ b/content/es/user-surveys.md
@@ -0,0 +1,10 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020** The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/ja/404.md b/content/ja/404.md
new file mode 100644
index 0000000000..8e4db85255
--- /dev/null
+++ b/content/ja/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+おっとっと! 間違った所にアクセスしているようです。
+
+何かがここにページがあるべきだと思ったら、GitHub で [issue](https://github.com/numpy/numpy.org/issues) を作成してください。
diff --git a/content/ja/about.md b/content/ja/about.md
new file mode 100644
index 0000000000..ca2c4f4989
--- /dev/null
+++ b/content/ja/about.md
@@ -0,0 +1,85 @@
+---
+title: 私たちについて
+sidebar: false
+---
+
+_このページでは、NumPyのプロジェクトとそれを支えるコミュニティについて説明します。_
+
+NumPy は、Python で数値計算を可能にするためのオープンソースプロジェクトです。 NumPyは、NumericやNumarrayといった初期のライブラリのコードをもとに、2005年から開発が開始されました。 NumPy will always be 100% open source software, free for all to use and released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+NumPy は 、NumPyコミュニティやより広範な科学計算用Python コミュニティとの合意のもと、GitHub 上でオープンに開発されています。 Numpyのガバナンス方法の詳細については、 [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html) をご覧ください。
+
+
+## 運営委員会
+
+NumPy運営委員会の役割は、NumPyのコミュニティと協力しサポートすることを通じて、技術的にもコミュニティ的にも長期的にNumPyプロジェクトを良い状態に保つことです。 NumPy運営委員会は現在以下のメンバーで構成されています (アルファベット順):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Stephan Hoyer
+- Melissa Weber Mendonça
+- Inessa Pawson
+- Matti Picus
+- Nathaniel Smith
+- Eric Wieser
+
+終身名誉委員
+
+- Travis Oliphant (プロジェクト創設者, 2005-2012)
+- Alex Griffing (2015-2017)
+- Marten van Kerkwijk (2017-2019)
+- Allan Haldane
+- Nathaniel Smith (2012-2021)
+- Julian Taylor
+- Pauli Virtanen
+- Jaime Fernández del Río
+
+
+## チーム
+
+The NumPy project is growing! 🎉 We have teams for:
+
+- コード
+- ドキュメント
+- ウェブサイト
+- トリアージ
+- survey
+- funding and grants
+
+See the [}}">Team]({{< relref) page for individual team members.
+
+## スポンサー情報
+
+- チャールズ ハリス
+- ラルフ ゴマーズ
+- メリッサ ウェーバー メンドンサ
+- セバスチャン バーグ
+- 外部メンバー: トーマス・カスウェル
+
+## パートナー団体
+
+NumPyは以下の団体から直接資金援助を受けています。
+{{< sponsors >}}
+
+
+## 寄付
+
+パートナー団体は、NumPyへの開発を仕事の一つとして、社員を雇っている団体です。 現在のパートナー団体としては、下記の通りです。 現在のパートナー団体としては、下記の通りです。
+
+- カルフォルニア大学バークレー校(ステファン・ヴァン・デル・ウォルト、セバスチャン・バーグ、ロス・バルノフスキ)
+- クアンサイト(ラルフ ゴマーズ、メリッサ ウェーバー メンドンサ、マーズ リー、マッティ ピカス、ピアウ ピーターソン)
+
+{{< partner >}}
+
+
+## 寄付
+
+NumPy があなたの仕事や研究、ビジネスで役に立った場合、できる範囲で良いので、是非、NumPyプロジェクトへの寄付を検討して頂けると助かります。 少額の寄付でも大きな助けになります。 すべての寄付は、NumPyのオープンソースソフトウェア、ドキュメント、コミュニティの開発のために使用されることが約束されています。 少額の寄付でも大きな助けになります。 すべての寄付は、NumPyのオープンソースソフトウェア、ドキュメント、コミュニティの開発のために使用されることが約束されています。
+
+NumPy は NumFOCUS にスポンサーされたプロジェクトであり、米国の 501(c)(3) 非営利の慈善団体でもあります。 NumFOCUSは、NumPyプロジェクトに財政、法務、管理面でのサポートを提供し、プロジェクトの安定と持続可能性を保つ手助けをしています。 詳細については、 [numfocus.org](https://numfocus.org) をご覧ください。
+
+NumPy への寄付は [NumFOCUS](https://numfocus.org) によって管理されています。 NumPy への寄付は [NumFOCUS](https://numfocus.org) によって管理されています。 米国の寄付提供者の場合、その人の寄付は法律によって定められる範囲で免税されます。 但し、他の寄付と同様に、あなたはあなたの税務状況について、あなたの税務担当と相談する必要があることを忘れないで下さい。 但し、他の寄付と同様に、あなたはあなたの税務状況について、あなたの税務担当と相談する必要があることを忘れないで下さい。
+
+NumPyの運営委員会は、受け取った資金をどのように使えば良いかを検討し、使用する方法について決定します. NumPyに関する技術とインフラの投資の優先順位に関しては、[NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap) に記載されています。
+{{< numfocus >}}
diff --git a/content/ja/arraycomputing.md b/content/ja/arraycomputing.md
new file mode 100644
index 0000000000..45df2a55cf
--- /dev/null
+++ b/content/ja/arraycomputing.md
@@ -0,0 +1,21 @@
+---
+title: 配列演算
+sidebar: false
+---
+
+*配列演算は統計、数学、科学計算の基礎です。可視化、信号処理、画像処理、生命情報学、機械学習、人工知能など、現代のデータサイエンスやデータ分析の様々な分野で配列演算は中核を担っています。*
+
+大規模なデータ処理やデータ変換には、効率的な配列演算が重要です。 大規模なデータ処理やデータ変換には、効率的な配列演算が重要です。 データ分析や、機械学習、効率的な数値計算に最適な言語のひとつは **Python** です。
+
+**Num**erical **Py**thon: NumPyは、Pythonにおけるデファクトスタンダードなライブラリであり、大規模な多次元配列や行列、そして、それらの配列を処理する様々な分野の数学ルーチンをサポートしています。
+
+2006年にNumPyが発表されてから、2008年にPandasが登場し、その後、数年間にいくつかの配列演算関連のライブラリが次々と現れるようになりました。そこから配列演算界隈は盛り上がり始めました。 これらの新しい配列演算ライブラリの多くは、NumPyの機能や能力を模倣しており、機械学習や人工知能向けの新しいアルゴリズムや機能を持っています。 これらの新しい配列演算ライブラリの多くは、NumPyの機能や能力を模倣しており、機械学習や人工知能向けの新しいアルゴリズムや機能を持っています。
+
+
+
+**配列演算** は **配列** のデータ構造に基づいています。 *配列* は、関連する膨大なデータ群を簡単にかつ高速に、ソート、検索、変換、数学処理できるように構成されています。 *配列* は、関連する膨大なデータ群を簡単にかつ高速に、ソート、検索、変換、数学処理できるように構成されています。
+
+配列演算は *一度に* 配列のデータの複数の要素を操作するため、 * ユニーク* な処理と言えます。 これは、配列操作が一回の処理で、配列内の 全ての値に適用されることを意味しています。 このベクトル化手法は、速さと単純さという恩恵をもたらします。プログラマーはループを回して個々の要素のスカラー演算を行うことなく、データの集合を操作しコーディングすることができるのです。
diff --git a/content/ja/case-studies/blackhole-image.md b/content/ja/case-studies/blackhole-image.md
new file mode 100644
index 0000000000..b126e9ab74
--- /dev/null
+++ b/content/ja/case-studies/blackhole-image.md
@@ -0,0 +1,70 @@
+---
+title: "ケーススタディ:世界初のブラックホールの画像"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**Black Hole M87**" alt="black hole image" attr="*(Image Credits: Event Horizon Telescope Collaboration)*" attrk="https://www.jpl.nasa.gov/images/universe/90410/blackhole20190410.jpg" >}}
+
+
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for different reasons, often due to issues with your setup.
+
+
diff --git a/content/ja/learn.md b/content/ja/learn.md
new file mode 100644
index 0000000000..b08672364b
--- /dev/null
+++ b/content/ja/learn.md
@@ -0,0 +1,90 @@
+---
+title: NumPyの学び方
+sidebar: false
+---
+
+**公式の NumPy ドキュメント** については [numpy.org/doc/stable](https://numpy.org/doc/stable)を参照してください。
+
+## NumPyのチュートリアル
+
+[Numpy のチュートリアル](https://numpy.org/numpy-tutorials) では、Numpy コミュニティによるチュートリアルや教材が手に入ります。 このページの目標は、NumPy プロジェクトによる自己学習と授業のための高品質な教材を Jupyter Notebooks の形式で提供することです。 独自のコンテンツを追加したい場合は、GitHubの [numpy-tutorials リポジトリ](https://github.com/numpy/numpy-tutorials)を確認してください。
+
+***
+
+以下は、厳選された外部の教材です。 以下は、キュレーションされた外部リソースのリストです。こちらのリストに貢献するには、 [このページの末尾](#add-to-this-list) を参照してください。
+
+## 初心者向け
+
+NumPyについての資料は多数存在しています。 初心者の方にはこちらの資料を強くお勧めします: 初心者の方にはこちらの資料をお勧めします:
+
+ **チュートリアル**
+
+* [NumPy Quickstart チュートリアル](https://numpy.org/devdocs/user/quickstart.html)
+* [イラストで学ぶNumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+* [SciPyレクチャー](https://scipy-lectures.org/) NumPyだけでなく、科学的なPythonソフトウェアエコシステムを広く紹介しています。
+* [機械学習プラス - ndarray入門](https://numpy.org/devdocs/user/absolute_beginners.html)
+* [Edureka - NumPy配列を例題で学ぶ](https://www.machinelearningplus.com/python/numpy-tutorial-part1-array-python-examples/)
+* [Dataquest - NumPyチュートリアル: Python を使ったデータ解析 ](https://www.edureka.co/blog/python-numpy-tutorial/)
+* [NumPy チュートリアル *by Nicolas Rougier*](https://www.dataquest.io/blog/numpy-tutorial-python/)
+* [Numpy チュートリアル *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
+* [スタンフォード大学 CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
+* [NumPyユーザーガイド](https://numpy.org/devdocs)
+
+ **書籍**
+
+* [NumPガイド *Travelis E. Oliphant著*](http://web.mit.edu/dvp/Public/numpybook.pdf) これは2006年の無料版の初版です 最新版(2015年)については、こちら [を参照ください](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007). 最新版(2015年)については、こちら [を参照ください](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007).
+* [PythonからNumPyまで *Nicolas P. Rougier著*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+* [エレガントなSciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *Juan Nunez-Iglesias・Stefan van der Walt・Harriet Dashnow 著*
+
+また、「Python+SciPy」を題材にした[推薦本リスト](https://www.goodreads.com/shelf/show/python-scipy) もチェックしてみてください。 ほとんどの本にはNumPyを核とした「SciPyエコシステム」が説明されています。
+
+ **動画**
+
+* [NumPy を使った数値計算入門](http://youtu.be/ZB7BZMhfPgk) *by Alex Chabot-Leclerc*
+
+***
+
+## 上級者向け
+
+高度なインデックス指定、分割、スタッキング、線形代数など、NumPyの概念をより深く理解するためには、これらの上級者向け資料を試してみてください。
+
+ **チュートリアル**
+
+* [NumPyエクササイズ100](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *Nicolas P. Rougier*
+* [NumPyチュートリアル](https://numpy.org/numpy-tutorials)で、いくつかのチュートリアルと教育的資料を見ることができます。このページのゴールは、NumPyプロジェクトによる質のいい資料を提供することです。自習と講義形式の両方を想定しており、Jupyterノートブック形式で提供されます。もしあなた自身の資料を追加することに興味がある場合、[Github上のnumpy-tutorialsリポジトリ](https://github.com/numpy/numpy-tutorials)をチェックしてみて下さい。
+* [NumPy救急キット](http://mentat.za.net/numpy/numpy_advanced_slides/) *Stéfan van der Walt著*
+* [PythonにおけるNumPy (発展編)](https://www.geeksforgeeks.org/numpy-python-set-2-advanced/)
+* [高度なインデックス指定](https://www.tutorialspoint.com/numpy/numpy_advanced_indexing.htm)
+* [NumPyによる機械学習とデータ分析](https://www.machinelearningplus.com/python/numpy-tutorial-python-part2/)
+
+ **書籍**
+
+* [Pythonデータサイエンスハンドブック](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057) *Jake Vanderplas著*
+* [Pythonデータ解析](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662) *Wes McKinney著*
+* [数値解析Python: NumPy, SciPy, Matplotlibによる数値計算とデータサイエンスアプリケーション](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *Robert Johansson著*
+
+ **動画**
+
+* [アドバンスドNumPy - ブロードキャストルール・ストライド・高度なインデックス指定](https://www.youtube.com/watch?v=cYugp9IN1-Q) *Fan Nunuz-Iglesias著*
+* [NumPy配列における高度なインデクシング処理](https://www.youtube.com/watch?v=2WTDrSkQBng) *by Amuls Academy*
+
+***
+
+## NumPyに関するトーク
+
+* [NumPyにおけるインデックス指定の未来](https://www.youtube.com/watch?v=o0EacbIbf58) *Jaime Fernadezによる* (2016)
+* [Pythonにおける配列計算の進化](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *Ralf Gommersによる* (2019)
+* [NumPy: 今までどう変わってきて、今後どう変わっていくのか?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *Matti Picusによる* (2019)
+* [NumPyの内部](https://www.youtube.com/watch?v=dBTJD_FDVjU) *Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harrisによる* (2019)
+* [Pythonにおける配列計算の概要](https://www.youtube.com/watch?v=f176j2g2eNc) *Travis Oliphantによる* (2019)
+
+***
+
+## NumPy を引用する場合
+
+もし、あなたの研究においてNumPyが重要な役割を果たし、論文でこのプロジェクトについて言及したい場合は、こちらの[ページ](/ja/citing-numpy)を参照して下さい。
+
+## このページへの貢献
+
+
+このページのリストに新しいリンクを追加するには、[プルリクエスト](https://github.com/numpy/numpy.org/blob/master/content/en/learn.md)を使って提案してみて下さい。 あなたが推薦するものがこのページで紹介するに値する理由と、その情報によりどのような人が最も恩恵を受けるかを説明して下さい。 PRでは、あなたが推薦する資料が、なぜこのページで言及に値するのか、そして誰がその資料によって最も利益を得るかを説明して下さい。
diff --git a/content/ja/news.md b/content/ja/news.md
new file mode 100644
index 0000000000..84084c6900
--- /dev/null
+++ b/content/ja/news.md
@@ -0,0 +1,145 @@
+---
+title: ニュース
+sidebar: false
+newsHeader: NumPy 1.22.0 released
+date:
+---
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+## 過去のリリース
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/ja/press-kit.md b/content/ja/press-kit.md
new file mode 100644
index 0000000000..2213617fce
--- /dev/null
+++ b/content/ja/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: プレス用資料
+sidebar: false
+---
+
+私たちはユーザーの皆さんが次に書く学術論文や、コース教材、プレゼンテーションなどに、NumPyプロジェクトのロゴを簡単に盛り込めるようにしたいと考えています。
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). ちなみに、numpy.orgのリソースを使用するということは、 [Numpy行動規範](/code-of-conduct) を受け入れることを意味していることに注意してください。
diff --git a/content/ja/privacy.md b/content/ja/privacy.md
new file mode 100644
index 0000000000..f70c032c59
--- /dev/null
+++ b/content/ja/privacy.md
@@ -0,0 +1,8 @@
+---
+title: プライバシーポリシー
+sidebar: false
+---
+
+**numpy.org** は、NumPyプロジェクトの資金援助のスポンサーでもある、[NumFOCUS, Inc.](https://numfocus.org)によって運営されています。 このウェブサイトのプライバシーポリシーについては、https://numfocus.org/privacy-policy を参照してください。 このウェブサイトのプライバシーポリシーについては、https://numfocus.org/privacy-policyを参照してください。
+
+ポリシーまたはNumFOCUSのデータ収集、使用、および開示方法についてご質問がある場合は、privacy@numfocus.orgのNumFOCUSスタッフにお問い合わせください。
diff --git a/content/ja/report-handling-manual.md b/content/ja/report-handling-manual.md
new file mode 100644
index 0000000000..1d561bdcb2
--- /dev/null
+++ b/content/ja/report-handling-manual.md
@@ -0,0 +1,95 @@
+---
+title: NumPy行動規範 - 報告書のフォローアップ方法
+sidebar: false
+---
+
+NumPyの行動規範委員会はこのマニュアルに従います。 このマニュアルは様々な問題に対応する際に使用され、一貫性と公平性を確保します。 このマニュアルは様々な問題に対応する際に使用され、一貫性と公平性を確保します。
+
+[行動規範](/code-of-conduct) を施行することは、私たちのコミュニティの現在と未来に重要です。 私達はこのルールを重く受け止めています。 施行措置の見直しに際しては、行動規範委員会は以下の考え方とガイドラインに留意するようにします。
+
+* 機械的ではなく、人間的に行動します。 委員会は、当事者にプライバシーと報告者に必要な機密性を尊重しながら、状況を理解するように働きかけることができます. ただし、1人以上の個人と直接連絡を取る必要がある場合もあります。委員会の目標は正しい決定を下すのではなく、コミュニティの健康を改善することなのです。
+* 行動を判断するのではなく、個人への共感を強調し、「良い」と「悪い」のバイナリラベルを避けようとします。 明確な攻撃性とハラスメントが存在した場合、私たちはそれらに対処します。 しかし、解決が困難なシナリオの多くは、通常の意見の相違が、複数の当事者による無益または有害な行動に発展した場合です。 完全な文脈を理解し、すべてを再び元に戻す道を見つけることは困難ですが、最終的にはコミュニティにとって最も生産的になると考えています。
+* 私たちは、電子メールが判断に困難な媒体であり、分けて利用できることを理解しています。 個人的な連絡なしで電子メール上で批判を受けることは特に苦痛である場合もあるのです。 ここでは他者の見解に対して、開放的で、敬意を持った雰囲気を保つことが重要になります。 それはまた、私たちの行動が透明でなければならないことを意味します。全てのメンバーが公平かつ同情をもって扱われるようにするため、 我々は全力を尽くします
+* 差別というのは明確には断定できないことがあり、無意識で実施されている場合もあります。 これにより、普通の人との関わりの中で、不公平感や敵意として現れてくるのです。 私達は、このようなことが起こることはわかっているので、気をつけて見ていきたいと思います。 不当な扱いを受けたと思われる方は、ぜひご連絡ください。
+* 良い議論を実践することで、エンゲージメントの向上に取り組みます。例えば議論がどこで止まっているのかを特定したり、 実践的な情報、指針、資源を提供することで、これらの問題を前向きな方向に変えていきます。
+* 新しいメンバーが何を必要としているかに留意します。特に社会的地位の低いグループからの参加を増やすことを目的に、明確なサポートと配慮を提供していきます。
+* 一人一人の文化的背景や母国語は異なります。 ネイティブでない人が起こした悪気のない誤解を確認し、問題を理解してもらい、不快感を与えないために何を変えればよいかを教えてあげてください。 外国語での複雑な議論はとても難しいものであり、国籍や文化を超えて多様性を育てていきたいと考えています。
+
+
+## 仲介
+
+自主的な非公式の調停は、私たちの重要な役割です。 2つのグループ以上の当事者が不適切な行動をエスカレートした場合(人類の紛争では悲しいことに一般的なものですが)、調停プロセスを促進するは非常に重要です。 ちなみに、これは一例に過ぎません。委員会は、どのようなケースでも調停を検討することができますが、このプロセスはあくまでも自発的なものであり、当事者に参加を迫ることはできないことを念頭に置いて下さい。 委員会が調停を提案する場合は、次のようにすべきです。
+
+* 調停者として役立つ候補者を見つけます。
+* 報告者の合意を取得します。 報告者は、調停のアイデアを拒否したり、代替の調停者を提案する権利を持ちます。
+* 報告者の同意を取得します。
+* 調停人を決定します。当事者は、提案された候補者とは別の調停人を提案することができます。すべての条件で共通の合意に達した場合のみ、プロセスを進めることができます。
+* 調停が完了するまでのタイムラインを設定し、理想的には2週間以内に完了させます。
+
+調停者は、すべての当事者と関わり、すべての人に満足のいく決議を求めていきます。 終了後、調停人は(プロセスの全当事者によって吟味された)報告書を委員会に提出し、今後のステップに関する推奨事項を提示します。 委員会は、これらの結果(満足のいく決議が達成されたか否か) を評価し、必要と判断される追加的な措置を決定します。
+
+
+## 報告に対する委員会の対応
+
+委員会(または委員) が行動規範違反報告を受けた時、その報告が明確で深刻な違反であるかどうかは判断されます(以下に違反項目を定義します)。 違反判定された場合は、通常のレポート処理プロセスに加えて、即時の対応が必要になります。
+
+
+## 明確かつ深刻な違反行為の解決
+
+私たちは、インターネットでの会話が簡単にひどい誹謗中傷になってしまうことを、痛いほど知っています. 個人的な脅迫、暴力的、性差別的、人種差別的な言葉など、明らかで深刻な違反に対しては、迅速に対処します。
+
+行動規範委員会のメンバーは、明確かつ深刻な違反に気づいた場合、以下のように行動します。
+
+* 直ちにすべてのNumPyのオンラインコミュニティから違反者を排除します。
+* 報告が受信され、違反者が排除されたことを報告者に連絡します。
+* どのような場合でも、モデレーターは違反者に連絡するための合理的な努力を行い、違反者の言葉や行動がどのように「明確かつ重大な違反」に該当するのかを具体的に伝えるべきです。 モデレーターは、違反者がこれは不当だと思う場合、あるいはNumPyチャンネルとの再接続を望む場合には、行動規範委員会による以下のような審査を求める権利があることも述べるべきです。 モデレータは、この説明を行動規範委員会に転送する必要があります。
+* 行動規範委員会は、このプロセスが適用されたすべてのケースを正式にレビューし署名することで、よくある盛り上がりすぎた論争を諫めるためこのプロセスが使用されたのでないことを確認します。
+
+
+## 報告の処理
+
+報告が委員会に送られると、直ちに報告者に返信して報告を受領したことを確認します。 この返信は72時間以内に送信される必要があり、委員会はそれよりもはるかに迅速に対応するよう努める必要があります。
+
+レポートに十分な情報が含まれていない場合、委員会は行動する前に、関連するすべてのデータを取得するようにします。委員会は、事件の状況を全て知るために関係する個人に連絡する際に、運営協議会に代わって行動する権限を与えられています。 委員会は、今回の事象の全ての状況を知るために関係する個人に連絡する際に、運営協議会に代わって行動する権限を与えられています。
+
+その後、委員会は今回の問題を見直し、効果を最大限に発揮する対策を決定します。
+
+* 問題の種類
+* 今回の事情が行動規範違反であるかどうか。
+* 責任者が誰であるか
+* これが進行中の状況であるか、誰の物理的安全に脅威があるかどうか。
+
+これらの情報は書面で収集され、可能な限りグループの審議が記録され、保持されます (例えば、チャットの記録、Eメールのディスカッション、会議通話の記録、音声会話の概要など)。
+
+行動の一貫性を確保し、プロジェクトのために記録を残すために、委員会のすべての活動のアーカイブを保持することが重要です. この活動支援するために、委員会のデフォルトの議論チャネルは、正当化された要求に応じて、委員会の現在および将来のメンバー、および運営委員会のメンバーがアクセスできるプライベートメーリングリストにします。 委員会がリストにはない連絡方法を使用する必要がある場合(例: 早期/迅速な対応を求める電話など)、そのプロセスの良い記録となるように、これらをリストにまとめて戻すべきです。
+
+行動規範委員会は、2週間以内に決議の合意を目指すべきです。 その期間内に決議が確定できない場合。 委員会は、レポーターに対して現状の更新と今後のタイムラインを連絡します。
+
+
+## 解決方法
+
+委員会は、合意により決議について決定しなければなりません。 委員会は、合意により決議について決定しなければなりません。 検討グループが一週間以上、合意かデッドロックに達しなかった場合、グループは、ステアリング評議会にこの問題を引き渡すことができます。
+
+ありうる返答は次のとおりです:
+
+* これ以上アクションを取らない。
+ - 違反が起きていないと判断された
+ - 検討中に問題が明らかに解決された
+* 調停の調整。すべての関係者が合意した場合、委員会は上記のように調停プロセスを促進することができます。
+* 公の場における説明。どの行動・言動・言語が不適切で、現在の状況がなぜか引き起こされ、人々を傷つけたのかを説明し、コミュニティに自省を要求します。
+* 委員会から関係者(複数可) への非公開処分の実施。 この場合、委員会は、電子メールを介して、グループにccを入れながら、対象者に問題の指摘を連絡します。
+* 公の場での指摘。 この場合、委員会の議長は、違反が発生したのと同じ場所で、実用性の範囲内で叱責を行います。 例えば、メールルールの違反の元のメーリングリストなどです。しかし、人や状況がかわるかもしれないチャットルームなどの場合、他の手段を利用する可能性もあります。 対策グループは、文書化のために、この問題のメッセージを他の場所で公開することを選択することもできます。
+* 報告者がこの考えに同意することを前提とした、公的または私的な謝罪の要求:報告者は自分の裁量で、違反者とのさらなる接触を拒否することもできます。 委員会がこの要求をお届けします。 委員会は、必要に応じてこの要求に「条件」を付けることができます。例えば、メーリングリストの会員資格を維持するために、違反者に謝罪を求めることができます。
+* 委員会が個人にコミュニティへの参加を一時的に控える「相互に合意した休止」を要求できます。 「相互に合意した休止」の要求。これは、委員会から個人への、コミュニティへの参加を一時的に控えるような要請です。 対象者が自発的に一時的な休みを取らないことを選択した場合、委員会は「冷却期限」を準備することがあります。
+* これは、一部またはすべての Numpy スペース (メーリングリスト、gitter.im など) からの永続的または一時的な禁止のことです。 対策グループは、将来的な見直しや、または別の方法で対策されるように、すべてのそのような禁止の記録を記録します。
+
+決議が合意されると制定される前に、委員会は、元の報告者およびその他の影響を受けた当事者に連絡し、提案された決議を説明します。 委員会は、この決議が受け入れられるかどうかを尋ねます。そして、記録のためのフィードバックに注意を払います。
+
+最後に 委員会は、NumPy Steering Councilに報告を行います(NumPy Coreチームにも、出入り禁止など進行中の出来事については報告します)。
+
+委員会はこの問題について公に議論することはありません。すべての公開声明は、行動規範委員会またはNumPy Steering Councilの議長によって行われます。
+
+
+## 利益相反
+
+利益相反が発生した場合、委員会メンバーは直ちに他のメンバーに通知し、必要に応じて対応を辞退しなければなりません。
diff --git a/content/ja/tabcontents.yaml b/content/ja/tabcontents.yaml
new file mode 100644
index 0000000000..f955e3a5f3
--- /dev/null
+++ b/content/ja/tabcontents.yaml
@@ -0,0 +1,219 @@
+---
+machinelearning:
+ paras:
+ -
+ para1: NumPyは、[scikit-learn](https://scikit-learn.org)や[SciPy](https://www.scipy.org)のような強力な機械学習ライブラリの基礎を形成しています。機械学習の技術分野が成長するにつれ、NumPyをベースにしたライブラリの数も増えています。[TensorFlow](https://www.tensorflow.org)の深層学習機能は、音声認識や画像認識、テキストベースのアプリケーション、時系列分析、動画検出など、幅広い応用用途があります。[PyTorch](https://pytorch.org)も、コンピュータビジョンや自然言語処理の研究者に人気のある深層学習ライブラリです。[MXNet](https://github.com/apache/incubator-mxnet)もAIパッケージの一つで、深層学習の設計図やテンプレート機能を提供しています。
+ para2: '[ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205)法と呼ばれる統計的手法であるビンニング、バギング、スタッキングや、[XGBoost](https://github.com/dmlc/xgboost)、[LightGBM](https://lightgbm.readthedocs.io/en/latest/)、[CatBoost](https://catboost.ai)などのツールで実装されているブースティングなどは、機械学習アルゴリズムの一つであり、最速の推論エンジンの一つです。[Yellowbrick](https://www.scikit-yb.org/en/latest/)や[Eli5](https://eli5.readthedocs.io/en/latest/)は機械学習の可視化機能を提供しています。'
+arraylibraries:
+ intro:
+ -
+ text: NumPyのAPIは、革新的なハードウェアを利用したり、特殊な配列タイプを作成したり、NumPyが提供する以上の機能を追加するためにライブラリを作成する際の基礎となります。
+ headers:
+ -
+ text: 配列ライブラリ
+ -
+ text: 機能と応用分野
+ libraries:
+ -
+ title: Dask
+ text: 分析用の分散配列と高度な並列処理により、大規模な処理を可能にします。
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ -
+ title: CuPy
+ text: Python を使用した GPUによる高速計算用のNumPy互換配列ライブラリ
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.chainer.org
+ -
+ title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://github.com/google/jax
+ -
+ title: Xarray
+ text: 高度な分析と視覚化のためのラベルとインデックス付き多次元配列
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ -
+ title: Sparse
+ text: Dask と SciPy の疎行列の線形代数ライブラリを統合した、Numpy 互換の疎行列ライブラリ
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ -
+ title: PyTorch
+ text: 研究用のプロトタイピングから本番運用への展開を加速させる、深層学習フレームワーク
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ -
+ title: TensorFlow
+ text: 機械学習を利用したアプリケーションを簡単に構築・展開するための、エンド・ツー・エンドの機械学習プラットフォーム
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ -
+ title: MXNet
+ text: 柔軟や研究用のプロトタイピングから、実際の運用まで利用可能な深層学習フレームワーク
+ img: /images/content_images/arlib/mxnet_logo.png
+ alttext: MXNet
+ url: https://mxnet.apache.org/
+ -
+ title: Arrow
+ text: 列型のインメモリーデータやその分析のための、複数の言語に対応した開発プラットフォーム
+ img: /images/content_images/arlib/arrow.png
+ alttext: 矢
+ url: https://github.com/apache/arrow
+ -
+ title: xtensor
+ text: 数値解析のためのブロードキャスティングと遅延計算による多次元配列
+ img: /images/content_images/case_studies/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ -
+ title: XND
+ text: NumPyの基本的なコンセプトを再現した、配列計算用のライブラリを開発する。
+ img: /images/content_images/arlib/xnd.png
+ alttext: xnd
+ url: https://xnd.io
+ -
+ title: uarray
+ text: APIを実装から切り離すPythonバックエンドシステム (unumpyはNumPy APIを提供しています)
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ -
+ title: tensorly
+ text: Numpy、MXNet、PyTorch、TensorFlowまたはCupyをシームレスに使用するための、テンソル学習、テンソル代数、およびバックエンド。
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+scientificdomains:
+ intro:
+ -
+ text: Pythonを使って働くほとんどの科学者はNumPyの力を利用しています。
+ -
+ text: "Numpy は C や Fortran のような言語の計算パフォーマンスを、Pythonにもたらします。 このパワーはNumPyのシンプルさから来ており、NumPyのソリューションは、多くの場合、明確でエレガントです。"
+ librariesrow1:
+ -
+ title: 量子コンピューティング
+ alttext: コンピューターチップ
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ -
+ title: 統計コンピューティング
+ alttext: 上に移動している、線グラフ
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ -
+ title: 信号処理
+ alttext: 正と負の値を持つ棒グラフ。
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ -
+ title: 画像処理
+ alttext: 山々の写真。
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ -
+ title: グラフとネットワーク
+ alttext: シンプルなグラフ
+ img: /images/content_images/sc_dom_img/sd6.svg
+ -
+ title: 天文学における計算
+ alttext: 望遠鏡。
+ img: /images/content_images/sc_dom_img/天文学_processes.svg
+ -
+ title: 認知心理学
+ alttext: ギアをつけた人間の頭部
+ img: /images/content_images/sc_dom_img/cognitive_personicy.svg
+ librariesrow2:
+ -
+ title: 生命情報科学
+ alttext: DNAの鎖
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ -
+ title: ベイズ推論
+ alttext: 鐘形の曲線のグラフ
+ img: /images/content_images/sc_dom_img/bayesian_conference.svg
+ -
+ title: 数学的分析
+ alttext: 4つの数学記号
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ -
+ title: 化学
+ alttext: 試験管
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ -
+ title: 地球科学
+ alttext: 地球
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ -
+ title: 地理情報処理
+ alttext: 地図
+ img: /images/content_images/sc_dom_img/GIS.svg
+ -
+ title: アーキテクチャとエンジニアリング
+ alttext: マイクロプロセッサ開発ボード
+ img: /images/content_images/sc_dom_img/robotics.svg
+datascience:
+ intro: "Numpy は豊富なデータサイエンスライブラリのエコシステムの中核にあります。一般的なデータサイエンスのワークフローは次のようになります。"
+ image1:
+ -
+ img: /images/content_images/ds-landscape.png
+ alttext: Python ライブラリの図 。5 つのカテゴリに分類され、「抽出、変換、読み込み」、「データ探索」、「モデリング」、「評価」、「可視化」です。
+ image2:
+ -
+ img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ -
+ text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ -
+ text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ -
+ text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ -
+ text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ content:
+ -
+ text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org) and [Prefect](https://www.prefect.io)).
+visualization:
+ images:
+ -
+ url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: matplotlibで作られたストリームプロット
+ -
+ url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: ggpyで作られた散布図グラフ
+ -
+ url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: plotyで作られた箱ひげ図
+ -
+ url: https://alta-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: altairで作られたストリームグラフ
+ -
+ url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: 2種類のグラフによるペアプロット。seabornで作られたプロットと周波数グラフ"
+ -
+ url: https://docs.pyvista.org/examples/index.html
+ img: /images/content_images/v_pyvista.png
+ alttext: PyVista製の3Dボリュームレンダリング
+ -
+ url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: ナパリで作られた多次元画像
+ -
+ url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: vispyで作られたボロノイ図
+ content:
+ -
+ text: NumPyは、[Matplotlib](https://matplotlib.org)、[Seaborn](https://seaborn.pydata.org)、[Plotly](https://plot.ly)、[Altair](https://altair-viz.github.io)、[Bokeh](https://docs.bokeh.org/en/latest/)、[Holoviz](https://holoviz.org)、[Vispy](http://vispy.org)、[Napari](https://github.com/napari/napari)、[PyVista](https://github.com/pyvista/pyvista)などの、急成長している[Python visualization landscape](https://pyviz.org/overviews/index.html)に欠かせないコンポーネントです。
+ -
+ text: NumPy の大規模配列の高速処理により、研究者はネイティブの Python が扱うことができるよりも、はるかに大きなデータセットを可視化することができます。
diff --git a/content/ja/teams.md b/content/ja/teams.md
new file mode 100644
index 0000000000..0c24455d18
--- /dev/null
+++ b/content/ja/teams.md
@@ -0,0 +1,20 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research communities worldwide by building quality, open-source software. [Join us]({{< relref "/contribute" >}})!
+
+{{< include-html "static/gallery/maintainers.html" >}}
+
+{{< include-html "static/gallery/web-team.html" >}}
+
+{{< include-html "static/gallery/triage-team.html" >}}
+
+{{< include-html "static/gallery/survey-team.html" >}}
+
+{{< include-html "static/gallery/emeritus-maintainers.html" >}}
+
+# Governance
+
+For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/ja/terms.md b/content/ja/terms.md
new file mode 100644
index 0000000000..9a66045505
--- /dev/null
+++ b/content/ja/terms.md
@@ -0,0 +1,178 @@
+---
+title: Terms of Use
+sidebar: false
+---
+
+*Last updated January 4, 2020*
+
+
+## AGREEMENT TO TERMS
+
+These Terms of Use constitute a legally binding agreement made between you, whether personally or on behalf of an entity (“you”) and NumPy ("**Project**", “**we**”, “**us**”, or “**our**”), concerning your access to and use of the numpy.org website as well as any other media form, media channel, mobile website or mobile application related, linked, or otherwise connected thereto (collectively, the “Site”). You agree that by accessing the Site, you have read, understood, and agreed to be bound by all of these Terms of Use. IF YOU DO NOT AGREE WITH ALL OF THESE TERMS OF USE, THEN YOU ARE EXPRESSLY PROHIBITED FROM USING THE SITE AND YOU MUST DISCONTINUE USE IMMEDIATELY.
+
+
+
+Supplemental terms and conditions or documents that may be posted on the Site from time to time are hereby expressly incorporated herein by reference. We reserve the right, in our sole discretion, to make changes or modifications to these Terms of Use at any time and for any reason. We will alert you about any changes by updating the “Last updated” date of these Terms of Use, and you waive any right to receive specific notice of each such change. It is your responsibility to periodically review these Terms of Use to stay informed of updates. You will be subject to, and will be deemed to have been made aware of and to have accepted, the changes in any revised Terms of Use by your continued use of the Site after the date such revised Terms of Use are posted.
+
+
+
+The information provided on the Site is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to law or regulation or which would subject us to any registration requirement within such jurisdiction or country. Accordingly, those persons who choose to access the Site from other locations do so on their own initiative and are solely responsible for compliance with local laws, if and to the extent local laws are applicable.
+
+
+## USER REPRESENTATIONS
+
+By using the Site, you represent and warrant that: (1) you have the legal capacity and you agree to comply with these Terms of Use; (2) you will not use the Site for any illegal or unauthorized purpose; and (3) your use of the Site will not violate any applicable law or regulation.
+
+
+If you provide any information that is untrue, inaccurate, not current, or incomplete, we have the right to refuse any and all current or future use of the Site (or any portion thereof).
+
+
+## PROHIBITED ACTIVITIES
+
+You may not access or use the Site for any purpose other than that for which we make the Site available.
+
+As a user of the Site, you agree not to:
+
+1. Systematically retrieve data or other content from the Site to create or compile, directly or indirectly, a collection, compilation, database, or directory without written permission from us.
+
+2. Make any unauthorized use of the Site, including collecting usernames and/or email addresses of users by electronic or other means for the purpose of sending unsolicited email, or creating user accounts by automated means or under false pretenses.
+
+3. Use the Site to advertise or offer to sell goods and services.
+
+4. Circumvent, disable, or otherwise interfere with security-related features of the Site.
+
+5. Engage in unauthorized framing of or linking to the Site.
+
+6. Trick, defraud, or mislead us and other users, especially in any attempt to learn sensitive account information such as user passwords.
+
+7. Make improper use of our support services or submit false reports of abuse or misconduct.
+
+8. Engage in any automated use of the system, such as using scripts to send comments or messages, or using any data mining, robots, or similar data gathering and extraction tools.
+
+9. Interfere with, disrupt, or create an undue burden on the Site or the networks or services connected to the Site.
+
+10. Attempt to impersonate another user or person or use the username of another user.
+
+11. Use any information obtained from the Site in order to harass, abuse, or harm another person.
+
+12. Disparage, tarnish, or otherwise harm, in our opinion, us and/or the Site.
+
+13. Except as may be the result of standard search engine or Internet browser usage, use, launch, develop, or distribute any automated system, including without limitation, any spider, robot, cheat utility, scraper, or offline reader that accesses the Site, or using or launching any unauthorized script or other software.
+
+14. Upload or transmit (or attempt to upload or to transmit) any material that acts as a passive or active information collection or transmission mechanism, including without limitation, clear graphics interchange formats (“gifs”), 1×1 pixels, web bugs, cookies, or other similar devices (sometimes referred to as “spyware” or “passive collection mechanisms” or “pcms”).
+
+15. Upload or transmit (or attempt to upload or to transmit) viruses, Trojan horses, or other material, including excessive use of capital letters and spamming (continuous posting of repetitive text), that interferes with any party’s uninterrupted use and enjoyment of the Site or modifies, impairs, disrupts, alters, or interferes with the use, features, functions, operation, or maintenance of the Site.
+
+16. Harass, annoy, intimidate, or threaten any of our employees or agents engaged in providing any portion of the Site to you.
+
+17. Attempt to bypass any measures of the Site designed to prevent or restrict access to the Site, or any portion of the Site.
+
+
+## SUBMISSIONS
+
+You acknowledge and agree that any questions, comments, suggestions, ideas, feedback, or other information regarding the Site ("Submissions") provided by you to us are non-confidential and shall become our sole property. We shall own exclusive rights, including all intellectual property rights, and shall be entitled to the unrestricted use and dissemination of these Submissions for any lawful purpose, commercial or otherwise, without acknowledgment or compensation to you. You hereby waive all moral rights to any such Submissions, and you hereby warrant that any such Submissions are original with you or that you have the right to submit such Submissions. You agree there shall be no recourse against us for any alleged or actual infringement or misappropriation of any proprietary right in your Submissions.
+
+## THIRD-PARTY WEBSITES AND CONTENT
+
+The Site may contain (or you may be sent via the Site) links to other websites ("Third-Party Websites") as well as articles, photographs, text, graphics, pictures, designs, music, sound, video, information, applications, software, and other content or items belonging to or originating from third parties ("Third-Party Content"). Such Third-Party Websites and Third-Party Content are not investigated, monitored, or checked for accuracy, appropriateness, or completeness by us, and we are not responsible for any Third-Party Websites accessed through the Site or any Third-Party Content posted on, available through, or installed from the Site, including the content, accuracy, offensiveness, opinions, reliability, privacy practices, or other policies of or contained in the Third-Party Websites or the Third-Party Content. Inclusion of, linking to, or permitting the use or installation of any Third-Party Websites or any Third-Party Content does not imply approval or endorsement thereof by us. If you decide to leave the Site and access the Third-Party Websites or to use or install any Third-Party Content, you do so at your own risk, and you should be aware these Terms of Use no longer govern. You should review the applicable terms and policies, including privacy and data gathering practices, of any website to which you navigate from the Site or relating to any applications you use or install from the Site. Any purchases you make through Third-Party Websites will be through other websites and from other companies, and we take no responsibility whatsoever in relation to such purchases which are exclusively between you and the applicable third party. You agree and acknowledge that we do not endorse the products or services offered on Third-Party Websites and you shall hold us harmless from any harm caused by your purchase of such products or services. Additionally, you shall hold us harmless from any losses sustained by you or harm caused to you relating to or resulting in any way from any Third-Party Content or any contact with Third-Party Websites.
+
+
+## SITE MANAGEMENT
+
+We reserve the right, but not the obligation, to: (1) monitor the Site for violations of these Terms of Use; (2) take appropriate legal action against anyone who, in our sole discretion, violates the law or these Terms of Use, including without limitation, reporting such user to law enforcement authorities; (3) in our sole discretion and without limitation, refuse, restrict access to, limit the availability of, or disable (to the extent technologically feasible) any of your Contributions or any portion thereof; (4) in our sole discretion and without limitation, notice, or liability, to remove from the Site or otherwise disable all files and content that are excessive in size or are in any way burdensome to our systems; and (5) otherwise manage the Site in a manner designed to protect our rights and property and to facilitate the proper functioning of the Site.
+
+
+## PRIVACY POLICY
+
+We care about data privacy and security. Please review our [Privacy Policy](/privacy). By using the Site, you agree to be bound by our Privacy Policy, which is incorporated into these Terms of Use. Please be advised the Site is hosted in the United States. If you access the Site from the European Union, Asia, or any other region of the world with laws or other requirements governing personal data collection, use, or disclosure that differ from applicable laws in the United States, then through your continued use of the Site, you are transferring your data to the United States, and you expressly consent to have your data transferred to and processed in the United States. Further, we do not knowingly accept, request, or solicit information from children or knowingly market to children. Therefore, in accordance with the U.S. Children’s Online Privacy Protection Act, if we receive actual knowledge that anyone under the age of 13 has provided personal information to us without the requisite and verifiable parental consent, we will delete that information from the Site as quickly as is reasonably practical.
+
+## TERM AND TERMINATION
+
+These Terms of Use shall remain in full force and effect while you use the Site. WITHOUT LIMITING ANY OTHER PROVISION OF THESE TERMS OF USE, WE RESERVE THE RIGHT TO, IN OUR SOLE DISCRETION AND WITHOUT NOTICE OR LIABILITY, DENY ACCESS TO AND USE OF THE SITE (INCLUDING BLOCKING CERTAIN IP ADDRESSES), TO ANY PERSON FOR ANY REASON OR FOR NO REASON, INCLUDING WITHOUT LIMITATION FOR BREACH OF ANY REPRESENTATION, WARRANTY, OR COVENANT CONTAINED IN THESE TERMS OF USE OR OF ANY APPLICABLE LAW OR REGULATION. WE MAY TERMINATE YOUR USE OR PARTICIPATION IN THE SITE OR DELETE ANY CONTENT OR INFORMATION THAT YOU POSTED AT ANY TIME, WITHOUT WARNING, IN OUR SOLE DISCRETION.
+
+
+## MODIFICATIONS AND INTERRUPTIONS
+
+We reserve the right to change, modify, or remove the contents of the Site at any time or for any reason at our sole discretion without notice. However, we have no obligation to update any information on our Site. We also reserve the right to modify or discontinue all or part of the Site without notice at any time. We will not be liable to you or any third party for any modification, suspension, or discontinuance of the Site.
+
+We cannot guarantee the Site will be available at all times. We may experience hardware, software, or other problems or need to perform maintenance related to the Site, resulting in interruptions, delays, or errors. We reserve the right to change, revise, update, suspend, discontinue, or otherwise modify the Site at any time or for any reason without notice to you. You agree that we have no liability whatsoever for any loss, damage, or inconvenience caused by your inability to access or use the Site during any downtime or discontinuance of the Site. Nothing in these Terms of Use will be construed to obligate us to maintain and support the Site or to supply any corrections, updates, or releases in connection therewith.
+
+
+## GOVERNING LAW
+
+These Terms of Use and your use of the Site are governed by and construed in accordance with the laws of the State of Texas applicable to agreements made and to be entirely performed within the State of Texas, without regard to its conflict of law principles.
+
+
+## DISPUTE RESOLUTION
+
+### Informal Negotiations
+
+To expedite resolution and control the cost of any dispute, controversy, or claim related to these Terms of Use (each a "Dispute" and collectively, the “Disputes”) brought by either you or us (individually, a “Party” and collectively, the “Parties”), the Parties agree to first attempt to negotiate any Dispute (except those Disputes expressly provided below) informally for at least thirty (30) days before initiating arbitration. Such informal negotiations commence upon written notice from one Party to the other Party.
+
+
+### Binding Arbitration
+
+If the Parties are unable to resolve a Dispute through informal negotiations, the Dispute (except those Disputes expressly excluded below) will be finally and exclusively resolved by binding arbitration. YOU UNDERSTAND THAT WITHOUT THIS PROVISION, YOU WOULD HAVE THE RIGHT TO SUE IN COURT AND HAVE A JURY TRIAL. The arbitration shall be commenced and conducted under the Commercial Arbitration Rules of the American Arbitration Association ("AAA") and, where appropriate, the AAA’s Supplementary Procedures for Consumer Related Disputes ("AAA Consumer Rules"), both of which are available at the AAA website www.adr.org. Your arbitration fees and your share of arbitrator compensation shall be governed by the AAA Consumer Rules and, where appropriate, limited by the AAA Consumer Rules. If such costs are determined to by the arbitrator to be excessive, we will pay all arbitration fees and expenses. The arbitration may be conducted in person, through the submission of documents, by phone, or online. The arbitrator will make a decision in writing, but need not provide a statement of reasons unless requested by either Party. The arbitrator must follow applicable law, and any award may be challenged if the arbitrator fails to do so. Except where otherwise required by the applicable AAA rules or applicable law, the arbitration will take place in Travis County, Texas. Except as otherwise provided herein, the Parties may litigate in court to compel arbitration, stay proceedings pending arbitration, or to confirm, modify, vacate, or enter judgment on the award entered by the arbitrator.
+
+If for any reason, a Dispute proceeds in court rather than arbitration, the Dispute shall be commenced or prosecuted in the state and federal courts located in Travis County, Texas, and the Parties hereby consent to, and waive all defenses of lack of personal jurisdiction, and forum non conveniens with respect to venue and jurisdiction in such state and federal courts. Application of the United Nations Convention on Contracts for the International Sale of Goods and the the Uniform Computer Information Transaction Act (UCITA) are excluded from these Terms of Use.
+
+In no event shall any Dispute brought by either Party related in any way to the Site be commenced more than one (1) years after the cause of action arose. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+### Restrictions
+
+The Parties agree that any arbitration shall be limited to the Dispute between the Parties individually. To the full extent permitted by law, (a) no arbitration shall be joined with any other proceeding; (b) there is no right or authority for any Dispute to be arbitrated on a class-action basis or to utilize class action procedures; and (c) there is no right or authority for any Dispute to be brought in a purported representative capacity on behalf of the general public or any other persons.
+
+
+### Exceptions to Informal Negotiations and Arbitration
+
+The Parties agree that the following Disputes are not subject to the above provisions concerning informal negotiations and binding arbitration: (a) any Disputes seeking to enforce or protect, or concerning the validity of, any of the intellectual property rights of a Party; (b) any Dispute related to, or arising from, allegations of theft, piracy, invasion of privacy, or unauthorized use; and (c) any claim for injunctive relief. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+## CORRECTIONS
+
+There may be information on the Site that contains typographical errors, inaccuracies, or omissions. We reserve the right to correct any errors, inaccuracies, or omissions and to change or update the information on the Site at any time, without prior notice.
+
+
+## DISCLAIMER
+
+THE SITE IS PROVIDED ON AN AS-IS AND AS-AVAILABLE BASIS. YOU AGREE THAT YOUR USE OF THE SITE AND OUR SERVICES WILL BE AT YOUR SOLE RISK. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THE SITE AND YOUR USE THEREOF, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. WE MAKE NO WARRANTIES OR REPRESENTATIONS ABOUT THE ACCURACY OR COMPLETENESS OF THE SITE’S CONTENT OR THE CONTENT OF ANY WEBSITES LINKED TO THE SITE AND WE WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR ANY (1) ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS, (2) PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM YOUR ACCESS TO AND USE OF THE SITE, (3) ANY UNAUTHORIZED ACCESS TO OR USE OF OUR SECURE SERVERS AND/OR ANY AND ALL PERSONAL INFORMATION AND/OR FINANCIAL INFORMATION STORED THEREIN, (4) ANY INTERRUPTION OR CESSATION OF TRANSMISSION TO OR FROM THE SITE, (5) ANY BUGS, VIRUSES, TROJAN HORSES, OR THE LIKE WHICH MAY BE TRANSMITTED TO OR THROUGH THE SITE BY ANY THIRD PARTY, AND/OR (6) ANY ERRORS OR OMISSIONS IN ANY CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT POSTED, TRANSMITTED, OR OTHERWISE MADE AVAILABLE VIA THE SITE. WE DO NOT WARRANT, ENDORSE, GUARANTEE, OR ASSUME RESPONSIBILITY FOR ANY PRODUCT OR SERVICE ADVERTISED OR OFFERED BY A THIRD PARTY THROUGH THE SITE, ANY HYPERLINKED WEBSITE, OR ANY WEBSITE OR MOBILE APPLICATION FEATURED IN ANY BANNER OR OTHER ADVERTISING, AND WE WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY TRANSACTION BETWEEN YOU AND ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR SERVICES. AS WITH THE PURCHASE OF A PRODUCT OR SERVICE THROUGH ANY MEDIUM OR IN ANY ENVIRONMENT, YOU SHOULD USE YOUR BEST JUDGMENT AND EXERCISE CAUTION WHERE APPROPRIATE.
+
+
+## LIMITATIONS OF LIABILITY
+
+IN NO EVENT WILL WE OR OUR DIRECTORS, EMPLOYEES, OR AGENTS BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING LOST PROFIT, LOST REVENUE, LOSS OF DATA, OR OTHER DAMAGES ARISING FROM YOUR USE OF THE SITE, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED HEREIN, OUR LIABILITY TO YOU FOR ANY CAUSE WHATSOEVER AND REGARDLESS OF THE FORM OF THE ACTION, WILL AT ALL TIMES BE LIMITED TO THE AMOUNT PAID, IF ANY, BY YOU TO US DURING THE SIX (6) MONTH PERIOD PRIOR TO ANY CAUSE OF ACTION ARISING. CERTAIN STATE LAWS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EXCLUSION OR LIMITATION OF CERTAIN DAMAGES. IF THESE LAWS APPLY TO YOU, SOME OR ALL OF THE ABOVE DISCLAIMERS OR LIMITATIONS MAY NOT APPLY TO YOU, AND YOU MAY HAVE ADDITIONAL RIGHTS.
+
+
+## INDEMNIFICATION
+
+You agree to defend, indemnify, and hold us harmless, including our subsidiaries, affiliates, and all of our respective officers, agents, partners, and employees, from and against any loss, damage, liability, claim, or demand, including reasonable attorneys’ fees and expenses, made by any third party due to or arising out of: (1) use of the Site; (2) breach of these Terms of Use; (3) any breach of your representations and warranties set forth in these Terms of Use; (4) your violation of the rights of a third party, including but not limited to intellectual property rights; or (5) any overt harmful act toward any other user of the Site with whom you connected via the Site. Notwithstanding the foregoing, we reserve the right, at your expense, to assume the exclusive defense and control of any matter for which you are required to indemnify us, and you agree to cooperate, at your expense, with our defense of such claims. We will use reasonable efforts to notify you of any such claim, action, or proceeding which is subject to this indemnification upon becoming aware of it.
+
+
+## USER DATA
+
+We will maintain certain data that you transmit to the Site for the purpose of managing the performance of the Site, as well as data relating to your use of the Site. Although we perform regular routine backups of data, you are solely responsible for all data that you transmit or that relates to any activity you have undertaken using the Site. You agree that we shall have no liability to you for any loss or corruption of any such data, and you hereby waive any right of action against us arising from any such loss or corruption of such data.
+
+
+## ELECTRONIC COMMUNICATIONS, TRANSACTIONS, AND SIGNATURES
+
+Visiting the Site, sending us emails, and completing online forms constitute electronic communications. You consent to receive electronic communications, and you agree that all agreements, notices, disclosures, and other communications we provide to you electronically, via email and on the Site, satisfy any legal requirement that such communication be in writing. YOU HEREBY AGREE TO THE USE OF ELECTRONIC SIGNATURES, CONTRACTS, ORDERS, AND OTHER RECORDS, AND TO ELECTRONIC DELIVERY OF NOTICES, POLICIES, AND RECORDS OF TRANSACTIONS INITIATED OR COMPLETED BY US OR VIA THE SITE. You hereby waive any rights or requirements under any statutes, regulations, rules, ordinances, or other laws in any jurisdiction which require an original signature or delivery or retention of non-electronic records, or to payments or the granting of credits by any means other than electronic means.
+
+
+## CALIFORNIA USERS AND RESIDENTS
+
+If any complaint with us is not satisfactorily resolved, you can contact the Complaint Assistance Unit of the Division of Consumer Services of the California Department of Consumer Affairs in writing at 1625 North Market Blvd., Suite N 112, Sacramento, California 95834 or by telephone at (800) 952-5210 or (916) 445-1254.
+
+
+## MISCELLANEOUS
+
+These Terms of Use and any policies or operating rules posted by us on the Site or in respect to the Site constitute the entire agreement and understanding between you and us. Our failure to exercise or enforce any right or provision of these Terms of Use shall not operate as a waiver of such right or provision. These Terms of Use operate to the fullest extent permissible by law. We may assign any or all of our rights and obligations to others at any time. We shall not be responsible or liable for any loss, damage, delay, or failure to act caused by any cause beyond our reasonable control. If any provision or part of a provision of these Terms of Use is determined to be unlawful, void, or unenforceable, that provision or part of the provision is deemed severable from these Terms of Use and does not affect the validity and enforceability of any remaining provisions. There is no joint venture, partnership, employment or agency relationship created between you and us as a result of these Terms of Use or use of the Site. You agree that these Terms of Use will not be construed against us by virtue of having drafted them. You hereby waive any and all defenses you may have based on the electronic form of these Terms of Use and the lack of signing by the parties hereto to execute these Terms of Use.
+
+## CONTACT US
+
+In order to resolve a complaint regarding the Site or to receive further information regarding use of the Site, please contact us at:
+
+NumFOCUS, Inc. P.O. Box 90596 Austin, TX, USA 78709 info@numfocus.org +1 (512) 222-5449
+
+
+
diff --git a/content/ja/user-survey-2020.md b/content/ja/user-survey-2020.md
new file mode 100644
index 0000000000..370138d6e7
--- /dev/null
+++ b/content/ja/user-survey-2020.md
@@ -0,0 +1,16 @@
+---
+title: 2020年 NumPyコミュニティ調査
+sidebar: false
+---
+
+2020年に、NumPyの調査チームは、ミシガン大学とメリーランド大学が共同で開催した、調査方法学の修士コースの学生と教員と共同で、初めて公式のNumPyコミュニティ調査を実施しました。 75カ国から1,200人以上のNumPyユーザーが参加してくれました。NumPyコミュニティの全体像を描き、プロジェクトの未来像についての意見を述べてもらいました。
+
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 Numpy User survey report, titled 'Numpyコミュニティ調査2020 - 結果'" width="250">}}
+
+調査結果を詳細を知りたい場合は、**[こちらのレポート](/surveys/NumPy_usersurvey_2020_report.pdf)** をダウンロードしてください。
+
+
+結果の概要については、 **[こちらの図](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)** をチェックしてください。
+
+より詳細が知りたくなりましたか? **https://numpy.org/user-survey-2020-details/** をご覧ください。
+
diff --git a/content/ja/user-surveys.md b/content/ja/user-surveys.md
new file mode 100644
index 0000000000..89a2aa0460
--- /dev/null
+++ b/content/ja/user-surveys.md
@@ -0,0 +1,10 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020** The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/ko/404.md b/content/ko/404.md
new file mode 100644
index 0000000000..41504d0c8a
--- /dev/null
+++ b/content/ko/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+앗! 잘못된 접근입니다.
+
+만약 이곳에 어떤 페이지가 있어야 한다면 [Issue 열기](https://github.com/numpy/numpy.org/issues)에서 문제를 제기할 수 있습니다.
diff --git a/content/ko/about.md b/content/ko/about.md
new file mode 100644
index 0000000000..69efce402b
--- /dev/null
+++ b/content/ko/about.md
@@ -0,0 +1,85 @@
+---
+title: NumPy 정보
+sidebar: false
+---
+
+_NumPy 프로젝트와 커뮤니티에 대한 몇가지 정보_
+
+NumPy는 Python을 통해 수치적 컴퓨팅을 할 수 있도록 도와주는 오픈소스 프로젝트입니다. Numerical와 Numarray라는 라이브러리의 초기 작업을 기반으로 2005년에 만들어졌습니다. NumPy는 항상 100% 오픈소스 소프트웨어일 것이며, [수정 BSD 라이선스](https://github.com/numpy/numpy/blob/main/LICENSE.txt) 내 자유 조항에 따라서 누구나 무료로 사용하고 배포할 수 있습니다.
+
+NumPy는 광범위한 Scientific Python 커뮤니티의 협의를 통해 GitHub에서 공개적으로 개발되었습니다. 우리의 거버넌스 접근 방식에 대한 더 자세한 내용은 [거버넌스 문서](https://www.numpy.org/devdocs/dev/governance/index.html)를 참조해 주세요.
+
+
+## 운영 위원회
+
+NumPy 운영 위원회의 역할은 더 광범위한 NumPy 커뮤니티와 협력하고 서비스를 통해서 기술적으로나 커뮤니티로서 프로젝트의 장기적인 안녕을 보장하는 것입니다. NumPy 운영 위원회는 현재 다음과 같은 회원들로 구성되어 있습니다. (알파벳 순서)
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Stephan Hoyer
+- Melissa Weber Mendonça
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Eric Wieser
+
+명예 회원
+
+- Travis Oliphant (project founder, 2005-2012)
+- Alex Griffing (2015-2017)
+- Marten van Kerkwijk (2017-2019)
+- Allan Haldane (2015-2021)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Pauli Virtanen (2008-2021)
+- Jaime Fernández del Río (2014-2021)
+
+
+## 팀
+
+NumPy 프로젝트가 성장하고 있습니다! 🎉 아래 활동들을 하는 팀이 있습니다:
+
+- 코드
+- 문서
+- 웹사이트
+- 심사
+- 설문조사
+- 자원 및 보조금
+
+See the [}}">Team]({{< relref) page for individual team members.
+
+## NumFOCUS 소위원회
+
+- Charles Harris
+- Ralf Gommers
+- Melissa Weber Mendonça
+- Sebastian Berg
+- 외부 회원: Thomas Caswell
+
+## 스폰서
+
+NumPy는 다음과 같은 곳들에서 직접적으로 자금을 받습니다.
+{{< sponsors >}}
+
+
+## 기관 파트너
+
+기관 파트너는 그들의 업무의 일환으로 NumPy에 기여하는 직원을 고용하여 프로젝트를 지원하는 조직입니다. 현재 기관 파트너는 다음과 같습니다.
+
+- UC 버클리 (Stéfan van der Walt, Sebastian Berg, Ross Barnowski)
+- Quansight (Ralf Gommers, Melissa Weber Mendonça, Mars Lee, Matti Picus, Pearu Peterson)
+
+{{< partners >}}
+
+
+## 후원
+
+만약 NumPy가 당신의 업무, 연구 혹은 회사에서 유용하다고 판단된다면 당신의 자원에 맞는 프로젝트에 기여하는 것을 고려해보세요. 그것이 얼마든 도움이 됩니다! 모든 후원은 NumPy의 소프트웨어 개발, 문서 작성과 커뮤니티 운영의 자금으로 엄격하게 사용될 것입니다.
+
+NumPy는 미국의 501(c)(3) 비영리 단체인 NumFOCUS의 후원 프로젝트입니다. NumFOCUS는 NumPy에 재정적, 법적, 행정적 지원을 제공하고 프로젝트의 건강과 지속 가능성을 보장할 수 있도록 도와줍니다. 더 자세한 정보를 알고싶다면 [numfocus.org](https://numfocus.org)를 방문하세요.
+
+NumPy에 대한 후원은 [NumFOCUS](https://numfocus.org)가 관리합니다. 미국에 거주하는 후원자의 경우에는, 당신의 후원은 법이 제공하는 한도 내에서 세금 공제를 받을 수 있습니다. 기부와 마찬가지로 특정 세금 상황에 대해서는 세금 전문가와 상담해야합니다.
+
+NumPy 운영 위원회는 후원받은 후원금을 가장 잘 활용하는 방안을 결정합니다. 기술 및 인프라의 우선 순위는 NumPy [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap)에 문서화되어 있습니다.
+{{< numfocus >}}
diff --git a/content/ko/arraycomputing.md b/content/ko/arraycomputing.md
new file mode 100644
index 0000000000..2d8b5673ab
--- /dev/null
+++ b/content/ko/arraycomputing.md
@@ -0,0 +1,21 @@
+---
+title: Array Computing
+sidebar: false
+---
+
+*행렬 연산은 통계와 수학 뿐만 아니라 현대의 다양한 분야에 적용되는 데이터 사이언스와 데이터 시각화나 디지털 신호 처리, 영상 처리, 의생명 정보 공학, 기계학습, AI 등 다양한 분야에서 적용되는 데이터 분석 어플리케이션의 기반입니다.*
+
+대규모의 데이터의 조작과 연산은 고효율, 고성능의 행렬 연산에 달려있습니다. **Python**은 데이터 과학자, 머신 러닝 개발자, 그리고 효율적인 수치 계산을 필요로 하는 분야에서 선택되는 프로그래밍 언어입니다.
+
+**Num**erical **Py**thon 또는 NumPy 는 파이썬의 표준라이브러리에는 포함되지 않지만, 큰 규모, 다 차원 행렬을 표현할 수 있고, 행렬 연산을 위한 고수준의 수학 함수들을 포함한 라이브러리입니다.
+
+2006년에 NumPy가 출시된 이후로, 2008년에 이를 기반으로 Pandas가 나타났습니다. 그리고 몇년전까지도, 다양한 행렬 연산 라이브러리가 잇따라 나오며 행렬 연산 분야가 더욱 활발해 졌습니다. 최신의 라이브러리들중 대부분은 NumPy 같은 특징과 성능을 품고, 새로운 알고리즘이나 머신러닝이나 인공지능 어플리케이션을 위한 특화된 기능을 포함하고 있습니다.
+
+
+
+**행렬 연산**의 기반은 **배열**입니다. *배열*은 대규모의 데이터를 정렬, 검색, 수학 계산, 그리고 변형을 쉽고 빠르게 처리하는데 사용됩니다.
+
+행렬 연산은 *한번에 * 데이터 배열에 *모든 연산이* 계산 됩니다. 다시 말해서, 모든 행렬 연산은 전체 데이터에 한번에 적용됩니다. 이 벡터화 접근법은 행렬 연산을 위해 루프를 활용하여 개별적인 데이터에 접근하여 연산하는 코드를 작성하지 않고, 행렬에 바로 연산하는 코드를 작성하여, 개발자가 보다 개발 빠르고 간단하게 할수 있게 해줍니다.
diff --git a/content/ko/case-studies/blackhole-image.md b/content/ko/case-studies/blackhole-image.md
new file mode 100644
index 0000000000..10efe3275b
--- /dev/null
+++ b/content/ko/case-studies/blackhole-image.md
@@ -0,0 +1,70 @@
+---
+title: "사례 연구: 최초의 블랙홀 사진"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**블랙홀 M87**" alt="블랙홀 사진" attr="*(사진 크레딧: Event Horizon Telescope Collaboration)*" attrlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg" >}}
+
+
+
M87 블랙홀을 시각화하는 것은 정의상 볼 수 없는 것을 보려고 하는 것과도 같다.
+
+
+
+## 지구 크기의 망원경
+
+[사건의 지평선 망원경(EHT)](https://eventhorizontelescope.org)은 8개의 지상 전파 망원경으로 구성된 지구 크기의 전산 망원경으로, 전례없는 감도와 해상도로 우주를 연구하는 데 쓰입니다. 초장기선 간섭 관측법(VLBI)이라는 기술을 사용하는 거대한 가상 망원경의 각해상도는 [20 마이크로각초][resolution]에 달하며 파리의 길거리 카페에서 뉴욕의 신문을 읽기에 충분한 정도입니다!
+
+### 주요 목표 및 결과
+
+* **우주를 보는 새로운 방식:** EHT라는 획기적인 발상의 토대는 [아서 에딩턴 경][eddington]의 관측으로 아인슈타인의 일반 상대성이론이 최초로 관측적 지지를 받았던 시기인 100년 전에 마련되었습니다.
+
+* **블랙홀:** EHT는 처녀자리 은하단의 M87 은하의 중심부에 있는 초대질량 블랙홀로 훈련되었으며 이는 지구에서 약 5500만 광년 떨어져 있습니다. 이 천체의 질량은 태양의 65억 배입니다. [100년 넘게](https://www.jpl.nasa.gov/news/news.php?feature=7385) 연구되었으나, 블랙홀을 시각적으로 볼 수 있게 구현한 바는 없었습니다.
+
+* **관찰과 이론의 비교:** 아인슈타인의 일반 상대성이론에 따라 과학자들은 중력의 시공간 왜곡이나 빛 흡수에 의해 어둡게 보이는 영역이 나타날 것으로 예측하였습니다. 과학자들은 이를 블랙홀의 엄청난 질량을 재는 데 이용할 수 있었죠.
+
+### 과제
+
+* **계산의 규모**
+
+ EHT는 급격한 대기 위상의 변동, 큰 기록 대역폭, 완전히 다르고 지리적으로 분산된 망원경 등의 문제를 포함한 막대한 데이터를 처리해야 하는 문제를 낳습니다.
+
+* **지나치게 많은 정보**
+
+ EHT는 매일 350 테라바이트의 관측 결과를 생성하며, 이 정보는 헬륨으로 채운 하드 드라이브에 저장됩니다. 이토록 많은 데이터의 양과 복잡성을 줄여나가는 것은 지극히 어려운 일입니다.
+
+* **잘 알지 못함**
+
+ 만약 목표가 이전에 본 적이 없는 것을 보는 것이라면, 과학자들은 어떻게 이 사진이 옳다고 입증할 수 있을까요?
+
+{{< figure src="/images/content_images/cs/dataprocessbh.png" class="csfigcaption" caption="**EHT 데이터 처리 파이프라인**" alt="데이터 파이프라인" align="middle" attr="(다이어그램 크레딧: The Astrophysical Journal, Event Horizon Telescope Collaboration)" attrlink="https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57" >}}
+
+## NumPy의 역할
+
+데이터에 만약 문제가 있다면 어떨까요? 아니면 알고리즘이 특정 가정에 지나치게 의존할 수도 있습니다. 매개변수 하나만 달라져도 사진이 크게 바뀔까요?
+
+EHT는 기존 및 최첨된 이미지 재구성 기술을 모두 사용한 뒤, 개개의 팀이 데이터를 평가하도록 하여 이런 문제를 해결했습니다. 결과가 일관적이라는 것을 검증한 뒤, 이들을 결합해 최초의 블랙홀 이미지를 만들어내었습니다.
+
+그들의 연구는 협업 데이터 분석을 통해 과학을 발전시키는 과학적인 Python 생태계의 역할을 보여줍니다.
+
+{{< figure src="/images/content_images/cs/bh_numpy_role.png" class="fig-center" alt="numpy의 역할" caption="**블랙홀 시각화에서 NumPy의 역할**" >}}
+
+예를 들어, [`eht-imaging`][ehtim] Python 패키지는 VLBI 데이터를 통해 실험이나 이미지 재구성을 수행할 때 필요한 도구를 제공합니다. NumPy는 아래 소프트웨어 종속성 차트에 나와 있는 것처럼 이 패키지에서 사용되는 배열 데이터 처리의 핵심 역할을 합니다.
+
+{{< figure src="/images/content_images/cs/ehtim_numpy.png" class="fig-center" alt="numpy를 강조하는 ehtim의 종속성 맵" caption="**NumPy를 강조하는 ehtim 패키지의 소프트웨어 종속성 차트**" >}}
+
+NumPy 외에도 [SciPy](https://www.scipy.org)와 [Pandas](https://pandas.io) 등의 다른 많은 패키지가 블랙홀을 시각화하는 데이터 처리 파이프라인의 일부입니다. 표준 천문 파일 형식과 시간/좌표 변환에는 [Astropy][astropy]가 쓰였고 [Matplotlib][mpl]는 분석 과정 전체에서 블랙홀의 최종 사진을 생성하는 등 데이터를 시각화하는 데 쓰였습니다.
+
+## 요약
+
+NumPy의 핵심 기능인 효율적이고 유용한 n차원 배열은 연구자들이 대규모 수치 데이터셋을 다룰 수 있도록 하여 최초의 블랙홀 사진을 만드는 데 토대를 제공했습니다. 이번 관측은 아인슈타인의 이론에 훌륭한 시각적 증거를 준 관측으로, 과학계에 한 획을 그은 순간이었습니다. 기술적 혁신뿐만 아니라 200명 이상의 과학자와 세계 최고의 전파 관측소 간의 국제 협력도 이루어 냈습니다. 기존의 천문학 모델을 개선한 혁신적인 알고리즘과 데이터 처리 기술이 우주의 비밀을 알아내는 데 도움을 주었습니다.
+
+{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="numpy를 통한 이익" caption="**활용된 주요 NumPy 기능**" >}}
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+[eddington]: https://ko.wikipedia.org/wiki/%EC%95%84%EC%84%9C_%EC%8A%A4%ED%83%A0%EB%A6%AC_%EC%97%90%EB%94%A9%ED%84%B4#%EC%9D%BC%EB%B0%98%EC%83%81%EB%8C%80%EC%84%B1%EC%9D%B4%EB%A1%A0%EC%9D%98_%EC%8B%A4%ED%97%98%EC%A0%81_%EA%B2%80%EC%A6%9D
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
diff --git a/content/ko/case-studies/cricket-analytics.md b/content/ko/case-studies/cricket-analytics.md
new file mode 100644
index 0000000000..def42fa146
--- /dev/null
+++ b/content/ko/case-studies/cricket-analytics.md
@@ -0,0 +1,64 @@
+---
+title: "사례 연구: 판도를 뒤집은 크리켓 통계!"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/ipl-stadium.png" caption="**인도 최대의 크리켓 축제인 IPLT20**" alt="인도 프리미어 리그 크리켓 컵 및 경기장" attr="*(사진 출처: IPLT20 (컵 및 로고) & Akash Yadav (경기장))*" attrlink="https://unsplash.com/@aksh1802" >}}
+
+
+
군중을 위해서가 아니라, 국가를 위해 뛰는 겁니다.
+
+
+
+## 크리켓이란
+
+인도인들이 크리켓과 사랑에 빠졌다고 해도 과언이 아닙니다. 크리켓은 인도의 거의 모든 지역 구석구석에서 시골이든 도시든 상관없이 사랑받고 있습니다. 다른 스포츠와 달리 인도의 수십억 명을 연결하는 매개체 역할을 하는 데다 남녀노소 모두에게 인기가 있습니다. 크리켓은 많은 미디어의 관심을 받고 있기도 합니다. 엄청난 [돈](https://www.statista.com/topics/4543/indian-premier-league-ipl/)과 명성이 달려 있기도 하죠. 최근 몇 년 동안, 기술이 이 분야의 판도를 뒤집어 버렸습니다. 청중들은 스트리밍 미디어, 토너먼트, 모바일 기기를 통해 실시간 크리켓 경기를 저렴하게 볼 수 있습니다.
+
+인도 프리미어 리그(IPL)는 2008년 설립되어 20개 팀으로 구성된 프로 크리켓 리그입니다. 이는 세계에서 가장 참가자가 많은 크리켓 이벤트 중 하나로, 2019년에 [67억 달러](https://en.wikipedia.org/wiki/Indian_Premier_League)에 달하는 가치로 추산됩니다.
+
+Cricket is a game of numbers - the runs scored by a batsman, the wickets taken by a bowler, the matches won by a cricket team, the number of times a batsman responds in a certain way to a kind of bowling attack, etc. The capability to dig into cricketing numbers for both improving performance and studying the business opportunities, overall market, and economics of cricket via powerful analytics tools, powered by numerical computing software such as NumPy, is a big deal. Cricket analytics provides interesting insights into the game and predictive intelligence regarding game outcomes.
+
+Today, there are rich and almost infinite troves of cricket game records and statistics available, e.g., [ESPN cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) and [cricsheet](https://cricsheet.org). These and several such cricket databases have been used for [cricket analysis](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances) using the latest machine learning and predictive modelling algorithms. Media and entertainment platforms along with professional sports bodies associated with the game use technology and analytics for determining key metrics for improving match winning chances:
+
+* 타격 성적 이동 평균,
+* 점수 예측,
+* gaining insights into fitness and performance of a player against different opposition,
+* player contribution to wins and losses for making strategic decisions on team composition
+
+{{< figure src="/images/content_images/cs/cricket-pitch.png" class="csfigcaption" caption="**경기장의 중심이 되는 크리켓 피치**" alt="볼러와 배트맨으로 이루어진 크리켓 피치" align="middle" attr="*(사진 출처: Debarghya Das)*" attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
+
+### 데이터 분석의 주요 목표
+
+* 스포츠 데이터는 크리켓에서뿐만 아니라 [다른 스포츠](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)에서도 팀의 전체 역량과 승리 확률을 높이는 데 쓰입니다.
+* 실시간 데이터 분석은 경기 중에도 팀과 관련 사업의 변화하는 전략에 대한 통찰력을 확보하여 경제적 이익과 성장을 도모하는 데 도움이 될 수 있습니다.
+* Besides historical analysis, predictive models are harnessed to determine the possible match outcomes that require significant number crunching and data science know-how, visualization tools and capability to include newer observations in the analysis.
+
+{{< figure src="/images/content_images/cs/player-pose-estimator.png" class="fig-center" alt="자세 예측" caption="**크리켓 자세 예측**" attr="*(사진 출처: connect.vin)*" attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
+
+### 과제
+
+* **데이터 정리 및 전처리**
+
+ IPL은 크리켓을 고전적인 테스트 매치 형식에서 훨씬 더 큰 규모로 확대시켰습니다. 매 시즌 다양한 형식으로 열리는 경기의 수가 증가하고 있으며, 데이터, 알고리즘, 최신 스포츠 데이터 분석 기술, 시뮬레이션 모델 또한 증가하고 있습니다. 크리켓 데이터 분석에는 필드 매핑, 플레이어 추적, 공 추적, 플레이어의 타격 분석 및 공이 어떻게 움직이는지에 대한 각도, 스핀, 속도, 궤도 등 다른 많은 종류의 데이터를 필요로 합니다. 이 수많은 인자들은 데이터 정리 및 전처리 과정의 복잡성을 증가시켰습니다.
+
+* **동적 모델링**
+
+ 크리켓에서는 다른 스포츠와 마찬가지로 다양한 선수의 수, 선수의 속성, 공이나 잠재적 행동의 가능성 등 여러 가능성을 추적할 때 많은 변수가 작용합니다. 데이터 분석 및 모델링의 복잡성은 분석 중 제시되는 예측 질문의 종류에 비례하며, 데이터 표현 및 모델에 크게 의존합니다. 타자가 다른 각도나 속도로 공을 쳤을 때 일어날 일과 같은 동적인 크리켓 경기를 예측할 때, 계산이나 데이터 비교 측면에서 상황이 훨씬 더 어려워집니다.
+
+* **예측 분석의 복잡성**
+
+ Much of the decision making in cricket is based on questions such as "how often does a batsman play a certain kind of shot if the ball delivery is of a particular type", or "how does a bowler change his line and length if the batsman responds to his delivery in a certain way". This kind of predictive analytics query requires highly granular dataset availability and the capability to synthesize data and create generative models that are highly accurate.
+
+## 크리켓 분석에서 NumPy의 역할
+
+스포츠 분석은 현재 매우 활발한 분야입니다. 많은 연구자들과 기업체에서는 최신 머신러닝 및 AI 기법을 쓰는 대신 [NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)나 Scikit-learn, SciPy, Matplotlib, Jupyter같은 PyData 패키지를 이용합니다. NumPy는 크리켓과 관련된 여러 스포츠 통계에 다음과 같이 쓰였습니다.
+
+* **통계적 분석:** NumPy의 수치적 기능은 다양한 플레이어 및 게임 전술에서 관찰 데이터 또는 경기의 통계적 중요성을 추정하는 데 도움을 주거나, 생성적 또는 정적 모델과 비교하여 게임 결과를 추정합니다. 전술 분석에는 [인과 분석](https://amplitude.com/blog/2017/01/19/causation-correlation) 및 [빅데이터 접근법](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)이 쓰입니다.
+
+* **데이터 시각화:** 그래프 그리기 및 [시각화](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b)는 다양한 데이터셋 사이의 관계를 볼 수 있는 유용한 관점을 제공해 줍니다.
+
+## 요약
+
+스포츠 분석은 프로 게임의 판도를 바꿀 것입니다. 특히 최근까지는 주로 "직감"이나 과거부터 내려오던 것을 답습하는 식으로 이뤄진 전략적 의사 결정에 대해서 말입니다. NumPy는 데이터 분석, 기계 학습 및 AI 알고리즘과 관련하여 더욱 높은 수준의 기능을 제공하는 Python 패키지들의 견고한 기반을 제공합니다. 이들 패키지는 크리켓 경기뿐 아니라 크리켓 관련 추론이나 사업을 추진하면서, 판도를 바꿀만한 결정을 이끌어 내는 영감을 실시간으로 제공하는 데 널리 이용되고 있습니다. 크리켓 경기의 결과로 이어지는 숨겨진 매개변수, 패턴이나 속성을 찾는 것은 관계자가 숫자와 통계에 숨겨진 게임을 분석하는 방법을 파악하는 데 도움이 됩니다.
+
+{{< figure src="/images/content_images/cs/numpy_ca_benefits.png" class="fig-center" alt="NumPy를 크리켓 분석에 사용했을 때의 이익을 보여주는 다이어그램" caption="**활용된 주요 NumPy 기능**" >}}
diff --git a/content/ko/case-studies/deeplabcut-dnn.md b/content/ko/case-studies/deeplabcut-dnn.md
new file mode 100644
index 0000000000..f6b769cf3f
--- /dev/null
+++ b/content/ko/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,90 @@
+---
+title: "Case Study: DeepLabCut 3D Pose Estimation"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**DeepLapCut을 활용한 쥐의 손 움직임 분석**" alt="쥐 손 애니메이션" attr="*(출처: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut">}}
+
+
+
Open Source Software is accelerating Biomedicine. DeepLabCut enables automated video analysis of animal behavior using Deep Learning.
+
+
+
+## About DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
+
+Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
+
+{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**경주마 신체 부위의 위치를 트래킹하는 색 점**" alt="경주마 애니메이션" attr="*(출처: Mackenzie Mathis)*">}}
+
+DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
+
+DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
+
+Recently, the [DeepLabCut model zoo](http://www.mousemotorlab.org/dlc-modelzoo) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
+
+### Key Goals and Results
+
+* **Automation of animal pose analysis for scientific studies:**
+
+ The primary objective of DeepLabCut technology is to measure and track posture of animals in a diverse settings. This data can be used, for example, in neuroscience studies to understand how the brain controls movement, or to elucidate how animals socially interact. Researchers have observed a [tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1) with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second (FPS).
+
+* **Creation of an easy-to-use Python toolkit for pose estimation:**
+
+ DeepLabCut wanted to share their animal pose-estimation technology in the form of an easy to use tool that can be adopted by researchers easily. So they have created a complete, easy-to-use Python toolbox with project management features as well. These enable not only automation of pose-estimation but also managing the project end-to-end by helping the DeepLabCut Toolkit user right from the dataset collection stage to creating shareable and reusable analysis pipelines.
+
+ Their [toolkit][DLCToolkit] is now available as open source.
+
+ A typical DeepLabCut Workflow includes:
+
+ - creation and refining of training sets via active learning
+ - creation of tailored neural networks for specific animals and scenarios
+ - code for large-scale inference on videos
+ - draw inferences using integrated visualization tools
+
+{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**포즈 추정 단계 - DeepLabCut**" alt="DLC 단계" align="middle" attr="(출처: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
+
+### The Challenges
+
+* **Speed**
+
+ Fast processing of animal behavior videos in order to measure their behavior and at the same time make scientific experiments more efficient, accurate. Extracting detailed animal poses for laboratory experiments, without markers, in dynamically changing backgrounds, can be challenging, both technically as well as in terms of resource needs and training data required. Coming up with a tool that is easy to use without the need for skills such as computer vision expertise that enables scientists to do research in more real-world contexts, is a non-trivial problem to solve.
+
+* **Combinatorics**
+
+ Combinatorics involves assembly and integration of movement of multiple limbs into individual animal behavior. Assembling keypoints and their connections into individual animal movements and linking them across time is a complex process that requires heavy-duty numerical analysis, especially in case of multi-animal movement tracking in experiment videos.
+
+* **Data Processing**
+
+ Last but not the least, array manipulation - processing large stacks of arrays corresponding to various images, target tensors and keypoints is fairly challenging.
+
+{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**포즈 추정 변수 및 복잡도**" alt="난점 설명" align="middle" attr="(출처: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
+
+## NumPy's Role in meeting Pose Estimation Challenges
+
+NumPy addresses DeepLabCut technology's core need of numerical computations at high speed for behavioural analytics. Besides NumPy, DeepLabCut employs various Python software that utilize NumPy at their core, such as [SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org), [matplotlib](https://matplotlib.org), [Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug), [scikit-learn](https://scikit-learn.org/stable/), [scikit-image](https://scikit-image.org) and [Tensorflow](https://www.tensorflow.org).
+
+The following features of NumPy played a key role in addressing the image processing, combinatorics requirements and need for fast computation in DeepLabCut pose estimation algorithms:
+
+* Vectorization
+* Masked Array Operations
+* Linear Algebra
+* Random Sampling
+* Reshaping of large arrays
+
+DeepLabCut utilizes NumPy’s array capabilities throughout the workflow offered by the toolkit. In particular, NumPy is used for sampling distinct frames for human annotation labeling, and for writing, editing and processing annotation data. Within TensorFlow the neural network is trained by DeepLabCut technology over thousands of iterations to predict the ground truth annotations from frames. For this purpose, target densities (scoremaps) are created to cast pose estimation as a image-to-image translation problem. To make the neural networks robust, data augmentation is employed, which requires the calculation of target scoremaps subject to various geometric and image processing steps. To make training fast, NumPy’s vectorization capabilities are leveraged. For inference, the most likely predictions from target scoremaps need to extracted and one needs to efficiently “link predictions to assemble individual animals”.
+
+{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**DeepLabCut 워크플로우**" alt="워크플로우" attr="*(출처: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
+
+## Summary
+
+Observing and efficiently describing behavior is a core tenant of modern ethology, neuroscience, medicine, and technology. [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior. With only a small set of training images, the DeepLabCut Python toolbox allows training a neural network to within human level labeling accuracy, thus expanding its application to not only behavior analysis in the laboratory, but to potentially also in sports, gait analysis, medicine and rehabilitation studies. Complex combinatorics, data processing challenges faced by DeepLabCut algorithms are addressed through the use of NumPy's array manipulation capabilities.
+
+{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy를 통한 이익" caption="**활용한 주요 NumPy 기능**" >}}
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
diff --git a/content/ko/case-studies/gw-discov.md b/content/ko/case-studies/gw-discov.md
new file mode 100644
index 0000000000..0c186b1507
--- /dev/null
+++ b/content/ko/case-studies/gw-discov.md
@@ -0,0 +1,69 @@
+---
+title: "사례 연구: 중력파의 발견"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/gw_sxs_image.png" class="fig-center" caption="**중력파**" alt="이항 결합하며 중력파를 생성하는 블랙홀" attr="*(사진 크레딧: LIGO의 Simulating eXtreme Spacetimes (SXS) 프로젝트)*" attrlink="https://youtu.be/Zt8Z_uzG71o" >}}
+
+
+
과학적 Python 생태계는 LIGO 연구에 있어서 중요한 인프라에 해당합니다.
+
+
+
+## [중력파](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) 그리고 [LIGO](https://www.ligo.caltech.edu)에 대해
+
+중력파는 '시공간 천막'의 물결이라고 할 수 있으며, 두 블랙홀의 충돌이나 병합, 쌍성의 결합 혹은 초신성과 같이 우주가 대격변하는 사건으로부터 생성됩니다. 중력파를 관측하는 것은 비단 중력 연구에 도움을 줄 뿐만 아니라 먼 우주에서의 모호한 현상들과 이것이 미치는 영향에 대해서도 이해할 수 있게 해 줍니다.
+
+The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu) was designed to open the field of gravitational-wave astrophysics through the direct detection of gravitational waves predicted by Einstein’s General Theory of Relativity. 이는 미국 내의 멀리 떨어져 있는 간섭계 2개로 구성되어 있습니다. 하나는 워싱턴 주 핸포드에, 다른 하나는 루이지애나 주 리빙스턴에 있으며 이들은 중력파를 감지하기 위해 함께 작동합니다. Each of them has multi-kilometer-scale gravitational wave detectors that use laser interferometry. The LIGO Scientific Collaboration (LSC), is a group of more than 1000 scientists from universities around the United States and in 14 other countries supported by more than 90 universities and research institutes; approximately 250 students actively contributing to the collaboration. The new LIGO discovery is the first observation of gravitational waves themselves, made by measuring the tiny disturbances the waves make to space and time as they pass through the earth. It has opened up new astrophysical frontiers that explore the warped side of the universe—objects and phenomena that are made from warped spacetime.
+
+
+### 주요 목표
+
+* Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to detect gravitational waves from some of the most violent and energetic processes in the Universe, the data LIGO collects may have far-reaching effects on many areas of physics including gravitation, relativity, astrophysics, cosmology, particle physics, and nuclear physics.
+* Crunch observed data via numerical relativity computations that involves complex maths in order to discern signal from noise, filter out relevant signal and statistically estimate significance of observed data
+* Data visualization so that the binary / numerical results can be comprehended.
+
+
+
+### 과제
+
+* **계산**
+
+ Gravitational Waves are hard to detect as they produce a very small effect and have tiny interaction with matter. Processing and analyzing all of LIGO's data requires a vast computing infrastructure.After taking care of noise, which is billions of times of the signal, there is still very complex relativity equations and huge amounts of data which present a computational challenge: [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI) spread on 6 dedicated LIGO clusters
+
+* **데이터 범람**
+
+ As observational devices become more sensitive and reliable, the challenges posed by data deluge and finding a needle in a haystack rise multi-fold. LIGO generates terabytes of data every day! Making sense of this data requires an enormous effort for each and every detection. For example, the signals being collected by LIGO must be matched by supercomputers against hundreds of thousands of templates of possible gravitational-wave signatures.
+
+* **시각화**
+
+ Once the obstacles related to understanding Einstein’s equations well enough to solve them using supercomputers are taken care of, the next big challenge was making data comprehensible to the human brain. Simulation modeling as well as signal detection requires effective visualization techniques. Visualization also plays a role in lending more credibility to numerical relativity in the eyes of pure science aficionados, who did not give enough importance to numerical relativity until imaging and simulations made it easier to comprehend results for a larger audience. Speed of complex computations and rendering, re-rendering images and simulations using latest experimental inputs and insights can be a time consuming activity that challenges researchers in this domain.
+
+{{< figure src="/images/content_images/cs/gw_strain_amplitude.png" class="fig-center" alt="중력파 변형 진폭" caption="**GW150914에서 추정된 중력파 변형 진폭**" attr="(**그래프 출처:** Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)" attrlink="https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger" >}}
+
+## 중력파 검출에서 NumPy의 역할
+
+Gravitational waves emitted from the merger cannot be computed using any technique except brute force numerical relativity using supercomputers. The amount of data LIGO collects is as incomprehensibly large as gravitational wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by the software used for various tasks performed during the GW detection project at LIGO. NumPy helped in solving complex maths and data manipulation at high speed. 몇 가지 예시를 들자면,
+
+* [신호 처리](https://www.uv.es/virgogroup/Denoising_ROF.html): 글리치 검출, [잡음 식별 및 데이터 결정](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+* 데이터 수집: 어떤 데이터를 분석할 수 있을지 결정하고, 모래 속 바늘과 같이 미미한 신호가 있는지 파악
+* 통계적 분석: 관측 데이터의 통계적 유의성 추정, 모델을 비교하여 신호 매개변수(예: 별의 질량, 회전 속도, 거리 등)를 추정
+* 데이터의 시각화
+ - 시계열 데이터
+ - 스펙트로그램
+* 상관 분석 연산
+* Key [Software](https://github.com/lscsoft) developed in GW data analysis such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for providing object based interfaces to utilities, tools, and methods for studying data from gravitational-wave detectors.
+
+{{< figure src="/images/content_images/cs/gwpy-numpy-dep-graph.png" class="fig-center" alt="gwpy-numpy 종속성" caption="**GwPy 패키지가 어떻게 NumPy에 종속하는지를 나타내는 종속성 그래프**" >}}
+
+----
+
+{{< figure src="/images/content_images/cs/PyCBC-numpy-dep-graph.png" class="fig-center" alt="PyCBC-numpy 종속성" caption="**PyCBC 패키지가 어떻게 NumPy에 종속하는지를 나타내는 종속성 그래프**" >}}
+
+## 요약
+
+중력파 검출을 통하여 연구자들은 완전히 예상치 못한 현상을 발견하게 됨으로써, 알려진 것 중 가장 난해한 천체물리학적 현상에 대하여 많은 사람들에게 새로운 통찰을 주었습니다. Number crunching and data visualization is a crucial step that helps scientists gain insights into data gathered from the scientific observations and understand the results. The computations are complex and cannot be comprehended by humans unless it is visualized using computer simulations that are fed with the real observed data and analysis. NumPy along with other Python packages such as matplotlib, pandas, and scikit-learn is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to answer complex questions and discover new horizons in our understanding of the universe.
+
+{{< figure src="/images/content_images/cs/numpy_gw_benefits.png" class="fig-center" alt="numpy를 통한 이익" caption="**활용된 주요 NumPy 기능**" >}}
diff --git a/content/ko/citing-numpy.md b/content/ko/citing-numpy.md
new file mode 100644
index 0000000000..cf1458e657
--- /dev/null
+++ b/content/ko/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: NumPy 인용하기
+sidebar: false
+---
+
+진행한 연구에서 NumPy가 중요한 부분을 차지하고 있고 학술지에 출판한다면, 아래의 논문을 참조문헌에 써주시길 바랍니다.
+
+* Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([링크](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_BibTeX 형식:_
+
+ ```
+@Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+}
+```
diff --git a/content/ko/code-of-conduct.md b/content/ko/code-of-conduct.md
new file mode 100644
index 0000000000..bff6168db5
--- /dev/null
+++ b/content/ko/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: NumPy 이용 약관
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### 소개
+
+This Code of Conduct applies to all spaces managed by the NumPy project, including all public and private mailing lists, issue trackers, wikis, blogs, Twitter, and any other communication channel used by our community. The NumPy project does not organise in-person events, however events related to our community should have a code of conduct similar in spirit to this one.
+
+This Code of Conduct should be honored by everyone who participates in the NumPy community formally or informally, or claims any affiliation with the project, in any project-related activities and especially when representing the project, in any role.
+
+This code is not exhaustive or complete. It serves to distill our common understanding of a collaborative, shared environment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment that enriches the surrounding community.
+
+### 구체적인 지침
+
+We strive to:
+
+1. Be open. We invite anyone to participate in our community. We prefer to use public methods of communication for project-related messages, unless discussing something sensitive. This applies to messages for help or project-related support, too; not only is a public support request much more likely to result in an answer to a question, it also ensures that any inadvertent mistakes in answering are more easily detected and corrected.
+2. Be empathetic, welcoming, friendly, and patient. We work together to resolve conflict, and assume good intentions. We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal attack. A community where people feel uncomfortable or threatened is not a productive one.
+3. Be collaborative. Our work will be used by other people, and in turn we will depend on the work of others. When we make something for the benefit of the project, we are willing to explain to others how it works, so that they can build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those consequences seriously when making decisions.
+4. Be inquisitive. Nobody knows everything! Asking questions early avoids many problems later, so we encourage questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.
+5. Be careful in the words that we choose. We are careful and respectful in our communication, and we take responsibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept harassment or other exclusionary behaviour, such as:
+ * Violent threats or language directed against another person.
+ * Sexist, racist, or otherwise discriminatory jokes and language.
+ * Posting sexually explicit or violent material.
+ * Posting (or threatening to post) other people’s personally identifying information (“doxing”).
+ * Sharing private content, such as emails sent privately or non-publicly, or unlogged forums such as IRC channel history, without the sender’s consent.
+ * Personal insults, especially those using racist or sexist terms.
+ * Unwelcome sexual attention.
+ * Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
+ * Repeated harassment of others. In general, if someone asks you to stop, then stop.
+ * Advocating for, or encouraging, any of the above behaviour.
+
+### 다양성 성명
+
+The NumPy project welcomes and encourages participation by everyone. We are committed to being a community that everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we try our best to treat everyone kindly.
+
+No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be comprehensive, we explicitly honour diversity in: age, culture, ethnicity, genotype, gender identity or expression, language, national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, subculture and technical ability, to the extent that these do not conflict with this code of conduct.
+
+Though we welcome people fluent in all languages, NumPy development is conducted in English.
+
+Standards for behaviour in the NumPy community are detailed in the Code of Conduct above. Participants in our community should uphold these standards in all their interactions and help others to do so as well (see next section).
+
+### 신고 지침
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.
+
+For clearly intentional breaches, report those to the Code of Conduct Committee (see below). For possibly unintentional breaches, you may reply to the person and point out this code of conduct (either in public or in private, whatever is most appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct Committee directly, or ask the Committee for advice, in confidence.
+
+You can report issues to the NumPy Code of Conduct Committee at numpy-conduct@googlegroups.com.
+
+Currently, the Committee consists of:
+
+* Stefan van der Walt
+* Melissa Weber Mendonça
+* Anirudh Subramanian
+
+If your report involves any members of the Committee, or if they feel they have a conflict of interest in handling it, then they will recuse themselves from considering your report. Alternatively, if for any reason you feel uncomfortable making a report to the Committee, then you can also contact senior NumFOCUS staff at [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### 신고 해결 & 이용약관 강령
+
+_This section summarizes the most important points, more details can be found in_ [NumPy Code of Conduct - How to follow up on a report](/report-handling-manual).
+
+We will investigate and respond to all complaints. The NumPy Code of Conduct Committee and the NumPy Steering Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential (unless the reporter agrees otherwise).
+
+In case of severe and obvious breaches, e.g. personal threat or violent, sexist or racist language, we will immediately disconnect the originator from NumPy communication channels; please see the manual for details.
+
+In cases not involving clear severe and obvious breaches of this Code of Conduct the process for acting on any received Code of Conduct violation report will be:
+
+1. acknowledge report is received,
+2. reasonable discussion/feedback,
+3. mediation (if feedback didn’t help, and only if both reporter and reportee agree to this),
+4. enforcement via transparent decision (see [Resolutions](/report-handling-manual#resolutions)) by the Code of Conduct Committee.
+
+The Committee will respond to any report as soon as possible, and at most within 72 hours.
+
+### 끝내며
+
+We are thankful to the groups behind the following documents, from which we drew content and inspiration:
+
+- [SciPy 이용 약관](https://docs.scipy.org/doc/scipy/reference/dev/conduct/code_of_conduct.html)
diff --git a/content/ko/community.md b/content/ko/community.md
new file mode 100644
index 0000000000..f24e878bf5
--- /dev/null
+++ b/content/ko/community.md
@@ -0,0 +1,65 @@
+---
+title: 커뮤니티
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). NumPy 관리자는 개방적이며 포용적이고 긍정적인 커뮤니티를 만들기 위해 상당한 노력을 기울였습니다. [NumPy 이용약관](/code-of-conduct)을 읽으면 커뮤니티가 발전하도록 해 주는 상대방과의 상호작용을 어떻게 하는지 그 방법을 알 수 있습니다.
+
+NumPy 커뮤니티에서는 배우고, 지식을 공유하고, 다른 사람들과 협력할 수 있는 여러 커뮤니케이션 채널을 제공합니다.
+
+
+## 온라인으로 참여
+
+NumPy 프로젝트 및 커뮤니티에 곧장 참여할 수 있는 방법들입니다. _사용자와 커뮤니티 회원이 사용 중 질문에 대하여 서로 도움을 주고받기를 권장한다는 것을 명심하십시오. [도움말](/gethelp)을 참고하세요._
+
+
+### [NumPy 메일링 리스트](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+이 리스트는 NumPy 신기능 추가, NumPy 로드맵 변경 등 모든 종류의 프로젝트 전체 의사 결정과 같은 장기적인 토론을 이끄는 주요 포럼이라 할 수 있습니다. 출시, 개발자 모임, 일반 모임, 컨퍼런스 강연과 같은 NumPy에 대한 공지도 이 리스트를 통해 받아볼 수 있습니다.
+
+리스트에 회신하려면 (다른 발신자에게 회신하기보다는) 하단의 게시물을 이용하십시오. 또, 자동 발신 메일에 회신하지 마십시오. 검색 가능한 아카이브는 [여기](https://mail.python.org/archives/list/numpy-discussion@python.org/)에서 이용할 수 있습니다.
+
+***
+
+### [GitHub 이슈 추적기](https://github.com/numpy/numpy/issues)
+
+- 버그 제보 (예: "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
+- 문서 관련 문제점 (예: "I found this section unclear");
+- 기능 요청 (예: "I would like to have a new interpolation method in `np.percentile`").
+
+_GitHub은 보안 취약점을 제보하는 곳이 아님을 명심하십시오. NumPy의 보안 취약점을 발견한 것 같으시다면, [여기](https://tidelift.com/docs/security)에서 제보하십시오._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+NumPy에 _기여하는_ 방법에 대하여 질문하는 실시간 채팅방입니다. 여기는 비공개 공간으로, 공용 메일링 리스트나 GitHub에 질문 또는 아이디어를 올리는 것을 주저하는 사람들을 위한 곳입니다. [여기](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy)에서 자세한 내용과 초대를 받는 방법을 알아보세요.
+
+
+## 학술 그룹 및 모임
+
+NumPy와 데이터 과학 및 과학적 컴퓨팅을 위한 Python 패키지의 생태계에 대해 자세히 알아보기 위하여, 지역 모임이나 학술 그룹을 찾고 싶다면 [PyData 모임](https://www.meetup.com/pro/pydata/) (150개 이상의 모임, 10만 명 이상의 회원) 사이트를 돌아보시는 것을 추천해 드립니다.
+
+NumPy에서도 가끔 자체 팀이나 관심 있는 기여자들을 위하여 직접 모임을 조직하기도 합니다. 보통 몇 달 전부터 미리 계획되며 [메일링 리스트](https://mail.python.org/mailman/listinfo/numpy-discussion) 및 [트위터](https://twitter.com/numpy_team)로 해당 사실을 알립니다.
+
+
+## 컨퍼런스
+
+NumPy 프로젝트에서는 자체 컨퍼런스를 추진하지 않습니다. 보통 NumPy 관리자나 기여자, 사용자들에게 가장 인기 있는 컨퍼런스는 SciPy나 PyData 쪽 컨퍼런스입니다.
+
+- [SciPy US](https://conference.scipy.org)
+- [EuroSciPy](https://www.euroscipy.org)
+- [SciPy 라틴 아메리카](https://www.scipyla.org)
+- [SciPy 인도](https://scipy.in)
+- [SciPy 일본](https://conference.scipy.org)
+- [PyData 컨퍼런스](https://pydata.org/event-schedule/) (세계 곳곳의 여러 나라에서 1년에 15~20개의 이벤트를 개최)
+
+이런 컨퍼런스 대부분에는 NumPy를 배우는 튜토리얼의 날이나 NumPy 혹은 관련 오픈소스 프로젝트에 기여하는 방법을 배울 수 있는 장이 마련되어 있습니다.
+
+
+## NumPy 커뮤니티에 가입
+
+더욱 성장하기 위해, NumPy 프로젝트에서는 당신의 경험과 의욕을 필요로 합니다. 프로그래머가 아니라고요? 걱정하지 마세요! NumPy에 기여하는 방법에는 여러 가지가 있습니다.
+
+NumPy 기여자가 되는 데 관심이 있으시다면 (야호!) [기여](/contribute) 페이지를 방문하시는 것을 추천해 드립니다.
+
diff --git a/content/ko/config.yaml b/content/ko/config.yaml
new file mode 100644
index 0000000000..783615da46
--- /dev/null
+++ b/content/ko/config.yaml
@@ -0,0 +1,165 @@
+---
+languageName: 한국어
+params:
+ description: 왜 NumPy인가? 강력한 n차원 배열. 수치 컴퓨팅 도구. 상호운용성. 고성능. 오픈소스.
+ navbarlogo:
+ image: logo.svg
+ link: /
+ hero:
+ #Main hero title
+ title: NumPy
+ #Hero subtitle (optional)
+ subtitle: Python으로 과학적 컴퓨팅을 하기 위한 기초 패키지
+ #Button text
+ buttontext: 시작하기
+ #Where the main hero button links to
+ buttonlink: "/install"
+ #Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: 플레이스홀더
+ promptlabel: 대화형 쉘 프롬프트
+ button:
+ -
+ label: 대화형 튜토리얼 쉘을 켭니다
+ text: 사용
+ shellcontent:
+ intro:
+ -
+ title: NumPy 써 보기
+ text: 대화형 쉘을 켭니다
+ loading:
+ -
+ title: 잠시만요...
+ text: mybinder.org의 컨테이너를 실행하는 중입니다...
+ docslink: 문서도 한 번 열람해보세요.
+ casestudies:
+ title: 사례 연구
+ features:
+ -
+ title: 최초의 블랙홀 사진
+ text: NumPy 및 NumPy에 의존하는 SciPy, Matplotlib와 같은 라이브러리가 사건의 지평선 망원경으로 최초의 블랙홀 사진을 생성할 수 있었던 방법
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: 최초의 블랙홀 사진. 검은 배경의 주황색 원입니다.
+ url: /case-studies/blackhole-image
+ -
+ title: 중력파 검출
+ text: 1916년, 알베르트 아인슈타인이 중력파를 예측했습니다. LIGO 과학자들이 NumPy를 이용하여 이것이 존재함을 증명하기 100년 전이었습니다.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: 서로의 궤도를 도는 두 구체. 주위의 중력을 변화시키고 있습니다.
+ url: /case-studies/gw-discov
+ -
+ title: 스포츠 통계
+ text: 크리켓 분석은 통계적 모델링과 예측 분석을 통해 선수와 팀의 성과를 개선하여 게임을 바꾸고 있습니다. NumPy는 이런 많은 분석을 가능하게 합니다.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: 크리켓 공이 녹지 위에 있습니다.
+ url: /case-studies/cricket-analytics
+ -
+ title: 딥러닝을 통한 자세 추정
+ text: DeepLabCut은 동물의 행동을 관찰하는 과학 연구의 속도를 개선하기 위해, NumPy를 사용하여 종이나 시간에 따른 운동 제어 방식을 잘 이해할 수 있도록 하였습니다.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: 치타 자세 분석
+ url: /case-studies/deeplabcut-dnn
+ keyfeatures:
+ features:
+ -
+ title: 강력한 n차원 배열
+ text: 빠르고 다재다능한 NumPy의 벡터화, 인덱싱, 전송 구성은 오늘날 배열 컴퓨팅의 사실상 표준입니다.
+ -
+ title: 수치적 컴퓨팅 도구
+ text: NumPy는 포괄적인 수학 함수, 난수 생성기, 선형 대수 루틴, 푸리에 변환 등을 제공합니다.
+ -
+ title: 상호운용성
+ text: NumPy는 광범위한 하드웨어 및 컴퓨팅 플랫폼을 지원합니다. 또 분산형, GPU, 희소배열 라이브러리와도 잘 작동합니다.
+ -
+ title: 고성능
+ text: NumPy의 핵심은 최적화된 C 코드로 구성되어 있습니다. 컴파일된 코드의 속도와 함께 Python의 유연함을 즐기세요.
+ -
+ title: 쉬운 사용성
+ text: NumPy의 고수준 문법은 어떤 배경이나 수준을 가지고 있는 프로그래머든 쉽게 접근하여 생산적인 일을 할 수 있도록 만들어줍니다.
+ -
+ title: 오픈소스
+ text: 자유 [BSD 라이선스](https://github.com/numpy/numpy/blob/main/LICENSE.txt)에 따라, NumPy는 흥미에 찼으며, 반응이 빠르고, 다양성이 넘치는 [커뮤니티](/community)에 의하여 [GitHub](https://github.com/numpy/numpy)에서 공개적으로 개발되고 유지됩니다.
+ tabs:
+ title: 생태계
+ section5: false
+navbar:
+ -
+ title: 설치
+ url: /install
+ -
+ title: 문서
+ url: https://numpy.org/doc/stable
+ -
+ title: 배움
+ url: /learn
+ -
+ title: 커뮤니티
+ url: /community
+ -
+ title: 정보
+ url: /about
+ -
+ title: 기여
+ url: /contribute
+footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ -
+ link: https://github.com/numpy/numpy
+ icon: github
+ -
+ link: https://twitter.com/numpy_team
+ icon: twitter
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ -
+ text: 설치
+ link: /install
+ -
+ text: 문서
+ link: https://numpy.org/doc/stable
+ -
+ text: 배움
+ link: /learn
+ -
+ text: Numpy 인용
+ link: /citing-numpy
+ -
+ text: 로드맵
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ -
+ text: 정보
+ link: /about
+ -
+ text: 커뮤니티
+ link: /community
+ -
+ text: 사용자 설문조사
+ link: /user-surveys
+ -
+ text: 기여
+ link: /contribute
+ -
+ text: 이용약관
+ link: /code-of-conduct
+ column3:
+ links:
+ -
+ text: 도움받기
+ link: /gethelp
+ -
+ text: 이용약관
+ link: /terms
+ -
+ text: 개인정보처리방침
+ link: /privacy
+ -
+ text: 홍보 자료
+ link: /press-kit
+
diff --git a/content/ko/contribute.md b/content/ko/contribute.md
new file mode 100644
index 0000000000..d789e93c46
--- /dev/null
+++ b/content/ko/contribute.md
@@ -0,0 +1,78 @@
+- - -
+title: NumPy에 기여하기 sidebar: false
+- - -
+
+NumPy 프로젝트에서는 당신의 경험과 의욕을 환영합니다! NumPy에 기여할 수 있는 방법은 프로그래밍뿐만이 아닙니다.
+
+- [코드 작성](#writing-code)
+
+아래와 같이 기여할 수도 있습니다.
+
+- [풀 요청 검토](#reviewing-pull-requests)
+- [튜토리얼, 발표 등 교육 자료 개발](#developing-educational-materials)
+- [이슈 선별](#issue-triaging)
+- [사이트에서 작업](#website-development)
+- [그래픽 디자인에 기여](#graphic-design)
+- [사이트 콘텐츠 번역](#translating-website-content)
+- [커뮤니티 코디네이터로 기여](#community-coordination-and-outreach)
+- [보조금 제안서 작성 및 기타 모금 지원](#fundraising)
+
+시작점을 찾기 힘들거나 재능을 어떻게 활용해야 할지 잘 모르겠다면, _물어보세요!_ [메일링 리스트](https://mail.python.org/mailman/listinfo/numpy-discussion)나 [GitHub](http://github.com/numpy/numpy) ([이슈](https://github.com/numpy/numpy/issues)를 생성하거나 관련 이슈에 답글을 다세요)에서 질문하시면 됩니다.
+
+앞서 소개드린 것들이 저희가 선호하는 연락 채널입니다. (오픈 소스는 원래 개방되어 있으니까요) 하지만 비공개적으로 대화를 나누고 싶으시다면, 을 통해 커뮤니티 코디네이터로 연락하시거나 [Slack](https://numpy-team.slack.com)을 이용하시면 됩니다. (초대를 받으시려면 을 쓰시면 됩니다).
+
+또한 저희는 격주마다 _커뮤니티 연락_을 합니다. 자세한 정보는 [메일링 리스트](https://mail.python.org/mailman/listinfo/numpy-discussion)로 알립니다. 당신의 참여를 매우 환영합니다. 오픈소스에 기여하는 게 처음이시라면 [이 도움말](https://opensource.guide/how-to-contribute/)을 읽어 보시는 것을 적극 권장합니다.
+
+저희 커뮤니티는 모두를 평등하게 대하고 모든 기여의 가치를 인정하려는 뜻을 품고 있습니다. 개방적이고 참여를 환영하는 분위기를 조성하기 위해 [이용약관](/code-of-conduct)을 만들었습니다.
+
+### 코드 작성
+
+프로그래머 여러분, 이 [도움말](https://numpy.org/devdocs/dev/index.html#development-process-summary)에서 어떻게 코드베이스에 기여하는지 알 수 있습니다.
+
+### 풀 요청 검토
+프로젝트의 열린 풀 요청만 250개가 넘습니다. 즉 많은 잠재적 개선점과 오픈소스 기여자들이 피드백을 기다리고 있다는 것입니다. NumPy를 알고 있는 개발자라면, 코드베이스에 대해 잘 알지 못해도 기여할 수 있습니다. 아래와 같은 기여를 해 보십시오.
+* 늘어지는 토론 요약
+* 문서의 풀 요청 심사
+* 제안된 변경 사항 테스트
+
+
+### 교육 자료 개발
+
+NumPy의 [사용자 도움말](https://numpy.org/devdocs)은 현재 대규모로 재구성되고 있습니다. 현재 새로운 튜토리얼, 방법, 심층적 설명이 필요하고, 사이트의 구조를 다시 짜야 합니다. 글을 쓰는 사람에게만 기회가 주어지는 것은 아닙니다. 코드 예제와 노트북, 동영상 등을 통한 기여도 환영합니다. [NEP 44 — NumPy 문서의 재구성](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)에 사이트 재구성에 대하여 자세한 내용이 설명되어 있습니다.
+
+
+### 이슈 확인
+
+[NumPy 이슈 트래커](https://github.com/numpy/numpy/issues)에는 _정말 많은_ 이슈들이 현재 열린 상태로 있습니다. 일부는 더 이상 유효하지 않은 이슈고, 일부는 우선 순위를 지정해야 하며, 일부는 새로운 기여자들이 볼 만한 좋은 이슈가 될 수 있을 것입니다. 아래와 같은 기여를 해 보십시오.
+
+* 오래된 버그가 현재도 남아 있는지 확인
+* 중복된 이슈를 찾아 하나로 묶기
+* 이슈를 재현하는 코드를 추가
+* 이슈를 올바르게 라벨링 (이 작업에는 심사 권한이 필요합니다. 필요한 경우 요청하십시오)
+
+한 번 참여해 보시길 바랍니다.
+
+
+### 사이트 개발
+
+사이트를 막 뜯어 고친 상태이지만, 아직 끝이라기엔 멀었습니다. 웹 개발을 좋아하신다면, [여기](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)에서 저희가 이루지 못했던 사항의 목록을 볼 수 있습니다. 자신만의 아이디어를 마음껏 공유해 주십시오.
+
+
+### 그래픽 디자인
+
+그래픽 디자이너분들이 할 수 있는 기여의 목록을 여기에 열거하는 건 어렵습니다. 저희 문서에는 일러스트가 많이 부족합니다. 성장하는 사이트에는 이미지가 필요하기 때문에, 기여할 수 있는 기회가 많을 것입니다.
+
+
+### 사이트 콘텐츠 번역
+
+사용자가 모국어로 NumPy를 이용할 수 있도록 [numpy.org](https://numpy.org)의 여러 번역을 계획하고 있습니다. 이를 위해서는 자원봉사자분들의 통역이 필요합니다. 자세한 내용은 [여기](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)를 참고하십시오. [이 GitHub 이슈](https://github.com/numpy/numpy.org/issues/55)에 댓글을 달아 번역에 참여하십시오.
+
+
+### 커뮤니티 조직 및 확산
+
+우리는 커뮤니티 연락처를 통해 작업물을 더 널리 공유하고 미흡한 부분을 배워 나갑니다. 우리는 [Twitter](https://twitter.com/numpy_team) 계정, NumPy [코드 스프린트](https://scisprints.github.io/) 개최, 뉴스레터 발행, 그리고 아마 블로그 등을 통해서 더 많은 사람들이 커뮤니티에 참여하기를 간절히 바라고 있습니다.
+
+### 모금
+
+NumPy는 오랜 기간 동안 자원봉사의 형태로 유지되었으나, 그 중요성이 커짐에 따라 안정성 및 성장을 보장하려면 경제적 지원이 필요함이 분명해졌습니다. 이런 지원이 얼마나 큰 차이를 만들어 냈는지 [SciPy'19 강연](https://www.youtube.com/watch?v=dBTJD_FDVjU)에서 확인하실 수 있습니다. 모든 비영리 조직과 마찬가지로 저희는 지속적으로 보조금, 후원 및 기타 종류의 지원을 끊임없이 찾고 있습니다. 모금을 받을 아이디어가 몇 개 있지만 당연히 더 많은 자금을 받게 된다면 좋을 것입니다. 모금도 정말 희귀한 능력 중 하나입니다 - 도움을 주신다면 감사드리겠습니다.
+
diff --git a/content/ko/diversity_sep2020.md b/content/ko/diversity_sep2020.md
new file mode 100644
index 0000000000..ef3030d5f7
--- /dev/null
+++ b/content/ko/diversity_sep2020.md
@@ -0,0 +1,48 @@
+---
+title: NumPy Diversity and Inclusion Statement
+sidebar: false
+---
+
+
+_In light of the foregoing discussion on social media after publication of the NumPy paper in Nature and the concerns raised about the state of diversity and inclusion on the NumPy team, we would like to issue the following statement:_
+
+
+It is our strong belief that we are at our best, as a team and community, when we are inclusive and equitable. Being an international team from the onset, we recognize the value of collaborating with individuals from diverse backgrounds and expertise. A culture where everyone is welcomed, supported, and valued is at the core of the NumPy project.
+
+## The Past
+
+Contributing to open source has always been a pastime in which most historically marginalized groups, especially women, faced more obstacles to participate due to a number of societal constraints and expectations. Open source has a severe diversity gap that is well documented (see, e.g., the [2017 GitHub Open Source Survey](https://opensourcesurvey.org/2017/) and [this blog post](https://medium.com/tech-diversity-files/if-you-think-women-in-tech-is-just-a-pipeline-problem-you-haven-t-been-paying-attention-cb7a2073b996)).
+
+Since its inception and until 2018, NumPy was maintained by a handful of volunteers often working nights and weekends outside of their day jobs. At any one time, the number of active core developers, the ones doing most of the heavy lifting as well as code review and integration of contributions from the community, was in the range of 4 to 8. The project didn't have a roadmap or mechanism for directing resources, being driven by individual efforts to work on what seemed needed. The authors on the NumPy paper are the individuals who made the most significant and sustained contributions to the project over a period of 15 years (2005 - 2019). The lack of diversity on this author list is a reflection of the formative years of the Python and SciPy ecosystems.
+
+2018 has marked an important milestone in the history of the NumPy project. Receiving funding from The Gordon and Betty Moore Foundation and Alfred P. Sloan Foundation allowed us to provide full-time employment for two software engineers with years of experience contributing to the Python ecosystem. Those efforts brought NumPy to a much healthier technical state.
+
+This funding also created space for NumPy maintainers to focus on project governance, community development, and outreach to underrepresented groups. [The diversity statement](https://figshare.com/articles/online_resource/Diversity_and_Inclusion_Statement_NumPy_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/12980852) written in mid 2019 for the CZI EOSS program grant application details some of the challenges as well as the advances in our efforts to bring in more diverse talent to the NumPy team.
+
+## The Present
+
+Offering employment opportunities is an effective way to attract and retain diverse talent in OSS. Therefore, we used two-thirds of our second grant that became available in Dec 2019 to employ Melissa Weber Mendonça and Mars Lee.
+
+As a result of several initiatives aimed at community development and engagement led by Inessa Pawson and Ralf Gommers, the NumPy project has received a number of valuable contributions from women and other underrepresented groups in open source in 2020:
+
+- Melissa Weber Mendonça gained commit rights, is maintaining numpy.f2py and is leading the documentation team,
+- Shaloo Shalini created all case studies on numpy.org,
+- Mars Lee contributed web design and led our accessibility improvements work,
+- Isabela Presedo-Floyd designed our new logo,
+- Stephanie Mendoza, Xiayoi Deng, Deji Suolang, and Mame Fatou Thiam designed and fielded the first NumPy user survey,
+- Yuki Dunn, Dayane Machado, Mahfuza Humayra Mohona, Sumera Priyadarsini, Shaloo Shalini, and Kriti Singh (former Outreachy intern) helped the survey team to reach out to non-English speaking NumPy users and developers by translating the questionnaire into their native languages,
+- Sayed Adel, Raghuveer Devulapalli, and Chunlin Fang are driving the work on SIMD optimizations in the core of NumPy.
+
+While we still have much more work to do, the NumPy team is starting to look much more representative of our user base. And we can assure you that the next NumPy paper will certainly have a more diverse group of authors.
+
+## The Future
+
+We are fully committed to fostering inclusion and diversity on our team and in our community, and to do our part in building a more just and equitable future.
+
+We are open to dialogue and welcome every opportunity to connect with organizations representing and supporting women and minorities in tech and science. We are ready to listen, learn, and support.
+
+Please get in touch with us on [our mailing list](https://scipy.org/scipylib/mailing-lists.html#mailing-lists), [GitHub](https://github.com/numpy/numpy/issues), [Slack](https://numpy.org/contribute/), in private at numpy-team@googlegroups.com, or join our [bi-weekly community meeting](https://hackmd.io/76o-IxCjQX2mOXO_wwkcpg).
+
+
+_Sayed Adel, Sebastian Berg, Raghuveer Devulapalli, Chunlin Fang, Ralf Gommers, Allan Haldane, Stephan Hoyer, Mars Lee, Melissa Weber Mendonça, Jarrod Millman, Inessa Pawson, Matti Picus, Nathaniel Smith, Julian Taylor, Pauli Virtanen, Stéfan van der Walt, Eric Wieser, on behalf of the NumPy team_
+
diff --git a/content/ko/gethelp.md b/content/ko/gethelp.md
new file mode 100644
index 0000000000..7fcf03e099
--- /dev/null
+++ b/content/ko/gethelp.md
@@ -0,0 +1,34 @@
+---
+title: 도움 구하기
+sidebar: false
+---
+
+**사용 시 질문:** 도움을 받는 가장 좋은 방법은 [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)와 같이 수많은 사용자들이 답변할 수 있는 사이트에 질문을 게시하는 것입니다. 규모가 좀 더 작은 대체 사이트로는 [IRC](https://webchat.freenode.net/?channels=%23numpy), [Gitter](https://gitter.im/numpy/numpy), [Reddit](https://www.reddit.com/r/Numpy/)이 있습니다. 저희가 직접 이런 사이트들을 주시하거나 질문에 대해 답해드리고 싶지만, 그러기에는 질문의 양이 너무 많습니다!
+
+**개발 이슈:** NumPy 개발 관련 문제(버그 제보 등)의 경우, [커뮤니티](/community)를 방문해주시기 바랍니다.
+
+
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+"How do I do X in NumPy?”와 같이 사용 중 질문을 올리는 포럼입니다. [`#numpy` 태그를 사용](https://stackoverflow.com/help/tagging)해주세요.
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+사용 중 질문을 올리는 또다른 포럼입니다.
+
+***
+
+### [Gitter](https://gitter.im/numpy/numpy)
+
+사용자와 커뮤니티 구성원이 서로를 돕는 실시간 채팅방입니다.
+
+***
+
+### [IRC](https://webchat.freenode.net/?channels=%23numpy)
+
+사용자와 커뮤니티 구성원이 서로를 돕는 또다른 실시간 채팅방입니다.
+
+***
diff --git a/content/ko/history.md b/content/ko/history.md
new file mode 100644
index 0000000000..e7402a34be
--- /dev/null
+++ b/content/ko/history.md
@@ -0,0 +1,21 @@
+---
+title: NumPy의 역사
+sidebar: false
+---
+
+NumPy는 배열 데이터 구조와 이에 대한 빠른 수치적 루틴을 제공하는 Python의 기초적인 라이브러리입니다. 처음 시작했을 때는 라이브러리를 개발할 자금이 거의 없었고, 주로 컴퓨터 공학 교육을 받지 못했고, 교수의 승인조차 받지 못한 대학원생이 이를 제작해나갔습니다. 소규모 "불량" 학생 프로그래머 집단이 이미 잘 정립되었으며 엄청난 자본과 많은 우수한 기술자들이 뒷받침하는 연구 소프트웨어 생태계를 뒤바꾼다고 상상해보세요. 정말 터무니없는 일입니다. 그러나 완전 개방형 도구 속에 감추어졌던 철학적 동기들이, 친근하고 들떴으며 특별한 목표를 가진 공동체와 결합되어, 장기적으로 유의미한 것이 드러났습니다. 오늘날 NumPy는 전 세계의 과학자, 기술자 및 기타 많은 전문가들의 신뢰를 받고 있습니다. 예를 들어, 중력파 분석에 사용되며 출시된 스크립트는 NumPy 패키지를 가져 왔고, M87 블랙홀 시각화 프로젝트에서는 NumPy를 직접 인용하였습니다.
+
+NumPy 및 관련 라이브러리의 개발 단계에 대한 자세한 설명은 [arxiv.org](arxiv.org/abs/1907.10121)를 참고하십시오.
+
+원본 Numeric 및 Numarray 라이브러리의 사본을 얻으려면 아래 링크를 들어가십시오.
+
+[*Numeric* 다운로드 페이지](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)*
+
+[*Numarray* 다운로드 페이지](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)*
+
+*이런 오래된 배열 패키지는 더 이상 지원되지 않으며, 배열 관련 기능을 이용하기 위해서는 NumPy를 사용하거나 NumPy 라이브러리를 활용하기 위해서는 기존 코드를 리팩토링하는 것이 좋습니다.
+
+### 역사적 문서
+
+[*`Numeric'* 메뉴얼 다운로드](static/numeric-manual.pdf)
+
diff --git a/content/ko/install.md b/content/ko/install.md
new file mode 100644
index 0000000000..09fc02f3c0
--- /dev/null
+++ b/content/ko/install.md
@@ -0,0 +1,143 @@
+---
+title: NumPy 설치
+sidebar: false
+---
+
+NumPy 설치를 위해서는 Python만 필요합니다. 만약 파이썬이 설치되지 않았다면, Python, NumPy, 그리고 다양한 데이터 과학과 과학 계산을 위해 일반적으로 많이 사용되는 패키지를 한번에 설치할 수 있는 [Anaconda Distribution](https://www.anaconda.com/distribution)을 활용하여 설치하는 것을 추천합니다.
+
+NumPy는 `conda`, `pip`, macOS와 Linux의 패키지 매니저를 사용하거나 [소스](https://numpy.org/devdocs/user/building.html)로부터 설치할 수 있습니다. 보다 상세한 설치 과정과 방법은 [Python and NumPy 설치 가이드](#python-numpy-install-guide)의 아래쪽에 있습니다.
+
+**CONDA**
+
+만약 `conda`를 사용해 설치하는 경우, `defaults` 또는 `conda-forge` 채널을 활용해서 설치할 수 있습니다.
+
+```bash
+# 기본 환경보다 가상환경을 설치하여 활용하는 것이 좋습니다.
+# Anaconda가 설치된 환경에서 cmd에서 하기 명령어를 입력합니다.
+conda create -n my-env # my-env 라는 이름의 가상환경 생성
+conda activate my-env # 활성화 된 가상환경을 my-env로 변경
+# conda-forge로 설치하는 경우하기 명령어 입력
+conda config --env --add channels conda-forge
+# 실제 설치 명령어
+conda install numpy
+```
+
+**PIP**
+
+만약 `pip`로 NumPy를 설치하는 경우
+
+```bash
+pip install numpy
+```
+또한 pip를 사용할 때, 가상환경을 만들어보고, 만들어진 가상환경에 설치하는 것이 좋습니다. 상세한 내용은 [Reproducible Installs](#reproducible-installs)를 참조하십시오. 또한 가상환경을 사용하는 상세한 내용은 [가이드](https://dev.to/bowmanjd/python-tools-for-managing-virtual-environments-3bko#howto)를 참조하십시오.
+
+
+
+# Python, Numpy 설치 가이드
+
+파이썬만 활용해서 패키지를 설치하고 관리하는 것은 복잡하기 때문에, 다양한 대안들이 많이 있습니다. 이 가이드에는 가장 보편적이고, 명확한 방식을 알려줍니다. 이 가이드는 통상적으로 사용되는 운영체제와 하드웨어에서 Python과 NumPy 그리고 수치 계산을 해주는 PyData를 사용하는 유저를 위한 자료입니다.
+
+## 권장 사항
+
+사용자의 전문성과 사용하는 운영체제를 기준으로 추천하는 방식을 알려드리겠습니다. 만약 당신이 초심자 또는 숙련자범위에 속해있다면, 간단하게 설치하고 싶다면 초심자로, 추후에 작업을 위해서 보다 구체적인 연습을 하고 싶다면 숙련자 자료를 참고하십시오.
+
+### 초심자 유저
+
+Windows, macOS, Linux 등 모든 일반적인 운영체제:
+
+- [Anaconda](https://www.anaconda.com/distribution/) 를 설치하십시오.(당신이 필요로 하는 패키지를 설치하고, 아래에 언급될 다양한 도구들을 제공합니다.)
+- 코드를 작성하거나 실행할 때, 데이터를 분석하거나 대화형으로 코드를 작업하는 경우에는 [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/index.html) 의 notebooks를 사용하십시오. 그리고 코드를 작성하거나 패키지를 작성할 때는 [Spyder](https://www.spyder-ide.org/)나 [Visual Studio Code](https://code.visualstudio.com/)를 사용하십시오.
+- 패키지를 관리하거나 JupyterLab, Spyder, Visual Studio Code 를 사용하는 경우 [Anaconda Navigator](https://docs.anaconda.com/anaconda/navigator/)를 사용하십시오.
+
+
+### 숙련자 유저
+
+#### Windows, macOS
+
+- [Miniconda](https://docs.conda.io/en/latest/miniconda.html)를 설치하십시오.
+- `base` 라는 이름의 콘다 가상환경은 초기 최소 상태를 유지하고, [콘다 가상환경](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)을 만들어서, 해당 가상환경에 진행하고자 하는 일이나 프로젝트를 위해서 필요한 패키지를 설치하십시오.
+- `기본 채널`로 충분하지 않다면, `conda-forge` [채널 우선순위 설정](https://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge)을 통해서 원하는 채널을설정할 수 있습니다..
+
+
+#### Linux
+
+만약 약간 하위 버전의 패키지나, 최신 버전이 아닌 보다 안정적인 패키지를 설치하고 싶은 경우에 참고하십시오.
+- OS에서 사용 가능한 패키지 매니저를 활용하여 설치하십시오 (Python itself, NumPy, and other libraries).
+- 설치한 패키지 매니저가 라이브러리를 설치해주지 않는다면, `pip install somepackage --user`를 명령 프롬프트에 입력하십시오.
+
+GPU를 사용하는 경우:
+- [Miniconda](https://docs.conda.io/en/latest/miniconda.html)를 설치하십시오.
+- `base` 라는 이름의 콘다 가상환경은 초기 최소 상태를 유지하고, [콘다 가상환경](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)을 만들어서, 해당 가상환경에 진행하고자 하는 일이나 프로젝트를 위해서 필요한 패키지를 설치하십시오.
+- `기본 콘다 채널`을 활용해 주십시오.(`conda-forge` GPU 패키지를 지원하는 좋은 채널을 아직 제공하지 않습니다.).
+
+기타:
+- [Miniforge](https://github.com/conda-forge/miniforge)를 설치하십시오.
+- `base` 라는 이름의 콘다 가상환경은 초기 최소 상태를 유지하고, [콘다 가상환경](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)을 만들어서, 해당 가상환경에 진행하고자 하는 일이나 프로젝트를 위해서 필요한 패키지를 설치하십시오.
+
+
+#### Pip/PyPI를 활용하는 경우:
+
+개인적인 선호나 아래의 conda 와 pip의 차이점을 설명하는 글을 읽은 유저나 또는 pip/PyPI기반의 설치 방법을 선호하는 경우 참고하십시오.
+- [python.org](https://www.python.org/downloads/) 이나 [Homebrew](https://brew.sh/), Linux package manager를 활용해서 Python을 설치하십시오.
+- Conda와 동일한 수준의 가상환경 관리와 패키지 의존성을 해결을 도와주는 [Poetry](https://python-poetry.org/)를 유지관리 도구로 사용하십시오.
+
+
+## Python 패키지 관리
+
+패키지 관리는 아주 중요하기 때문에, 사용할 수 있는 도구들이 많습니다. 웹 및 범용 Python 개발을 위해 Pip뿐만 아니라 [다양한 도구](https://packaging.python.org/guides/tool-recommendations/)들이 있습니다. 고성능 컴퓨터 (HPC)를 사용하는 경우 [Spack](https://github.com/spack/spack)를 사용하는 것을 추천합니다. 대부분 Numpy를 사용하는 유저는, [conda](https://conda.io/en/latest/) 와 [pip](https://pip.pypa.io/en/stable/)를 가장 많이 사용합니다.
+
+
+### Pip & conda
+
+`pip`, `conda`가 Python 패키지를 설치하고 관리하는 주요 툴입니다. 그들의 기능은 대부분 겹칩니다. (e.g. both can install `numpy`), 그리고 같이 쓰일 수도 있습니다. 곧 pip와 conda의 차이점에 대해서 논의해볼 것입니다. - 패키지 관리를 잘 하기 위해서는 알고 계시는 것이 좋습니다.
+
+첫번째 차이점은, conda는 cross-language 를 지원하고, Python을 설치할 수 도있습니다. 하지만 pip는 특정 설치된 Python에만 패키지를 설치하고 관리할 수 있습니다. 따라서 해당 Python에 모든 패키지가 설치됩니다. 또한 conda는 non-Python 라이브러리나 도구들을 설치할 수 있습니다. (e.g. compilers, CUDA, HDF5), 하지만 pip는 Python이 필요하기 때문에 설치할 수 없습니다.
+
+두번째 차이점은 pip는 Python Packaging Index(PyPI) 로 부터 패키지를 다운받아 설치합니다. 반면에 conda는 conda 만의 채널로 설치합니다. (일반적으로 "defaults" or "conda-forge"). PyPI 가 가장 큰 패키지 저장소입니다만, 많은 사람들이 사용하는 패키지는 conda에서도 설치할 수 있습니다.
+
+세번째 차이점은 conda는 환경이나 패키지간 의존성을 해결하기 위한 해키지 관리 도구를 제공합니다. 하지만 pip는 그를 위해서 (아주 많은) 추가적인 도구들이 필요합니다.
+
+
+### 재구성 가능한 설치
+
+라이브러리가 업데이트되면, 코드의 실행 결과가 바뀌거나, 코드가 완전히 손상될 수 있습니다. 사용중인 패키지 및 버전을 재구성할 수 있도록 하는 것이 중요합니다. 가장 좋은 방법으로는
+
+1. 작업 중인 프로젝트마다 다른 환경을 이용하고,
+2. 각각 자체 메타 데이터 형식이 있는 패키지 설치 프로그램을 통해 패키지 이름과 버전을 기록해둡니다.
+ - Conda: [conda environments and environment.yml](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)
+ - Pip: [virtual environments](https://docs.python.org/3/tutorial/venv.html) and [requirements.txt](https://pip.readthedocs.io/en/latest/user_guide/#requirements-files)
+ - Poetry: [virtual environments and pyproject.toml](https://python-poetry.org/docs/basic-usage/)
+
+
+
+## NumPy 패키지 & 고속 선형 대수 라이브러리
+
+NumPy는 다른 Python 패키지에 의존하지 않습니다. 그러나 고속 선형 대수 라이브러리, 일반적으로 [Inter MKL](https://software.intel.com/en-us/mkl) 또는 [OpenBLAS](https://www.openblas.net/)에 의존하고 있습니다. 사용자는 이를 설치하지 않아도 됩니다 (NumPy 설치 중 저절로 설치됨). 고급 사용자의 경우 사용한 BLAS가 디스크의 성능, 동작 및 크기에 영향을 끼칠 수 있기 때문에 세부 정보를 알고 싶을 수도 있습니다.
+
+- PIP가 설치하는 PyPI의 휠 파일에 있는 NumPy의 경우는 OpenBLAS로 빌드되었습니다. OpenBLAS 라이브러리가 휠 파일에 포함되어 있습니다. 이는 휠 파일의 크기를 더 크게 만들고, 사용자가 (예를 들어) SciPy도 설치하게 되면 디스크에 2개의 OpenBLAS 사본이 있게 됩니다.
+
+- Conda의 기본 채널 내 NumPy는 Interl MKL로 빌드되었습니다. MKL은 NumPy를 설치할 때 사용자의 환경에 같이 설치되는 분할 패키지입니다.
+
+- conda-forge 채널 내 NumPy는 더미 "BLAS" 패키지로 빌드되었습니다. 사용자가 conda-forge에서 NumPy를 설치할 때 해당 BLAS 패키지가 실제 라이브러리와 함께 설치됩니다. 기본값은 OpenBLAS이나, (기본 채널에서는) MKL이 될 수도 있고, 심지어 [BLIS](https://github.com/flame/blis)나 Reference BLAS가 될 수도 있습니다.
+
+- MKL 패키지가 OpenBLAS에 비해 더욱 큽니다. OpenBLAS가 30MB를 차지하는 반면, MKL 쪽은 700MB에 달하는 디스크 공간을 차지합니다.
+
+- 보통 MKL이 OpenBLAS보다 더 빠르고 안정적입니다.
+
+설치 크기, 성능 및 안정성을 제쳐 두더라도, 고려할 사항이 2가지 더 있습니다.
+
+- Intel MKL은 오픈소스가 아닙니다. 일반적으로 사용할 때는 문제가 되지 않지만, 사용자가 NumPy로 빌드한 애플리케이션을 재배포하는 경우 문제가 될 수 있습니다.
+- MKL과 OpenBLAS 모두 `np.dot`과 같이 함수를 호출하는 데 다중 스레드를 사용하며, 스레드의 수는 빌드 시간 설정과 환경 변수에 의해 결정됩니다. 보통은 모든 CPU 코어가 사용됩니다. 이로 인하여 예기치 않은 일이 발생할 수 있습니다. NumPy 자체적으로는 어떤 함수 호출도 병렬화하지 않습니다. 일반적으로 더 나은 성능을 제공해주지만, 예를 들어 Dask, scikit-learn 또는 멀티프로세싱과 함께 다른 수준의 병렬화를 사용하는 경우 좋지 않은 결과를 초래할 수 있습니다.
+
+
+## 문제 해결
+
+아래와 같은 응답과 함께 설치에 실패한다면, [Troubleshooting ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html)를 참고하시기 바랍니다.
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/ko/learn.md b/content/ko/learn.md
new file mode 100644
index 0000000000..ceee075654
--- /dev/null
+++ b/content/ko/learn.md
@@ -0,0 +1,90 @@
+---
+title: 배우기
+sidebar: false
+---
+
+**공식 NumPy 문서**는 [numpy.org/doc/stable](https://numpy.org/doc/stable)에 있습니다.
+
+## NumPy 튜토리얼
+
+NumPy 커뮤니티 [NumPy Tutorials](https://numpy.org/numpy-tutorials)에서 다양한 튜토리얼과 교육 자료를 찾을 수 있습니다. 이 페이지의 목적은 개인 학습 자료와 강의 자료 모두로 활용할 수 있도록 양질의 자료를 제공하는 것이며, 자료는 Jupyter Notebooks 형식으로 되어 있습니다. 만약 추가하고 싶은 내용이 생기는 경우 [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials)를 확인해 주십시오.
+
+***
+
+아래는 선별된 외부 자료가 모아져 있습니다. 여기에 기여하기 위해서는 [이 페이지](#add-to-this-list)의 마지막 부분을 확인 해주십시오.
+
+## 초심자
+
+방대한 자료가 제공되고 있습니다. 만약 처음 접하신다면, 아래의 자료를 강하게 권해드립니다.
+
+ **튜토리얼**
+
+* [NumPy 빠른 시작 튜토리얼](https://numpy.org/devdocs/user/quickstart.html)
+* [NumPy Illustrated: The Visual Guide to NumPy - *Lev Maximov 저*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+* [SciPy Lectures](https://scipy-lectures.org/) - 여기서는 NumPy를 다루는 것 외에도 Python 생태계에 대하여 광범위한 소개를 볼 수 있습니다.
+* [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
+* [Machine Learning Plus - Introduction to ndarray](https://www.machinelearningplus.com/python/numpy-tutorial-part1-array-python-examples/)
+* [Edureka - Learn NumPy Arrays with Examples ](https://www.edureka.co/blog/python-numpy-tutorial/)
+* [Dataquest - NumPy Tutorial: Data Analysis with Python](https://www.dataquest.io/blog/numpy-tutorial-python/)
+* [NumPy tutorial - *Nicolas Rougier 저*](https://github.com/rougier/numpy-tutorial)
+* [Stanford CS231 - *Justin Johnson 저*](http://cs231n.github.io/python-numpy-tutorial/)
+* [NumPy User Guide](https://numpy.org/devdocs)
+
+ **도서**
+
+* [Guide to NumPy - *Travis E. Oliphant 저*](http://web.mit.edu/dvp/Public/numpybook.pdf) 이건 2006년의 무료 버전 초판입니다. 최근 판(2015)은 [여기에서](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007) 볼 수 있습니다.
+* [From Python to NumPy - *Nicolas P. Rougier 저*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+* [Elegant SciPy - ](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *Juan Nunez-Iglesias, Stefan van der Walt, Harriet Dashnow 저*
+
+Python+SciPy와 관련된 자료는 [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy)를 확인하시면 좋습니다. 대부분 NumPy를 핵심으로 사용하는 SciPy 에코시스템과 관련된 자료입니다.
+
+ **동영상**
+
+* [Introduction to Numerical Computing with NumPy - ](http://youtu.be/ZB7BZMhfPgk) *Alex Chabot-Leclerc 저*
+
+***
+
+## 숙련자
+
+NumPy에서 제공하는 어레이 인덱싱, 분리, 중첩, 선형 대수 등과 같은 개념들을 보다 깊이 이해하고 싶다면, 아래의 숙련자 자료를 활용하십시오.
+
+ **튜토리얼**
+
+* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *by Nicolas P. Rougier*
+* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) *by M. Scott Shell*
+* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) *by Stéfan van der Walt*
+* [NumPy in Python (Advanced)](https://www.geeksforgeeks.org/numpy-python-set-2-advanced/)
+* [Advanced Indexing](https://www.tutorialspoint.com/numpy/numpy_advanced_indexing.htm)
+* [Machine Learning and Data Analytics with NumPy](https://www.machinelearningplus.com/python/numpy-tutorial-python-part2/)
+
+ **도서**
+
+* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057) *by Jake Vanderplas*
+* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662) *by Wes McKinney*
+* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *by Robert Johansson*
+
+ **동영상**
+
+* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) *by Juan Nunez-Iglesias*
+* [Advanced Indexing Operations in NumPy Arrays](https://www.youtube.com/watch?v=2WTDrSkQBng) *by Amuls Academy*
+
+***
+
+## NumPy 이야기
+
+* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
+* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
+* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
+* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris* (2019)
+* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
+
+***
+
+## NumPy 인용하기
+
+만약 당신의 연구에서 NumPy가 중요한 역할을 수행하였고 학술 간행물에서 출판하기 위해서는 [이 인용 정보](/citing-numpy)를 참조하세요.
+
+## 이 목록에 기여하기
+
+
+이 목록에 자료를 추가하려면 [Pull Request](https://github.com/numpy/numpy.org/blob/master/content/en/learn.md)를 통해서 제출하세요. 당신이 추천한 자료가 왜 이 페이지에 올라야하는지, 또한 어떤 사람들이 가장 좋아할지 말해주세요.
diff --git a/content/ko/news.md b/content/ko/news.md
new file mode 100644
index 0000000000..bb8f152ac8
--- /dev/null
+++ b/content/ko/news.md
@@ -0,0 +1,145 @@
+---
+title: 소식
+sidebar: false
+newsHeader: NumPy 1.22.0 출시
+date:
+---
+
+### Numpy 1.22.0 출시
+
+_2021년 12월 31일_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)이 출시되었습니다. 주요 기능들은 다음과 같습니다:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy가 DLPack 백엔드로 구동됩니다. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0은 153명의 기여자가 생성한 609개의 풀 요청을 바탕으로 만들어진 대형 릴리즈입니다. 본 릴리즈에서 지원하는 Python 버전은 3.8-3.10입니다.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+2개년 프로젝트가 2021년 11월부터 시작될 예정입니다. 프로젝트의 결과를 볼 날이 기대되네요! [전체 정보는 여기서 열람하실 수 있습니다](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021년도 NumPy 설문조사
+
+_2021년 7월 12일_ -- NumPy에서, 우리는 커뮤니티의 힘을 믿습니다. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. 설문 조사 결과를 통해 다음 12개월 동안 우리가 어떤 것에 집중해야 할지 아주 잘 이해할 수 있었습니다.
+
+이제 또다른 설문 조사를 진행할 시간이고, 여러분의 도움이 다시 한 번 필요합니다. 완료하는 데 약 15분 정도 소요될 겁니다. 설문지는 영어 외에도 8개 국어로 제공됩니다: 벵골어, 프랑스어, 힌디어, 일본어, 중국 관화, 포르투갈어, 러시아어, 스페인어.
+
+시작하려면 아래 링크를 눌러 주세요: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 출시
+
+_2021년 6월 23일_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)이 출시되었습니다. 주요 기능들은 다음과 같습니다:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- 문서화 향상,
+- 주석 향상,
+- 난수 생성에 이용되는 새 `PCG64DXSM` 비트 생성기.
+
+이번 NumPy 릴리즈는 175명이 기여해주신 581개의 풀 리퀘스트가 합쳐진 결과입니다. 본 릴리즈에서 지원하는 Python 버전은 3.7-3.9입니다. Python 3.10은 Python 3.10 릴리즈 이후 지원할 예정입니다.
+
+
+### 2020년도 NumPy 설문조사 결과
+
+_2021년 6월 22일_ -- 2020년에, NumPy 조사 팀은 조사방법론 학사 과정의 학생 및 교수와 협력하여 미시간 대학과 매릴렌드 대학이 공동으로 개최한 첫 공식 NumPy 커뮤니티 조사를 실시했습니다. 여기서 조사 결과를 확인하세요: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 출시
+
+_2021년 1월 30일_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)이 출시되었습니다. 역대 최대의 NumPy 릴리즈입니다. 180명이 넘는 기여자분들께 감사드립니다. 흥미롭고 새로운 두 기능이 나왔습니다.
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### NumPy 프로젝트 내 다양성
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9가 곧 출시하는데, NumPy는 바이너리 Wheel을 언제 출시합니까?
+
+_2020년 9월 14일_ -- Python 3.9가 몇 주 내로 출시될 것입니다. 만약 Python 얼리어답터라면, NumPy (그리고 SciPy 등 다른 바이너리 패키지)가 릴리즈 시일에 바이너리 Wheel을 준비하지 못한다는 것을 알고 실망했을 수 있습니다. 새로운 Python 버전에 빌드 환경을 맞추는 것은 많은 노력을 요하고, 패키지가 PyPI 및 conda-forge에 배포되는 데에는 일반적으로 몇 주가 걸립니다. 출시를 대비하려면 아래 요건을 충족하도록 하십시오.
+- `pip` 버전을 최소 20.1로 업데이트하여 `manylinux2010` 및 `manylinux2014`를 지원하도록 합니다
+- [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) 혹은 `--only-binary=:all:` 인수를 사용하여 `pip`가 소스로부터 빌드하는 것을 막도록 합니다
+
+
+### NumPy 1.19.2 출시
+
+_2020년 9월 10일_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html)이 출시되었습니다. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_2020년 7월 2일_ -- 본 설문조사는 소프트웨어 및 커뮤니티로서의 NumPy 개발에 대하여, 의사결정의 우선 순위를 안내하고 설정하기 위해 실시됩니다. 설문지는 영어 외에도 8개 국어로 제공됩니다: 벵골어, 프랑스어, 힌디어, 일본어, 중국 관화, 포르투갈어, 러시아어, 스페인어.
+
+NumPy를 개선할 수 있도록 도와주시고 [여기](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl)에서 설문 조사에 참여해주시면 감사드리겠습니다.
+
+
+### NumPy에 새로운 로고가 생겼습니다!
+
+_2020년 6월 24일_ -- NumPy에 새로운 로고가 생겼습니다.
+
+
+
+이전 로고를 깔끔하고 현대적으로 다시 디자인했습니다. 새 로고를 만들어 주신 Isabela Presedo-Floyd님께 감사드립니다. 또 15년이 넘는 기간 동안 저희가 사용했던 로고를 만들어 주신 Travis Vaught님께도 감사의 말씀을 드립니다.
+
+
+### NumPy 1.19.0 출시
+
+_2020년 6월 20일_ -- NumPy 1.19.0이 출시되었습니다. Python 2의 지원을 중단한 첫 릴리즈라서 "정리 릴리즈"라고도 불립니다. 이제 지원하는 Python 최소 버전은 3.6입니다. 중요한 새 기능을 꼽자면, NumPy 1.17.0에 도입된 난수 생성 인프라를 Cython에서 접근할 수 있게 되었다는 것입니다.
+
+
+### Season of Docs 승인
+
+_2020년 5월 11일_ -- NumPy가 Google Season of Docs 프로그램의 선도 조직으로 승인되었습니다. 테크니컬 라이터와 협력해서 NumPy 문서를 다시 한 번 개선할 수 있는 기회를 갖게 되어 좋습니다! 자세한 내용은 [Season of Docs 공식 사이트](https://developers.google.com/season-of-docs/) 및 저희의 [아이디어 페이지](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas)를 참고하시기 바랍니다.
+
+
+### NumPy 1.18.0 출시
+
+_2019년 12월 22일_ -- NumPy 1.18.0이 출시되었습니다. 1.17.0에서의 주요 변경점을 통합하는 릴리즈입니다. 본 릴리즈는 Python 3.5를 지원하는 마지막 마이너 릴리즈입니다. 릴리즈의 주요 내용으로는, 64비트 BLAS 및 LAPACK 라이브러리와 연결하기 위한 환경 조성, `numpy.random`을 위한 새로운 C-API 등이 있습니다.
+
+자세한 정보는 [릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.18.0)를 참고하시기 바랍니다.
+
+
+### NumPy가 Chan Zuckerberg Initiative에서 보조금을 받음
+
+_2019년 11월 15일_ -- NumPy의 주요 종속 패키지 중 하나인 NumPy와 OpenBLAS가 챈 저커버그 이니셔티브의 [과학 프로그램용 중요 오픈소스 소프트웨어](https://chanzuckerberg.com/eoss/) 지원을 통해 19만 5천 달러에 달하는 공동 보조금을 받았다는 소식을 전할 수 있어 기쁩니다. 이곳에서는 과학에 중요한 오픈소스 도구에 대해 유지 관리, 성장, 개발 및 커뮤니티 참여를 지원합니다.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). 2019년 12월 1일부터 작업을 시작하여 다음 12개월 동안 진행할 예정입니다.
+
+
+## 릴리즈
+
+NumPy 릴리즈의 목록입니다. 릴리즈 노트로 링크도 걸려 있습니다. 버그 수정 릴리즈(`x.y.z`에서 `z`만 바뀐 경우)에는 새로운 기능이 없습니다. 마이너 릴리즈(`y`가 증가한 경우)에는 새로운 기능이 있습니다.
+
+- NumPy 1.22.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _2021년 12월 31일_.
+- NumPy 1.21.5 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _2021년 12월 19일_.
+- NumPy 1.21.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _2021년 6월 22일_.
+- NumPy 1.20.3 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _2021년 5월 10일_.
+- NumPy 1.20.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _2021년 1월 30일_.
+- NumPy 1.19.5 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _2021년 1월 5일_.
+- NumPy 1.19.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _2020년 6월 20일_.
+- NumPy 1.18.4 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _2020년 5월 3일_.
+- NumPy 1.17.5 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _2020년 1월 1일_.
+- NumPy 1.18.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _2019년 12월 22일_.
+- NumPy 1.17.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _2019년 7월 26일_.
+- NumPy 1.16.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _2019년 1월 14일_.
+- NumPy 1.15.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _2018년 7월 23일_.
+- NumPy 1.14.0 ([릴리즈 노트](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _2018년 1월 7일_.
diff --git a/content/ko/press-kit.md b/content/ko/press-kit.md
new file mode 100644
index 0000000000..ddce954013
--- /dev/null
+++ b/content/ko/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: 홍보 자료
+sidebar: false
+---
+
+저희는 당신이 NumPy 프로젝트의 상징을 논문, 코스 자료, 발표 자료 등에 삽입하기 쉽도록 하고자 합니다.
+
+[여기에서](https://github.com/numpy/numpy/tree/main/branding/logo) 여러 버전의 고화질 NumPy 로고를 찾을 수 있습니다. numpy.org 자료를 이용하는 경우, [NumPy 이용약관](/code-of-conduct)에 동의하게 됨을 명심하십시오.
diff --git a/content/ko/privacy.md b/content/ko/privacy.md
new file mode 100644
index 0000000000..0469768bcc
--- /dev/null
+++ b/content/ko/privacy.md
@@ -0,0 +1,8 @@
+---
+title: 개인정보 정책
+sidebar: false
+---
+
+**numpy.org**는 NumPy 프로젝트의 재정적 후원자인 [NumFOCUS, Inc.](https://numfocus.org)가 관리합니다. 이 웹 사이트에 대한 개인정보 정책을 확인하려면 https://numfocus.org/privacy-policy를 참고하세요.
+
+NumFOCUS의 데이터 수집, 이용, 공개 관행에 대하여 아무 질문이나 있으시다면, NumFOCUS 스태프인 privacy@numfocus.org로 연락해주세요.
diff --git a/content/ko/report-handling-manual.md b/content/ko/report-handling-manual.md
new file mode 100644
index 0000000000..5da70399b1
--- /dev/null
+++ b/content/ko/report-handling-manual.md
@@ -0,0 +1,95 @@
+---
+title: NumPy 이용 약관 - 보고서의 후속 조치 방법
+sidebar: false
+---
+
+NumPy 행동 강령 위원회는 본 설명을 따릅니다. 문제를 해결할 때 일관성과 공정성을 확보하기 위한 지침입니다.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+* Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+* Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+* We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+* Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+* Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+* Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+* Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+
+## 중재
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+* Find a candidate who can serve as a mediator.
+* Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+* Obtain the agreement of the reported person(s).
+* Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+* Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+
+## 위원회가 신고에 응답하는 방법
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+
+## 명확하고 심각한 권리침해 행위
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+* Immediately disconnect the originator from all NumPy communication channels.
+* Reply to the reporter that their report has been received and that the originator has been disconnected.
+* In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+* The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+
+## 신고 대응
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+* What happened.
+* Whether this event constitutes a Code of Conduct violation.
+* Who are the responsible party(ies).
+* Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+
+## 결의
+
+위원회는 반드시 합의를 바탕으로 결의를 내야 합니다. 그룹에서 합의가 이루어지지 못하고 1주 넘게 교착 상태에 빠진 경우, 결의를 내기 위해 해당 의제는 조정위원회로 이양됩니다.
+
+Possible responses may include:
+
+* Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+* Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+* Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+* A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+* A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+* A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+* A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+* A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+최종적으로 위원회는 NumPy 조정위원회에 보고서를 만들어 제출하게 됩니다 (추방 등 효력이 지속되는 결의가 발생하는 경우 NumPy 핵심 팀에게도 보고합니다).
+
+위원회는 문제를 반드시 비공개 상태로 다룰 것입니다. 모든 공개 성명은 행동강령 위원회 혹은 NumPy 조정위원회에서 담당합니다.
+
+
+## 이해관계 충돌
+
+이해관계 충돌이 일어난 경우, 위원회 회원은 즉시 이 사실을 다른 회원에게 고지하고 필요한 경우 자진 사퇴해야 합니다.
diff --git a/content/ko/tabcontents.yaml b/content/ko/tabcontents.yaml
new file mode 100644
index 0000000000..1e7980763c
--- /dev/null
+++ b/content/ko/tabcontents.yaml
@@ -0,0 +1,219 @@
+---
+machinelearning:
+ paras:
+ -
+ para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://github.com/apache/incubator-mxnet) is another AI package, providing blueprints and templates for deep learning.
+ para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+arraylibraries:
+ intro:
+ -
+ text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ -
+ text: 배열 라이브러리
+ -
+ text: Capabilities & Application areas
+ libraries:
+ -
+ title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ -
+ title: CuPy
+ text: Python에서 GPU 가속 컴퓨팅을 구현해주며 NumPy와 호환되는 배열 라이브러리.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.chainer.org
+ -
+ title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://github.com/google/jax
+ -
+ title: Xarray
+ text: 고급 통계 및 시각화를 구동하기 위하여 라벨링 및 인덱싱이 이뤄진 다차원 배열을 제공
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ -
+ title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ -
+ title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ -
+ title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ -
+ title: MXNet
+ text: Deep learning framework suited for flexible research prototyping and production.
+ img: /images/content_images/arlib/mxnet_logo.png
+ alttext: MXNet
+ url: https://mxnet.apache.org/
+ -
+ title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://github.com/apache/arrow
+ -
+ title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ -
+ title: XND
+ text: Develop libraries for array computing, recreating NumPy's foundational concepts.
+ img: /images/content_images/arlib/xnd.png
+ alttext: xnd
+ url: https://xnd.io
+ -
+ title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ -
+ title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+scientificdomains:
+ intro:
+ -
+ text: Nearly every scientist working in Python draws on the power of NumPy.
+ -
+ text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ librariesrow1:
+ -
+ title: 양자 컴퓨팅
+ alttext: 컴퓨터 칩.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ -
+ title: 통계적 컴퓨팅
+ alttext: 선이 위로 이동하는 선그래프.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ -
+ title: 신호 처리
+ alttext: 양의 값과 음의 값을 가지는 막대 차트.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ -
+ title: 이미지 처리
+ alttext: 산이 찍힌 사진.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ -
+ title: 그래프 및 네트워크
+ alttext: 간단한 그래프.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ -
+ title: 천문 데이터 처리
+ alttext: 망원경.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ -
+ title: 인지심리학
+ alttext: 톱니바퀴가 안에서 돌아가는 사람의 머리.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ librariesrow2:
+ -
+ title: 생물정보학
+ alttext: DNA 가닥.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ -
+ title: 베이지안 추론
+ alttext: 종 모양 곡선이 그려진 그래프.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ -
+ title: 수학적 분석
+ alttext: 수학 기호 4개.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ -
+ title: 화학
+ alttext: 시험관.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ -
+ title: 지구과학
+ alttext: 지구.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ -
+ title: 지리학적 처리
+ alttext: 지도.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ -
+ title: 아키텍처 및 엔지니어링
+ alttext: 마이크로프로세서 개발 보드.
+ img: /images/content_images/sc_dom_img/robotics.svg
+datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ -
+ img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ -
+ img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ -
+ text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ -
+ text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ -
+ text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ -
+ text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ content:
+ -
+ text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org) and [Prefect](https://www.prefect.io)).
+visualization:
+ images:
+ -
+ url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: matplotlib으로 만든 streamplot
+ -
+ url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: ggpy로 만든 산점도
+ -
+ url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: plotly로 만든 상자 그림
+ -
+ url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: altair로 만든 스트림 그래프
+ -
+ url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ -
+ url: https://docs.pyvista.org/examples/index.html
+ img: /images/content_images/v_pyvista.png
+ alttext: PyVista로 만든 3D 볼륨 렌더링.
+ -
+ url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: napari로 만든 다차원 이미지.
+ -
+ url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: vispy로 만든 보로노이 다이어그램.
+ content:
+ -
+ text: 몇 가지만 예를 들자면 NumPy는 [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), [PyVista](https://github.com/pyvista/pyvista) 등이 포함되어 있으며 급격히 성장해나가고 있는 [Python visualization landscape](https://pyviz.org/overviews/index.html)의 핵심 구성 요소 중 하나입니다.
+ -
+ text: NumPy는 큰 배열을 고속으로 처리할 수 있어 연구자가 기존 Python이 처리할 수 있는 데이터셋보다 훨씬 큰 것도 시각화할 수 있도록 합니다.
diff --git a/content/ko/teams.md b/content/ko/teams.md
new file mode 100644
index 0000000000..0c24455d18
--- /dev/null
+++ b/content/ko/teams.md
@@ -0,0 +1,20 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research communities worldwide by building quality, open-source software. [Join us]({{< relref "/contribute" >}})!
+
+{{< include-html "static/gallery/maintainers.html" >}}
+
+{{< include-html "static/gallery/web-team.html" >}}
+
+{{< include-html "static/gallery/triage-team.html" >}}
+
+{{< include-html "static/gallery/survey-team.html" >}}
+
+{{< include-html "static/gallery/emeritus-maintainers.html" >}}
+
+# Governance
+
+For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/ko/terms.md b/content/ko/terms.md
new file mode 100644
index 0000000000..9a66045505
--- /dev/null
+++ b/content/ko/terms.md
@@ -0,0 +1,178 @@
+---
+title: Terms of Use
+sidebar: false
+---
+
+*Last updated January 4, 2020*
+
+
+## AGREEMENT TO TERMS
+
+These Terms of Use constitute a legally binding agreement made between you, whether personally or on behalf of an entity (“you”) and NumPy ("**Project**", “**we**”, “**us**”, or “**our**”), concerning your access to and use of the numpy.org website as well as any other media form, media channel, mobile website or mobile application related, linked, or otherwise connected thereto (collectively, the “Site”). You agree that by accessing the Site, you have read, understood, and agreed to be bound by all of these Terms of Use. IF YOU DO NOT AGREE WITH ALL OF THESE TERMS OF USE, THEN YOU ARE EXPRESSLY PROHIBITED FROM USING THE SITE AND YOU MUST DISCONTINUE USE IMMEDIATELY.
+
+
+
+Supplemental terms and conditions or documents that may be posted on the Site from time to time are hereby expressly incorporated herein by reference. We reserve the right, in our sole discretion, to make changes or modifications to these Terms of Use at any time and for any reason. We will alert you about any changes by updating the “Last updated” date of these Terms of Use, and you waive any right to receive specific notice of each such change. It is your responsibility to periodically review these Terms of Use to stay informed of updates. You will be subject to, and will be deemed to have been made aware of and to have accepted, the changes in any revised Terms of Use by your continued use of the Site after the date such revised Terms of Use are posted.
+
+
+
+The information provided on the Site is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to law or regulation or which would subject us to any registration requirement within such jurisdiction or country. Accordingly, those persons who choose to access the Site from other locations do so on their own initiative and are solely responsible for compliance with local laws, if and to the extent local laws are applicable.
+
+
+## USER REPRESENTATIONS
+
+By using the Site, you represent and warrant that: (1) you have the legal capacity and you agree to comply with these Terms of Use; (2) you will not use the Site for any illegal or unauthorized purpose; and (3) your use of the Site will not violate any applicable law or regulation.
+
+
+If you provide any information that is untrue, inaccurate, not current, or incomplete, we have the right to refuse any and all current or future use of the Site (or any portion thereof).
+
+
+## PROHIBITED ACTIVITIES
+
+You may not access or use the Site for any purpose other than that for which we make the Site available.
+
+As a user of the Site, you agree not to:
+
+1. Systematically retrieve data or other content from the Site to create or compile, directly or indirectly, a collection, compilation, database, or directory without written permission from us.
+
+2. Make any unauthorized use of the Site, including collecting usernames and/or email addresses of users by electronic or other means for the purpose of sending unsolicited email, or creating user accounts by automated means or under false pretenses.
+
+3. Use the Site to advertise or offer to sell goods and services.
+
+4. Circumvent, disable, or otherwise interfere with security-related features of the Site.
+
+5. Engage in unauthorized framing of or linking to the Site.
+
+6. Trick, defraud, or mislead us and other users, especially in any attempt to learn sensitive account information such as user passwords.
+
+7. Make improper use of our support services or submit false reports of abuse or misconduct.
+
+8. Engage in any automated use of the system, such as using scripts to send comments or messages, or using any data mining, robots, or similar data gathering and extraction tools.
+
+9. Interfere with, disrupt, or create an undue burden on the Site or the networks or services connected to the Site.
+
+10. Attempt to impersonate another user or person or use the username of another user.
+
+11. Use any information obtained from the Site in order to harass, abuse, or harm another person.
+
+12. Disparage, tarnish, or otherwise harm, in our opinion, us and/or the Site.
+
+13. Except as may be the result of standard search engine or Internet browser usage, use, launch, develop, or distribute any automated system, including without limitation, any spider, robot, cheat utility, scraper, or offline reader that accesses the Site, or using or launching any unauthorized script or other software.
+
+14. Upload or transmit (or attempt to upload or to transmit) any material that acts as a passive or active information collection or transmission mechanism, including without limitation, clear graphics interchange formats (“gifs”), 1×1 pixels, web bugs, cookies, or other similar devices (sometimes referred to as “spyware” or “passive collection mechanisms” or “pcms”).
+
+15. Upload or transmit (or attempt to upload or to transmit) viruses, Trojan horses, or other material, including excessive use of capital letters and spamming (continuous posting of repetitive text), that interferes with any party’s uninterrupted use and enjoyment of the Site or modifies, impairs, disrupts, alters, or interferes with the use, features, functions, operation, or maintenance of the Site.
+
+16. Harass, annoy, intimidate, or threaten any of our employees or agents engaged in providing any portion of the Site to you.
+
+17. Attempt to bypass any measures of the Site designed to prevent or restrict access to the Site, or any portion of the Site.
+
+
+## SUBMISSIONS
+
+You acknowledge and agree that any questions, comments, suggestions, ideas, feedback, or other information regarding the Site ("Submissions") provided by you to us are non-confidential and shall become our sole property. We shall own exclusive rights, including all intellectual property rights, and shall be entitled to the unrestricted use and dissemination of these Submissions for any lawful purpose, commercial or otherwise, without acknowledgment or compensation to you. You hereby waive all moral rights to any such Submissions, and you hereby warrant that any such Submissions are original with you or that you have the right to submit such Submissions. You agree there shall be no recourse against us for any alleged or actual infringement or misappropriation of any proprietary right in your Submissions.
+
+## THIRD-PARTY WEBSITES AND CONTENT
+
+The Site may contain (or you may be sent via the Site) links to other websites ("Third-Party Websites") as well as articles, photographs, text, graphics, pictures, designs, music, sound, video, information, applications, software, and other content or items belonging to or originating from third parties ("Third-Party Content"). Such Third-Party Websites and Third-Party Content are not investigated, monitored, or checked for accuracy, appropriateness, or completeness by us, and we are not responsible for any Third-Party Websites accessed through the Site or any Third-Party Content posted on, available through, or installed from the Site, including the content, accuracy, offensiveness, opinions, reliability, privacy practices, or other policies of or contained in the Third-Party Websites or the Third-Party Content. Inclusion of, linking to, or permitting the use or installation of any Third-Party Websites or any Third-Party Content does not imply approval or endorsement thereof by us. If you decide to leave the Site and access the Third-Party Websites or to use or install any Third-Party Content, you do so at your own risk, and you should be aware these Terms of Use no longer govern. You should review the applicable terms and policies, including privacy and data gathering practices, of any website to which you navigate from the Site or relating to any applications you use or install from the Site. Any purchases you make through Third-Party Websites will be through other websites and from other companies, and we take no responsibility whatsoever in relation to such purchases which are exclusively between you and the applicable third party. You agree and acknowledge that we do not endorse the products or services offered on Third-Party Websites and you shall hold us harmless from any harm caused by your purchase of such products or services. Additionally, you shall hold us harmless from any losses sustained by you or harm caused to you relating to or resulting in any way from any Third-Party Content or any contact with Third-Party Websites.
+
+
+## SITE MANAGEMENT
+
+We reserve the right, but not the obligation, to: (1) monitor the Site for violations of these Terms of Use; (2) take appropriate legal action against anyone who, in our sole discretion, violates the law or these Terms of Use, including without limitation, reporting such user to law enforcement authorities; (3) in our sole discretion and without limitation, refuse, restrict access to, limit the availability of, or disable (to the extent technologically feasible) any of your Contributions or any portion thereof; (4) in our sole discretion and without limitation, notice, or liability, to remove from the Site or otherwise disable all files and content that are excessive in size or are in any way burdensome to our systems; and (5) otherwise manage the Site in a manner designed to protect our rights and property and to facilitate the proper functioning of the Site.
+
+
+## PRIVACY POLICY
+
+We care about data privacy and security. Please review our [Privacy Policy](/privacy). By using the Site, you agree to be bound by our Privacy Policy, which is incorporated into these Terms of Use. Please be advised the Site is hosted in the United States. If you access the Site from the European Union, Asia, or any other region of the world with laws or other requirements governing personal data collection, use, or disclosure that differ from applicable laws in the United States, then through your continued use of the Site, you are transferring your data to the United States, and you expressly consent to have your data transferred to and processed in the United States. Further, we do not knowingly accept, request, or solicit information from children or knowingly market to children. Therefore, in accordance with the U.S. Children’s Online Privacy Protection Act, if we receive actual knowledge that anyone under the age of 13 has provided personal information to us without the requisite and verifiable parental consent, we will delete that information from the Site as quickly as is reasonably practical.
+
+## TERM AND TERMINATION
+
+These Terms of Use shall remain in full force and effect while you use the Site. WITHOUT LIMITING ANY OTHER PROVISION OF THESE TERMS OF USE, WE RESERVE THE RIGHT TO, IN OUR SOLE DISCRETION AND WITHOUT NOTICE OR LIABILITY, DENY ACCESS TO AND USE OF THE SITE (INCLUDING BLOCKING CERTAIN IP ADDRESSES), TO ANY PERSON FOR ANY REASON OR FOR NO REASON, INCLUDING WITHOUT LIMITATION FOR BREACH OF ANY REPRESENTATION, WARRANTY, OR COVENANT CONTAINED IN THESE TERMS OF USE OR OF ANY APPLICABLE LAW OR REGULATION. WE MAY TERMINATE YOUR USE OR PARTICIPATION IN THE SITE OR DELETE ANY CONTENT OR INFORMATION THAT YOU POSTED AT ANY TIME, WITHOUT WARNING, IN OUR SOLE DISCRETION.
+
+
+## MODIFICATIONS AND INTERRUPTIONS
+
+We reserve the right to change, modify, or remove the contents of the Site at any time or for any reason at our sole discretion without notice. However, we have no obligation to update any information on our Site. We also reserve the right to modify or discontinue all or part of the Site without notice at any time. We will not be liable to you or any third party for any modification, suspension, or discontinuance of the Site.
+
+We cannot guarantee the Site will be available at all times. We may experience hardware, software, or other problems or need to perform maintenance related to the Site, resulting in interruptions, delays, or errors. We reserve the right to change, revise, update, suspend, discontinue, or otherwise modify the Site at any time or for any reason without notice to you. You agree that we have no liability whatsoever for any loss, damage, or inconvenience caused by your inability to access or use the Site during any downtime or discontinuance of the Site. Nothing in these Terms of Use will be construed to obligate us to maintain and support the Site or to supply any corrections, updates, or releases in connection therewith.
+
+
+## GOVERNING LAW
+
+These Terms of Use and your use of the Site are governed by and construed in accordance with the laws of the State of Texas applicable to agreements made and to be entirely performed within the State of Texas, without regard to its conflict of law principles.
+
+
+## DISPUTE RESOLUTION
+
+### Informal Negotiations
+
+To expedite resolution and control the cost of any dispute, controversy, or claim related to these Terms of Use (each a "Dispute" and collectively, the “Disputes”) brought by either you or us (individually, a “Party” and collectively, the “Parties”), the Parties agree to first attempt to negotiate any Dispute (except those Disputes expressly provided below) informally for at least thirty (30) days before initiating arbitration. Such informal negotiations commence upon written notice from one Party to the other Party.
+
+
+### Binding Arbitration
+
+If the Parties are unable to resolve a Dispute through informal negotiations, the Dispute (except those Disputes expressly excluded below) will be finally and exclusively resolved by binding arbitration. YOU UNDERSTAND THAT WITHOUT THIS PROVISION, YOU WOULD HAVE THE RIGHT TO SUE IN COURT AND HAVE A JURY TRIAL. The arbitration shall be commenced and conducted under the Commercial Arbitration Rules of the American Arbitration Association ("AAA") and, where appropriate, the AAA’s Supplementary Procedures for Consumer Related Disputes ("AAA Consumer Rules"), both of which are available at the AAA website www.adr.org. Your arbitration fees and your share of arbitrator compensation shall be governed by the AAA Consumer Rules and, where appropriate, limited by the AAA Consumer Rules. If such costs are determined to by the arbitrator to be excessive, we will pay all arbitration fees and expenses. The arbitration may be conducted in person, through the submission of documents, by phone, or online. The arbitrator will make a decision in writing, but need not provide a statement of reasons unless requested by either Party. The arbitrator must follow applicable law, and any award may be challenged if the arbitrator fails to do so. Except where otherwise required by the applicable AAA rules or applicable law, the arbitration will take place in Travis County, Texas. Except as otherwise provided herein, the Parties may litigate in court to compel arbitration, stay proceedings pending arbitration, or to confirm, modify, vacate, or enter judgment on the award entered by the arbitrator.
+
+If for any reason, a Dispute proceeds in court rather than arbitration, the Dispute shall be commenced or prosecuted in the state and federal courts located in Travis County, Texas, and the Parties hereby consent to, and waive all defenses of lack of personal jurisdiction, and forum non conveniens with respect to venue and jurisdiction in such state and federal courts. Application of the United Nations Convention on Contracts for the International Sale of Goods and the the Uniform Computer Information Transaction Act (UCITA) are excluded from these Terms of Use.
+
+In no event shall any Dispute brought by either Party related in any way to the Site be commenced more than one (1) years after the cause of action arose. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+### Restrictions
+
+The Parties agree that any arbitration shall be limited to the Dispute between the Parties individually. To the full extent permitted by law, (a) no arbitration shall be joined with any other proceeding; (b) there is no right or authority for any Dispute to be arbitrated on a class-action basis or to utilize class action procedures; and (c) there is no right or authority for any Dispute to be brought in a purported representative capacity on behalf of the general public or any other persons.
+
+
+### Exceptions to Informal Negotiations and Arbitration
+
+The Parties agree that the following Disputes are not subject to the above provisions concerning informal negotiations and binding arbitration: (a) any Disputes seeking to enforce or protect, or concerning the validity of, any of the intellectual property rights of a Party; (b) any Dispute related to, or arising from, allegations of theft, piracy, invasion of privacy, or unauthorized use; and (c) any claim for injunctive relief. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+## CORRECTIONS
+
+There may be information on the Site that contains typographical errors, inaccuracies, or omissions. We reserve the right to correct any errors, inaccuracies, or omissions and to change or update the information on the Site at any time, without prior notice.
+
+
+## DISCLAIMER
+
+THE SITE IS PROVIDED ON AN AS-IS AND AS-AVAILABLE BASIS. YOU AGREE THAT YOUR USE OF THE SITE AND OUR SERVICES WILL BE AT YOUR SOLE RISK. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THE SITE AND YOUR USE THEREOF, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. WE MAKE NO WARRANTIES OR REPRESENTATIONS ABOUT THE ACCURACY OR COMPLETENESS OF THE SITE’S CONTENT OR THE CONTENT OF ANY WEBSITES LINKED TO THE SITE AND WE WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR ANY (1) ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS, (2) PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM YOUR ACCESS TO AND USE OF THE SITE, (3) ANY UNAUTHORIZED ACCESS TO OR USE OF OUR SECURE SERVERS AND/OR ANY AND ALL PERSONAL INFORMATION AND/OR FINANCIAL INFORMATION STORED THEREIN, (4) ANY INTERRUPTION OR CESSATION OF TRANSMISSION TO OR FROM THE SITE, (5) ANY BUGS, VIRUSES, TROJAN HORSES, OR THE LIKE WHICH MAY BE TRANSMITTED TO OR THROUGH THE SITE BY ANY THIRD PARTY, AND/OR (6) ANY ERRORS OR OMISSIONS IN ANY CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT POSTED, TRANSMITTED, OR OTHERWISE MADE AVAILABLE VIA THE SITE. WE DO NOT WARRANT, ENDORSE, GUARANTEE, OR ASSUME RESPONSIBILITY FOR ANY PRODUCT OR SERVICE ADVERTISED OR OFFERED BY A THIRD PARTY THROUGH THE SITE, ANY HYPERLINKED WEBSITE, OR ANY WEBSITE OR MOBILE APPLICATION FEATURED IN ANY BANNER OR OTHER ADVERTISING, AND WE WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY TRANSACTION BETWEEN YOU AND ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR SERVICES. AS WITH THE PURCHASE OF A PRODUCT OR SERVICE THROUGH ANY MEDIUM OR IN ANY ENVIRONMENT, YOU SHOULD USE YOUR BEST JUDGMENT AND EXERCISE CAUTION WHERE APPROPRIATE.
+
+
+## LIMITATIONS OF LIABILITY
+
+IN NO EVENT WILL WE OR OUR DIRECTORS, EMPLOYEES, OR AGENTS BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING LOST PROFIT, LOST REVENUE, LOSS OF DATA, OR OTHER DAMAGES ARISING FROM YOUR USE OF THE SITE, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED HEREIN, OUR LIABILITY TO YOU FOR ANY CAUSE WHATSOEVER AND REGARDLESS OF THE FORM OF THE ACTION, WILL AT ALL TIMES BE LIMITED TO THE AMOUNT PAID, IF ANY, BY YOU TO US DURING THE SIX (6) MONTH PERIOD PRIOR TO ANY CAUSE OF ACTION ARISING. CERTAIN STATE LAWS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EXCLUSION OR LIMITATION OF CERTAIN DAMAGES. IF THESE LAWS APPLY TO YOU, SOME OR ALL OF THE ABOVE DISCLAIMERS OR LIMITATIONS MAY NOT APPLY TO YOU, AND YOU MAY HAVE ADDITIONAL RIGHTS.
+
+
+## INDEMNIFICATION
+
+You agree to defend, indemnify, and hold us harmless, including our subsidiaries, affiliates, and all of our respective officers, agents, partners, and employees, from and against any loss, damage, liability, claim, or demand, including reasonable attorneys’ fees and expenses, made by any third party due to or arising out of: (1) use of the Site; (2) breach of these Terms of Use; (3) any breach of your representations and warranties set forth in these Terms of Use; (4) your violation of the rights of a third party, including but not limited to intellectual property rights; or (5) any overt harmful act toward any other user of the Site with whom you connected via the Site. Notwithstanding the foregoing, we reserve the right, at your expense, to assume the exclusive defense and control of any matter for which you are required to indemnify us, and you agree to cooperate, at your expense, with our defense of such claims. We will use reasonable efforts to notify you of any such claim, action, or proceeding which is subject to this indemnification upon becoming aware of it.
+
+
+## USER DATA
+
+We will maintain certain data that you transmit to the Site for the purpose of managing the performance of the Site, as well as data relating to your use of the Site. Although we perform regular routine backups of data, you are solely responsible for all data that you transmit or that relates to any activity you have undertaken using the Site. You agree that we shall have no liability to you for any loss or corruption of any such data, and you hereby waive any right of action against us arising from any such loss or corruption of such data.
+
+
+## ELECTRONIC COMMUNICATIONS, TRANSACTIONS, AND SIGNATURES
+
+Visiting the Site, sending us emails, and completing online forms constitute electronic communications. You consent to receive electronic communications, and you agree that all agreements, notices, disclosures, and other communications we provide to you electronically, via email and on the Site, satisfy any legal requirement that such communication be in writing. YOU HEREBY AGREE TO THE USE OF ELECTRONIC SIGNATURES, CONTRACTS, ORDERS, AND OTHER RECORDS, AND TO ELECTRONIC DELIVERY OF NOTICES, POLICIES, AND RECORDS OF TRANSACTIONS INITIATED OR COMPLETED BY US OR VIA THE SITE. You hereby waive any rights or requirements under any statutes, regulations, rules, ordinances, or other laws in any jurisdiction which require an original signature or delivery or retention of non-electronic records, or to payments or the granting of credits by any means other than electronic means.
+
+
+## CALIFORNIA USERS AND RESIDENTS
+
+If any complaint with us is not satisfactorily resolved, you can contact the Complaint Assistance Unit of the Division of Consumer Services of the California Department of Consumer Affairs in writing at 1625 North Market Blvd., Suite N 112, Sacramento, California 95834 or by telephone at (800) 952-5210 or (916) 445-1254.
+
+
+## MISCELLANEOUS
+
+These Terms of Use and any policies or operating rules posted by us on the Site or in respect to the Site constitute the entire agreement and understanding between you and us. Our failure to exercise or enforce any right or provision of these Terms of Use shall not operate as a waiver of such right or provision. These Terms of Use operate to the fullest extent permissible by law. We may assign any or all of our rights and obligations to others at any time. We shall not be responsible or liable for any loss, damage, delay, or failure to act caused by any cause beyond our reasonable control. If any provision or part of a provision of these Terms of Use is determined to be unlawful, void, or unenforceable, that provision or part of the provision is deemed severable from these Terms of Use and does not affect the validity and enforceability of any remaining provisions. There is no joint venture, partnership, employment or agency relationship created between you and us as a result of these Terms of Use or use of the Site. You agree that these Terms of Use will not be construed against us by virtue of having drafted them. You hereby waive any and all defenses you may have based on the electronic form of these Terms of Use and the lack of signing by the parties hereto to execute these Terms of Use.
+
+## CONTACT US
+
+In order to resolve a complaint regarding the Site or to receive further information regarding use of the Site, please contact us at:
+
+NumFOCUS, Inc. P.O. Box 90596 Austin, TX, USA 78709 info@numfocus.org +1 (512) 222-5449
+
+
+
diff --git a/content/ko/user-survey-2020.md b/content/ko/user-survey-2020.md
new file mode 100644
index 0000000000..902100702b
--- /dev/null
+++ b/content/ko/user-survey-2020.md
@@ -0,0 +1,16 @@
+---
+title: 2020 NUMPY 커뮤니티 설문조사
+sidebar: false
+---
+
+2020년, NumPy 팀은 조사방법론 학사 과정의 학생 및 교수와 협력하여 미시간 대학과 매릴렌드 대학이 공동으로 개최한 첫 공식 NumPy 커뮤니티 조사를 실시했습니다. 75개국 내 1200명 이상의 사용자 여러분들께서 저희가 NumPy 커뮤니티의 가닥을 잡을 수 있도록 도와주기 위해 참여해주셨으며 프로젝트의 미래에 대한 생각을 표현해주셨습니다.
+
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="'NumPy Community Survey 2020 - results'라는 제목이 붙은 2020년 NumPy 사용자 설문조사 보고서 표지" width="250">}}
+
+**[보고서를 내려받아서](/surveys/NumPy_usersurvey_2020_report.pdf)** 설문조사 결과를 자세히 들여다 보세요.
+
+
+요점만 보시려면, **[이 인포그래픽](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**을 참고하시기 바랍니다.
+
+더욱 자세한 정보가 궁금하신가요? **https://numpy.org/user-survey-2020-details/** 페이지를 방문하세요.
+
diff --git a/content/ko/user-surveys.md b/content/ko/user-surveys.md
new file mode 100644
index 0000000000..9fec78190d
--- /dev/null
+++ b/content/ko/user-surveys.md
@@ -0,0 +1,10 @@
+---
+title: NUMPY 사용자 설문조사
+sidebar: false
+---
+
+**2020년** NumPy 조사 팀은 조사방법론 학사 과정의 학생 및 교수와 협력하여 미시간 대학과 매릴렌드 대학이 공동으로 개최한 첫 공식 NumPy 커뮤니티 조사를 실시했습니다. [여기](https://numpy.org/user-survey-2020/)서 조사 결과를 확인하세요.
+
+**2021년** 수집한 데이터가 현재 분석 중입니다.
+
+과거나 미래 설문조사에 대해 질문이나 제안 사항이 있으시면, [여기](https://github.com/numpy/numpy-surveys/issues)서 이슈를 생성하세요.
diff --git a/content/pt/404.md b/content/pt/404.md
new file mode 100644
index 0000000000..627cde96d0
--- /dev/null
+++ b/content/pt/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+Oops! Você atingiu um beco sem saída.
+
+Se você acha que algo deveria estar aqui, você pode [abrir uma issue](https://github.com/numpy/numpy.org/issues) no GitHub.
diff --git a/content/pt/about.md b/content/pt/about.md
new file mode 100644
index 0000000000..5601824cbe
--- /dev/null
+++ b/content/pt/about.md
@@ -0,0 +1,85 @@
+---
+title: Quem Somos
+sidebar: false
+---
+
+_Algumas informações sobre o projeto NumPy e a comunidade_
+
+NumPy é um projeto de código aberto visando habilitar a computação numérica com Python. Foi criado em 2005, com base no trabalho inicial das bibliotecas Numeric e Numarray. NumPy will always be 100% open source software, free for all to use and released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+O NumPy é desenvolvido no GitHub, por meio do consenso da comunidade NumPy e de uma comunidade científica em Python mais ampla. Para obter mais informações sobre nossa abordagem de governança, por favor, consulte nosso [Documento de Governança](https://www.numpy.org/devdocs/dev/governance/index.html).
+
+
+## Conselho Diretor (Steering Council)
+
+O papel do Conselho Diretor do NumPy consiste em assegurar o bem-estar a longo prazo do projeto, tanto nos aspectos técnicos quanto na comunidade. Isso é feito através do trabalho com e para a comunidade NumPy em geral. O Conselho Diretor do NumPy atualmente consiste dos seguintes membros (em ordem alfabética):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Stephan Hoyer
+- Melissa Weber Mendonça
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Eric Wieser
+
+Membros Eméritos:
+
+- Travis Oliphant (fundador do projeto, 2005-2012)
+- Alex Griffing (2015-2017)
+- Marten van Kerkwijk (2017-2019)
+- Allan Haldane
+- Nathaniel Smith
+- Julian Taylor
+- Pauli Virtanen
+- Jaime Fernández del Río
+
+
+## Times
+
+The NumPy project is growing! 🎉 We have teams for:
+
+- código
+- documentação
+- website
+- triagem
+- survey
+- funding and grants
+
+See the [}}">Team]({{< relref) page for individual team members.
+
+## Subcomitê NumFOCUS
+
+- Charles Harris
+- Ralf Gommers
+- Melissa Weber Mendonça
+- Sebastian Berg
+- Membro externo: Thomas Caswell
+
+## Patrocinadores
+
+O NumPy recebe financiamento direto das seguintes fontes:
+{{< sponsors >}}
+
+
+## Parceiros Institucionais
+
+Os Parceiros Institucionais são organizações que apoiam o projeto, empregando pessoas que contribuem para a NumPy como parte de seu trabalho. Os parceiros institucionais atuais incluem:
+
+- UC Berkeley (Stéfan van der Walt, Sebastian Berg, Ross Barnowski)
+- Quansight (Ralf Gommers, Melissa Weber Mendonça, Mars Lee, Matti Picus, Pearu Peterson)
+
+{{< partners >}}
+
+
+## Doações
+
+Se você achou o NumPy útil no seu trabalho, pesquisa ou empresa, por favor considere fazer uma doação para o projeto que seja compatível com seus recursos. Qualquer quantidade ajuda! Todas as doações serão utilizadas estritamente para financiar o desenvolvimento do software de código aberto da NumPy, documentação e comunidade.
+
+NumPy é um Projeto Patrocinado da NumFOCUS, uma instituição de caridade sem fins lucrativos nos Estados Unidos. A NumFOCUS fornece ao NumPy apoio fiscal, legal e administrativo para ajudar a garantir a saúde e a sustentabilidade do projeto. Visite [numfocus.org](https://numfocus.org) para obter mais informações.
+
+Doações para o NumPy são gerenciadas pela [NumFOCUS](https://numfocus.org). Para doadores nos Estados Unidos, sua doação é dedutível para fins fiscais na medida oferecida pela lei. Como em qualquer doação, você deve consultar seu conselheiro fiscal sobre sua situação fiscal em particular.
+
+O Conselho Diretor do NumPy tomará as decisões sobre a melhor forma de utilizar os fundos recebidos. Prioridades técnicas e de infraestrutura estão documentadas no [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
+{{< numfocus >}}
diff --git a/content/pt/arraycomputing.md b/content/pt/arraycomputing.md
new file mode 100644
index 0000000000..bf4bb3baa3
--- /dev/null
+++ b/content/pt/arraycomputing.md
@@ -0,0 +1,21 @@
+---
+title: Computação com Arrays
+sidebar: false
+---
+
+*A computação com arrays é a base para estatística e matemática computacionais, computação científica e suas várias aplicações em ciência e análise de dados, tais como visualização de dados, processamento de sinais digitais, processamento de imagens, bioinformática, aprendizagem de máquina, IA e muitas outras.*
+
+A manipulação e a transformação de dados de grande escala dependem de computação eficiente de alta performance com arrays. A linguagem mais escolhida para análise de dados, aprendizagem de máquina e computação numérica produtiva é **Python.**
+
+**Num**erical **Py**thon (Python Numérico) ou NumPy é a biblioteca padrão em Python que dá suporte à utilização de matrizes e arrays multidimensionais de grande porte, e vem com uma vasta coleção de funções matemáticas de alto nível para operar nestas arrays.
+
+Desde o lançamento do NumPy em 2006, o Pandas apareceu em 2008, e nos últimos anos vimos uma sucessão de bibliotecas de computação com arrays aparecerem, ocupando e preenchendo o campo da computação com arrays. Muitas dessas bibliotecas mais recentes imitam recursos e capacidades parecidas com o NumPy e entregam algoritmos e recursos mais recentes voltados para aplicações de aprendizagem de máquina e inteligência artificial.
+
+
+
+A **computação com arrays** é baseada em estruturas de dados chamadas **arrays**. *Arrays* são usadas para organizar grandes quantidades de dados de forma que um conjunto de valores relacionados possa ser facilmente ordenado, obtido, matematicamente manipulado e transformado fácil e rapidamente.
+
+A computação com arrays é *única* pois envolve operar nos valores de um array de dados *de uma vez*. Isso significa que qualquer operação de array se aplica a todo um conjunto de valores de uma só vez. Esta abordagem vetorizada fornece velocidade e simplicidade por permitir que os programadores organizem o código e operem em agregados de dados, sem ter que usar laços com operações escalares individuais.
diff --git a/content/pt/case-studies/blackhole-image.md b/content/pt/case-studies/blackhole-image.md
new file mode 100644
index 0000000000..209b669074
--- /dev/null
+++ b/content/pt/case-studies/blackhole-image.md
@@ -0,0 +1,70 @@
+---
+title: "Estudo de Caso: A Primeira Imagem de um Buraco Negro"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**Buraco Negro M87**" alt="imagem de um buraco negro" attr="*(Créditos: Event Horizon Telescope Collaboration)*" attrlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg" >}}
+
+
+
Criar uma imagem do Buraco Negro M87 é como tentar ver algo que, por definição, é impossível de se ver.
+
+
+
+## Um telescópio do tamanho da Terra
+
+O [telescópio Event Horizon (EHT)](https://eventhorizontelescope.org), é um conjunto de oito telescópios em solo formando um telescópio computacional do tamanho da Terra, projetado para estudar o universo com sensibilidade e resolução sem precedentes. O enorme telescópio virtual, que usa uma técnica chamada interferometria de longa linha de base (VLBI), tem uma resolução angular de [20 micro-arcossegundos][resolution] — o suficiente para ler um jornal em Nova Iorque a partir de um café em uma calçada de Paris!
+
+### Principais Objetivos e Resultados
+
+* **Uma nova visão do universo:** A imagem inovadora do EHT foi publicada 100 anos após [o experimento de Sir Arthur Eddington][eddington] ter produzido as primeiras evidências observacionais apoiando a teoria da relatividade geral de Einstein.
+
+* **O Buraco Negro:** o EHT foi treinado em um buraco negro supermassivo a aproximadamente 55 milhões de anos-luz da Terra, localizado no centro do galáxia Messier 87 (M87) no aglomerado de Virgem. Sua massa é equivalente a 6,5 bilhões de vezes a do Sol. Ele vem sendo estudado [há mais de 100 anos](https://www.jpl.nasa.gov/news/news.php?feature=7385), mas um buraco negro nunca havia sido observado visualmente antes.
+
+* **Comparando observações com a teoria:** Pela teoria geral da relatividade de Einstein, os cientistas esperavam encontrar uma região de sombra causada pela distorção e captura da luz causada pela influência gravitacional do buraco negro. Os cientistas poderiam usá-la para medir a enorme massa do mesmo.
+
+### Desafios
+
+* **Escala computacional**
+
+ O EHT representa um desafio imenso em processamento de dados, incluindo rápidas flutuações de fase atmosférica, uma largura grande de banda nas gravações e telescópios que são muito diferentes e geograficamente dispersos.
+
+* **Muitas informações**
+
+ A cada dia, o EHT gera mais de 350 terabytes de observações, armazenadas em discos rígidos cheios de hélio. Reduzir o volume e a complexidade desse volume de dados é extremamente difícil.
+
+* **Em direção ao desconhecido**
+
+ Quando o objetivo é algo que nunca foi visto, como os cientistas podem ter confiança de que sua imagem está correta?
+
+{{< figure src="/images/content_images/cs/dataprocessbh.png" class="csfigcaption" caption="**Etapas de Processamento de Dados do EHT**" alt="pipeline de dados" align="middle" attr="(Créditos do diagrama: The Astrophysical Journal, Event Horizon Telescope Collaboration)" attrlink="https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57" >}}
+
+## O papel do NumPy
+
+E se houver um problema com os dados? Ou talvez um algoritmo seja muito dependente de uma hipótese em particular. A imagem será alterada drasticamente se um único parâmetro for alterado?
+
+A colaboração do EHT venceu esses desafios ao estabelecer equipes independentes que avaliaram os dados usando técnicas de reconstrução de imagem estabelecidas e de ponta para verificar se as imagens resultantes eram consistentes. Quando os resultados se provaram consistentes, eles foram combinados para produzir a imagem inédita do buraco negro.
+
+O trabalho desse grupo ilustra o papel do ecossistema científico do Python no avanço da ciência através da análise de dados colaborativa.
+
+{{< figure src="/images/content_images/cs/bh_numpy_role.png" class="fig-center" alt="o papel do NumPy" caption="**O papel do NumPy na criação da primeira imagem de um Buraco Negro**" >}}
+
+Por exemplo, o pacote Python [`eht-imaging`][ehtim] fornece ferramentas para simular e realizar reconstrução de imagem nos dados do VLBI. O NumPy está no coração do processamento de dados vetoriais usado neste pacote, como ilustrado pelo gráfico parcial de dependências de software abaixo.
+
+{{< figure src="/images/content_images/cs/ehtim_numpy.png" class="fig-center" alt="mapa de dependências do ehtim com o numpy em realce" caption="**Diagrama de dependência de software do pacote ehtim evidenciando o NumPy**" >}}
+
+Além do NumPy, muitos outros pacotes como [SciPy](https://www.scipy.org) e [Pandas](https://pandas.io) foram usados na *pipeline* de processamento de dados para criar a imagem do buraco negro. Os arquivos astronômicos de formato padrão e transformações de tempo/coordenadas foram tratados pelo [Astropy][astropy] enquanto a [Matplotlib][mpl] foi usada na visualização de dados em todas as etapas de análise, incluindo a geração da imagem final do buraco negro.
+
+## Resumo
+
+A estrutura de dados n-dimensional que é a funcionalidade central do NumPy permitiu aos pesquisadores manipular grandes conjuntos de dados, fornecendo a base para a primeira imagem de um buraco negro. Esse momento marcante na ciência fornece evidências visuais impressionantes para a teoria de Einstein. Esta conquista abrange não apenas avanços tecnológicos, mas colaboração científica em escala internacional entre mais de 200 cientistas e alguns dos melhores observatórios de rádio do mundo. Eles usaram algoritmos e técnicas de processamento de dados inovadores, que aperfeiçoaram os modelos astronômicos existentes, para ajudar a descobrir um dos mistérios do universo.
+
+{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="funcionalidades do numpy" caption="**Funcionalidades-chave do NumPy utilizadas**" >}}
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
diff --git a/content/pt/case-studies/cricket-analytics.md b/content/pt/case-studies/cricket-analytics.md
new file mode 100644
index 0000000000..5b1e3b87c8
--- /dev/null
+++ b/content/pt/case-studies/cricket-analytics.md
@@ -0,0 +1,64 @@
+---
+title: "Estudo de Caso: Análise de Críquete, a revolução!"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/ipl-stadium.png" caption="**IPLT20, o maior festival de Críquete da Índia**" alt="Copa e estádio da Indian Premier League Cricket" attr="*(Créditos de imagem: IPLT20 (cup and logo) & Akash Yadav (stadium))*" attrlink="https://unsplash.com/@aksh1802" >}}
+
+
+
Você não joga para a torcida, joga para o país.
+
+
+
+## Sobre Críquete
+
+Dizer que os indianos adoram o críquete seria subestimar este sentimento. O jogo é jogado praticamente em todas as localidades da Índia, rurais ou urbanas, e é popular com os jovens e os anciões, conectando bilhões de pessoas na Índia como nenhum outro esporte. O críquete também recebe muita atenção da mídia. Há uma quantidade significativa de [dinheiro](https://www.statista.com/topics/4543/indian-premier-league-ipl/) e fama em jogo. Ao longo dos últimos anos, a tecnologia foi literalmente uma revolução. As audiências tem uma ampla possibilidade de escolha, com mídias de streaming, torneios, acesso barato a jogos de críquete ao vivo em dispositivos móveis, e mais.
+
+A Primeira Liga Indiana (*Indian Premier League* - IPL) é uma liga profissional de críquete [Twenty20](https://pt.wikipedia.org/wiki/Twenty20), fundada em 2008. É um dos eventos de críquete mais assistidos no mundo, avaliado em [$6,7 bilhões de dólares](https://en.wikipedia.org/wiki/Indian_Premier_League) em 2019.
+
+Críquete é um jogo dominado pelos números - as corridas executadas por um batsman, os wickets perdidos por um boleador, as partidas ganhas por uma equipe de críquete, o número de vezes que um batsman responde de certa maneira a um tipo de arremesso do boleador, etc. A capacidade de investigar números de críquete para melhorar o desempenho e estudar as oportunidades de negócio, mercado e economia de críquete através de poderosas ferramentas de análise, alimentadas por softwares numéricos de computação, como o NumPy, é um grande negócio. As análises de críquete fornecem informações interessantes sobre o jogo e informações preditivas sobre os resultados do jogo.
+
+Hoje, existem conjuntos ricos e quase infinitos de estatísticas e informações sobre jogos de críquete, por exemplo, [ESPN cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) e [cricsheet](https://cricsheet.org). Estes e muitos outros bancos de dados de críquete foram usados para [análise de críquete](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances) usando os mais modernos algoritmos de aprendizagem de máquina e modelagem preditiva. Plataformas de mídia e entretenimento, juntamente com entidades de esporte profissionais associadas ao jogo usam tecnologia e análise para determinar métricas chave para melhorar as chances de vitória:
+
+* média móvel do desempenho em rebatidas,
+* previsão de pontuação,
+* ganho de informações sobre desempenho e condição física de um determinado jogador contra determinado adversário,
+* contribuições dos jogadores para vitórias e derrotas para a tomada de decisões estratégicas na composição do time
+
+{{< figure src="/images/content_images/cs/cricket-pitch.png" class="csfigcaption" caption="**Pitch de críquete, o ponto focal do campo**" alt="Um pitch de críquete com um boleador e batsmen" align="middle" attr="*(Créditos de imagem: Debarghya Das)*" attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
+
+### Objetivos Principais da Análise de Dados
+
+* A análise de dados esportivos é usada não somente em críquete, mas em muitos [outros esportes](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) para melhorar o desempenho geral da equipe e maximizar as chances de vitória.
+* A análise de dados em tempo real pode ajudar na obtenção de informações mesmo durante o jogo para orientar mudanças nas táticas da equipe e dos negócios associados para benefícios e crescimento econômicos.
+* Além da análise histórica, os modelos preditivos explorados para determinar os possíveis resultados das partidas requerem um conhecimento significativo sobre processamento numérico e ciência de dados, ferramentas de visualização e a possibilidade de incluir observações mais recentes na análise.
+
+{{< figure src="/images/content_images/cs/player-pose-estimator.png" class="fig-center" alt="estimador de postura" caption="**Estimador de Postura de Críquete**" attr="*(Créditos de imagem: connect.vin)*" attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
+
+### Desafios
+
+* **Limpeza e pré-processamento de dados**
+
+ A IPL expandiu o formato de jogo clássico de cricket para uma escala muito maior. O número de partidas jogadas a cada temporada em vários formatos tem aumentado, assim como os dados, os algoritmos, as tecnologias de análise de dados mais recentes e modelos de simulação. A análise de dados de críquete requer mapeamento de campo, rastreamento do jogador, rastreamento de bola e análise de tiros do jogador, análise de lances do jogador e vários outros aspectos envolvidos em como a bola é lançada, seu ângulo, giro, velocidade e trajetória. Todos esses fatores em conjunto aumentaram a complexidade da limpeza e pré-processamento de dados.
+
+* **Modelagem Dinâmica**
+
+ No críquete, como em qualquer outro esporte, pode haver um grande número de variáveis relacionadas ao rastreamento de vários jogadores no campo, seus atributos, a bola e várias possibilidades de ações em potencial. A complexidade da análise e modelagem de dados é diretamente proporcional ao tipo de questões preditivas que são consideradas durante a análise e são altamente dependentes da representação de dados e do modelo. As coisas são ainda mais desafiadoras em termos de computação e comparações de dados quando previsões dinâmicas de jogo de críquete são desejadas, como o que teria acontecido se o batsman tivesse atingido a bola com um ângulo ou velocidade diferentes.
+
+* **Complexidade da análise preditiva**
+
+ Muito da tomada de decisões em críquete se baseia em questões como "com que frequência um batsman joga um certo tipo de lance se a recepção da bola for de um determinado tipo", ou "como um boleador muda a direção e alcance da sua jogada se o batsman responder de uma certa maneira". Esse tipo de consulta de análise preditiva requer a disponibilidade de conjuntos de dados altamente granulares e a capacidade de sintetizar dados e criar modelos generativos que sejam altamente precisos.
+
+## Papel do NumPy na Análise de Críquete
+
+A análise de dados esportivos é um campo próspero. Muitos pesquisadores e empresas [usam NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) e outros pacotes PyData como Scikit-learn, SciPy, Matplotlib, e Jupyter, além de usar as últimas técnicas de aprendizagem de máquina e IA. O NumPy foi usado para vários tipos de análise esportiva relacionada a críquete, como:
+
+* **Análise Estatística:** Os recursos numéricos do NumPy ajudam a estimar o significado estatístico de dados observados ou de eventos ocorridos em partidas no contexto de vários jogadores e táticas de jogo, bem como estimar o resultado do jogo em comparação com um modelo generativo ou estático. [Análise Causal](https://amplitude.com/blog/2017/01/19/causation-correlation) e [abordagens em *big data*](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/) são usados para análise tática.
+
+* **Data Visualization:** Data graphing and [visualization](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) provide useful insights into relationship between various datasets.
+
+## Resumo
+
+A análise de dados esportivos é revolucionária quando se trata de como os jogos profissionais são jogados, especialmente se consideramos como acontece a tomada de decisões estratégicas, que até pouco tempo era principalmente feita com base na "intuição" ou adesão a tradições passadas. O NumPy forma uma fundação sólida para um grande conjunto de pacotes Python que fornecem funções de alto nível relacionadas à análise de dados, aprendizagem de máquina e algoritmos de IA. Estes pacotes são amplamente implantados para se obter informações em tempo real que ajudam na tomada de decisão para resultados decisivos, tanto em campo como para se derivar inferências e orientar negócios em torno do jogo de críquete. Encontrar os parâmetros ocultos, padrões, e atributos que levam ao resultado de uma partida de críquete ajuda os envolvidos a tomar nota das percepções do jogo que estariam de outra forma ocultas nos números e estatísticas.
+
+{{< figure src="/images/content_images/cs/numpy_ca_benefits.png" class="fig-center" alt="Diagrama mostrando os benefícios de usar o NumPy para análise de críquete" caption="**Recursos principais da NumPy utilizados**" >}}
diff --git a/content/pt/case-studies/deeplabcut-dnn.md b/content/pt/case-studies/deeplabcut-dnn.md
new file mode 100644
index 0000000000..e94880b925
--- /dev/null
+++ b/content/pt/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,90 @@
+---
+title: "Estudo de Caso: Estimativa de Pose 3D com DeepLabCut"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Análise de movimentos de mãos de camundongos usando DeepLapCut**" alt="animação de mãos de camundongos" attr="*(Fonte: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut">}}
+
+
+
Software de código aberto está acelerando a Biomedicina. DeepLabCut permite a análise automática de vídeos de comportamento animal usando Deep Learning.
+
+
+
+## Sobre o DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) é uma toolbox de código aberto que permite que pesquisadores de centenas de instituições em todo o mundo rastreiem o comportamento de animais de laboratório, com muito poucos dados de treinamento, mas com precisão no nível humano. Com a tecnologia DeepLabCut, cientistas podem aprofundar a compreensão científica do controle motor e do comportamento em diversas espécies animais e escalas temporais.
+
+Várias áreas de pesquisa, incluindo a neurociência, a medicina e a biomecânica, utilizam dados de rastreamento da movimentação de animais. A DeepLabCut ajuda a compreender o que os seres humanos e outros animais estão fazendo, analisando ações que foram registradas em vídeo. Ao usar automação para tarefas trabalhosas de monitoramento e marcação, junto com análise de dados baseada em redes neurais profundas, a DeepLabCut garante que estudos científicos envolvendo a observação de animais como primatas, camundongos, peixes, moscas etc. sejam mais rápidos e precisos.
+
+{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**Pontos coloridos rastreiam as posições das partes do corpo de um cavalo de corrida**" alt="animação de um jóquei em um cavalo correndo" attr="*(Fonte: Mackenzie Mathis)*">}}
+
+O rastreamento não invasivo dos animais pela DeepLabCut através da extração de poses é crucial para pesquisas científicas em domínios como a biomecânica, genética, etologia e neurociência. Medir as poses dos animais de maneira não invasiva através de vídeo - sem marcadores - com fundos dinâmicos é computacionalmente desafiador, tanto tecnicamente quanto em termos de recursos e dados de treinamento necessários.
+
+A DeepLabCut permite que pesquisadores façam estimativas de poses para os sujeitos, permitindo que se possa quantificar de maneira eficiente seus comportamentos através de um conjunto de ferramentas de software baseado em Python. Com a DeepLabCut, pesquisadores podem identificar quadros (*frames*) distintos em vídeos e rotular digitalmente partes específicas do corpo em alguns quadros com uma GUI especializada. A partir disso, a arquitetura de estimação de poses baseada em deep learning da DeepLabCut aprende a selecionar essas mesmas características no resto do vídeo e em outros vídeos similares. A ferramenta funciona para várias espécies de animais, desde animais comuns em laboratórios, como moscas e camundongos, até os mais incomuns, como [guepardos][cheetah-movement].
+
+A DeepLabCut usa um princípio chamado [aprendizado por transferência (*transfer learning*)](https://arxiv.org/pdf/1909.11229), o que reduz enormemente a quantidade de dados de treinamento necessários e acelera a convergência do período de treinamento. Dependendo das suas necessidades, usuários podem escolher diferentes arquiteturas de rede que forneçam inferência mais rápida (por exemplo, MobileNetV2), e que também podem ser combinadas com feedback experimental em tempo real. A DeepLabCut usou originalmente os detectores de features de uma arquitetura de alto desempenho para estimativa de poses humanas, chamada [DeeperCut](https://arxiv.org/abs/1605.03170), que inspirou seu nome. O pacote foi significativamente alterado para incluir mais arquiteturas, métodos de ampliação e uma experiência de usuário completa no front-end. Além de possibilitar experimentos biológicos em grande escala, DeepLabCut fornece capacidades ativas de aprendizado para que os usuários possam aumentar o conjunto de treinamento ao longo do tempo, para incluir casos particulares e tornar seu algoritmo de estimativa de poses robusto no seu contexto específico.
+
+Recentemente, foi introduzido o [modelo DeepLabCut zoo](http://www.mousemotorlab.org/dlc-modelzoo), que proporciona modelos pré-treinados para várias espécies e condições experimentais, desde a análise facial em primatas até à posição de cães. Isso pode ser executado na nuvem, por exemplo, sem qualquer rotulagem de novos dados ou treinamento em rede neural, e não é necessária nenhuma experiência em programação.
+
+### Principais Objetivos e Resultados
+
+* **Automação da análise de poses animais para estudos científicos:**
+
+ O objetivo principal da tecnologia DeepLabCut é medir e rastrear a postura dos animais em várias configurações. Esses dados podem ser usados, por exemplo, em estudos de neurociência para entender como o cérebro controla o movimento, ou para elucidar como os animais interagem socialmente. Pesquisadores observaram que [desempenho é 10 vezes melhor](https://www.biorxiv.org/content/10.1101/457242v1) com o DeepLabCut. Poses podem ser inferidas off-line em até 1200 quadros por segundo (FPS).
+
+* **Criação de um kit de ferramentas Python fácil de usar para estimativa de poses:**
+
+ DeepLabCut queria compartilhar sua tecnologia de estimativa de poses de animais na forma de uma ferramenta simples de usar que pudesse ser adotada pelos pesquisadores facilmente. Assim, criaram um conjunto de ferramentas em Python completo e fácil de usar, também com recursos de gerenciamento de projeto. Isso permite não apenas a automação de estimação de poses, mas também o gerenciamento do projeto de ponta a ponta, ajudando o usuário do DeepLabCut Toolkit desde a fase de coleta para criar fluxos de dados compartilháveis e reutilizáveis.
+
+ Seu [conjunto de ferramentas][DLCToolkit] agora está disponível como software de código aberto.
+
+ Um fluxo de trabalho típico na DeepLabCut inclui:
+
+ - criação e refinamento de conjuntos de treinamento por meio de aprendizagem ativa
+ - criação de redes neurais personalizadas para animais e cenários específicos
+ - código para inferência em larga escala em vídeos
+ - inferências de desenho usando ferramentas integradas de visualização
+
+{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**Passos na estimação de poses com DeepLabCut**" alt="diagrama de passos na estimação de poses" align="middle" attr="(Fonte: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
+
+### Desafios
+
+* **Velocidade**
+
+ Processamento rápido de vídeos de animais para medir seu comportamento e, ao mesmo tempo, tornar os experimentos científicos mais eficientes e precisos. Extrair poses animais detalhadas para experimentos em laboratório, sem marcadores, sobre fundos dinâmicos, pode ser desafiador tanto tecnicamente quanto em termos de recursos e dados de treinamento necessários. Criar uma ferramenta que seja fácil de usar sem necessidade de habilidades como expertise em visão computacional que permita aos cientistas fazerem pesquisa em contextos mais próximos do mundo real é um problema não-trivial a ser solucionado.
+
+* **Combinatória**
+
+ Combinatória envolve a junção e integração de movimentos de múltiplos membros em um comportamento animal único. Reunir pontos-chave e suas conexões em movimentos animais individuais e encadeá-los em função do tempo é um processo complexo que exige análise numérica intensa, especialmente nos casos de rastreio de múltiplos animais em vídeos experimentais.
+
+* **Processamento de dados**
+
+ Por último, mas não menos importante, manipulação de matrizes - processar grandes conjuntos de matrizes correspondentes a várias imagens, tensores alvo e pontos-chave é bastante desafiador.
+
+{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**Estimação de poses e complexidade**" alt="6 imagens com diferentes exemplos de captura de movimento" align="middle" attr="(Fonte: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
+
+## O papel do NumPy nos desafios da estimação de poses
+
+NumPy supre a principal necessidade da tecnologia DeepLabCut de cálculos numéricos de alta velocidade para análises comportamentais. Além da NumPy, DeepLabCut emprega várias bibliotecas Python que usam a NumPy como sua base, tais como [SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org), [matplotlib](https://matplotlib.org), [Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug), [scikit-learn](https://scikit-learn.org/stable/), [scikit-image](https://scikit-image.org) e [Tensorflow](https://www.tensorflow.org).
+
+As seguintes características da NumPy desempenharam um papel fundamental para atender às necessidades de processamento de imagens, combinatória e cálculos rápidos nos algoritmos de estimação de pose na DeepLabCut:
+
+* Vetorização
+* Operações em arrays com máscaras
+* Álgebra linear
+* Amostragem aleatória
+* Reordenamento de matrizes grandes
+
+A DeepLabCut utiliza as capacidades de manipulação de arrays do NumPy em todo o fluxo de trabalho oferecido pelo seu conjunto de ferramentas. Em particular, a NumPy é usada para amostragem de quadros distintos para serem rotulados com anotações humanas e para escrita, edição e processamento de dados de anotação. Dentro da TensorFlow, a rede neural é treinada pela tecnologia DeepLabCut em milhares de iterações para prever as anotações verdadeiras dos quadros. Para este propósito, densidades de alvo (*scoremaps*) são criadas para colocar a estimativa como um problema de tradução de imagem a imagem. Para tornar as redes neurais robustas, o aumento de dados é empregado, o que requer o cálculo de scoremaps alvo sujeitos a várias etapas geométricas e de processamento de imagem. Para tornar o treinamento rápido, os recursos de vectorização da NumPy são utilizados. Para inferência, as previsões mais prováveis de scoremaps alvo precisam ser extraídas e é necessário "vincular previsões para montar animais individuais" de maneira eficiente.
+
+{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**Fluxo de dados DeepLabCut**" alt="diagrama com o fluxo de dados do deeplabcut" attr="*(Fonte: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
+
+## Resumo
+
+Observação e descrição eficiente do comportamento é uma peça fundamental da etologia, neurociência, medicina e tecnologia modernas. [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) permite que os pesquisadores estimem a pose do sujeito, permitindo efetivamente que o seu comportamento seja quantificado. Com apenas um pequeno conjunto de imagens de treinamento, o conjunto de ferramentas em Python da DeepLabCut permite treinar uma rede neural tão precisa quanto a rotulagem humana, expandindo assim sua aplicação para não só análise de comportamento dentro do laboratório, mas também potencialmente em esportes, análise de locomoção, medicina e estudos sobre reabilitação. Desafios complexos em combinatória e processamento de dados enfrentados pelos algoritmos da DeepLabCut são tratados através do uso de recursos de manipulação de matriz do NumPy.
+
+{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**Recursos chave do NumPy utilizados**" >}}
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
diff --git a/content/pt/case-studies/gw-discov.md b/content/pt/case-studies/gw-discov.md
new file mode 100644
index 0000000000..1064e5ca32
--- /dev/null
+++ b/content/pt/case-studies/gw-discov.md
@@ -0,0 +1,69 @@
+---
+title: "Estudo de Caso: Descoberta de Ondas Gravitacionais"
+sidebar: false
+---
+
+{{< figure src="/images/content_images/cs/gw_sxs_image.png" class="fig-center" caption="**Ondas gravitacionais**" alt="duas esferas orbitando a si mesmas, gerando ondas gravitacionais" attr="*(Créditos de imagem: O projeto Simulating eXtreme Spacetimes (SXS) no LIGO)*" attrlink="https://youtu.be/Zt8Z_uzG71o" >}}
+
+
+
O ecossistema científico Python é uma infraestrutura crítica para a pesquisa feita no LIGO.
+
+
+
+## Sobre [Ondas Gravitacionais](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) e o [LIGO](https://www.ligo.caltech.edu)
+
+Ondas gravitacionais são ondulações no tecido espaço-tempo, geradas por eventos cataclísmicos no universo, como a colisão e a fusão de dois buracos negros ou a coalescência de estrelas binárias ou supernovas. A observação de ondas gravitacionais pode ajudar não só no estudo da gravidade, mas também no entendimento de alguns dos fenômenos obscuros existentes no universo distante e seu impacto.
+
+O [Observatório Interferômetro Laser de Ondas Gravitacionais (LIGO)](https://www.ligo.caltech.edu) foi projetado para abrir o campo da astrofísica das ondas gravitacionais através da detecção direta de ondas gravitacionais previstas pela Teoria Geral da Relatividade de Einstein. It comprises two widely separated interferometers within the United States — one in Hanford, Washington and the other in Livingston, Louisiana — operated in unison to detect gravitational waves. Cada um deles tem detectores em escala quilométrica de ondas gravitacionais que usam interferometria laser. A Colaboração Científica LIGO (LSC), é um grupo de mais de 1000 cientistas de universidades dos Estados Unidos e em 14 outros países apoiados por mais de 90 universidades e institutos de pesquisa; aproximadamente 250 estudantes contribuem ativamente com a colaboração. A nova descoberta do LIGO é a primeira observação de ondas gravitacionais em si, feita medindo os pequenos distúrbios que as ondas fazem ao espaço-tempo enquanto atravessam a Terra. A descoberta abriu novas fronteiras astrofísicas que exploram o lado "curvado" do universo - objetos e fenômenos que são feitos a partir da curvatura do espaço-tempo.
+
+
+### Objetivos
+
+* Embora sua [missão](https://www.ligo.caltech.edu/page/what-is-ligo) seja detectar ondas gravitacionais de alguns dos processos mais violentos e enérgicos no Universo, os dados que o LIGO coleta podem ter efeitos de grande alcance em muitas áreas da física, incluindo gravitação, relatividade, astrofísica, cosmologia, física de partículas e física nuclear.
+* Processar dados observados através de cálculos numéricos de relatividade que envolvem matemática complexa para identificar o sinal e o ruído, filtrar o sinal relevante e estimar estatisticamente o significado dos dados observados.
+* Visualização de dados para que os resultados binários/numéricos possam ser compreendidos.
+
+
+
+### Desafios
+
+* **Computação**
+
+ As ondas gravitacionais são difíceis de detectar pois produzem um efeito muito pequeno e têm uma pequena interação com a matéria. Processar e analisar todos os dados do LIGO requer uma vasta infraestrutura de computação. Depois de cuidar do ruído, que é bilhões de vezes maior que o sinal, ainda há equações de relatividade complexas e enormes quantidades de dados que apresentam um desafio computacional: [O(10^7) horas de CPU necessárias para análises de fusão binária](https://youtu.be/7mcHknWWzNI) espalhado em 6 clusters dedicados ao LIGO.
+
+* **Sobrecarga de dados**
+
+ À medida que os dispositivos observacionais se tornam mais sensíveis e confiáveis, os desafios criados pela sobrecarga de dados e a procura por uma agulha em um palheiro se tornam muito maiores. O LIGO gera terabytes de dados todos os dias! Entender esses dados requer um enorme esforço para cada detecção. Por exemplo, os sinais sendo coletados pelo LIGO devem ser combinados por supercomputadores e comparados a centenas de milhares de modelos de possíveis assinaturas de ondas gravitacionais.
+
+* **Visualização**
+
+ Uma vez que os obstáculos relacionados a compreender as equações de Einstein bem o suficiente para resolvê-las usando supercomputadores foram ultrapassados, o próximo grande desafio era tornar os dados compreensíveis para o cérebro humano. A modelagem de simulações, assim como a detecção de sinais, exigem técnicas de visualização efetiva. A visualização também desempenha um papel de fornecer mais credibilidade à relatividade numérica aos olhos dos aficionados pela ciência pura, que não dão importância suficiente à relatividade numérica até que a imagem e as simulações tornem mais fácil a compreensão dos resultados para um público maior. A velocidade da computação complexa, e da renderização, re-renderização de imagens e simulações usando as últimas entradas e informações experimentais pode ser uma atividade demorada que desafia pesquisadores neste domínio.
+
+{{< figure src="/images/content_images/cs/gw_strain_amplitude.png" class="fig-center" alt="amplitude da deformação das ondas gravitacionais" caption="**Amplitude estimada da deformação das ondas gravitacionais do evento GW150914**" attr="(**Créditos do gráfico:** Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)" attrlink="https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger" >}}
+
+## O papel do NumPy na detecção de ondas gravitacionais
+
+Ondas gravitacionais emitidas da fusão não podem ser calculadas usando nenhuma técnica a não ser relatividade numérica por força bruta usando supercomputadores. A quantidade de dados que o LIGO coleta é imensa tanto quanto os sinais de ondas gravitacionais são pequenos.
+
+NumPy, o pacote padrão de análise numérica para Python, foi parte do software utilizado para várias tarefas executadas durante o projeto de detecção de ondas gravitacionais no LIGO. O NumPy ajudou a resolver problemas matemáticos e de manipulação de dados complexos em alta velocidade. Aqui estão alguns exemplos:
+
+* [Processamento de sinais](https://www.uv.es/virgogroup/Denoising_ROF.html): Detecção de falhas, [Identificação de ruídos e caracterização de dados](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, PyCharm)
+* Recuperação de dados: Decidir quais dados podem ser analisados, compreender se os dados contém um sinal - como uma agulha em um palheiro
+* Análise estatística: estimar o significado estatístico dos dados observados, estimando os parâmetros do sinal (por exemplo, massa de estrelas, velocidade de giro e distância) em comparação com um modelo.
+* Visualização de dados
+ - Séries temporais
+ - Espectrogramas
+* Cálculo de correlações
+* [Software](https://github.com/lscsoft) fundamental desenvolvido na análise de ondas gravitacionais, como [GwPy](https://gwpy.github.io/docs/stable/overview.html) e [PyCBC](https://pycbc.org) usam NumPy e AstroPy internamente para fornecer interfaces baseadas em objetos para utilidades, ferramentas e métodos para o estudo de dados de detectores de ondas gravitacionais.
+
+{{< figure src="/images/content_images/cs/gwpy-numpy-dep-graph.png" class="fig-center" alt="gráfico de dependências do gwpy com o NumPy em realce" caption="**Gráfico de dependências mostrando como o pacote GwPy depende do NumPy**" >}}
+
+----
+
+{{< figure src="/images/content_images/cs/PyCBC-numpy-dep-graph.png" class="fig-center" alt="gráfico de dependências do PyCBC com NumPy em realce" caption="**Gráfico de dependências mostrando como o pacote PyCBC depende do NumPy**" >}}
+
+## Resumo
+
+A detecção de ondas gravitacionais permitiu que pesquisadores descobrissem fenômenos totalmente inesperados ao mesmo tempo em que proporcionaram novas idéias sobre muitos dos fenômenos mais profundos conhecidos na astrofísica. O processamento e a visualização de dados é um passo crucial que ajuda cientistas a obter informações coletadas de observações científicas e a entender os resultados. Os cálculos são complexos e não podem ser compreendidos por humanos a não ser que sejam visualizados usando simulações de computador que são alimentadas com dados e análises reais observados. O NumPy, junto com outras bibliotecas Python, como matplotlib, pandas, e scikit-learn [permitem que pesquisadores](https://www.gw-openscience.org/events/GW150914/) respondam perguntas complexas e descubram novos horizontes em nossa compreensão do universo.
+
+{{< figure src="/images/content_images/cs/numpy_gw_benefits.png" class="fig-center" alt="funcionalidades do numpy" caption="**Recursos chave do NumPy utilizados**" >}}
diff --git a/content/pt/citing-numpy.md b/content/pt/citing-numpy.md
new file mode 100644
index 0000000000..f10e1042ca
--- /dev/null
+++ b/content/pt/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: Citando o NumPy
+sidebar: false
+---
+
+Se o NumPy é importante na sua pesquisa, e você gostaria de dar reconhecimento ao projeto na sua publicação acadêmica, sugerimos citar os seguintes documentos:
+
+* Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Link da editora](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_Em formato BibTeX:_
+
+ ```
+@Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{'{a}}ndez del
+ R{'{\i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+}
+```
diff --git a/content/pt/code-of-conduct.md b/content/pt/code-of-conduct.md
new file mode 100644
index 0000000000..5a29dbde43
--- /dev/null
+++ b/content/pt/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: Código de Conduta NumPy
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### Introdução
+
+Este código de conduta aplica-se a todos os espaços gerenciados pelo projeto NumPy, incluindo todas as listas de discussão públicas e privadas, *issue tracker*, wikis, blogs, Twitter e qualquer outro canal de comunicação usado pela nossa comunidade. O projeto NumPy não organiza eventos presenciais. No entanto, os eventos relacionados à nossa comunidade devem ter um código de conduta semelhante ao atual.
+
+Este Código de Conduta deve ser honrado por todas as pessoas que participam da comunidade NumPy formal ou informalmente, ou que reivindicam qualquer afiliação com o projeto, em qualquer atividade relacionada ao projeto, especialmente ao representar o projeto, em qualquer função.
+
+Este código não é exaustivo ou completo. Serve para disseminar a nossa compreensão comum de um ambiente colaborativo e de objetivos compartilhados entre nós. Por favor, tente seguir este código tanto na essência quanto ao pé da letra, para criar um ambiente amigável e produtivo que enriqueça a comunidade em geral.
+
+### Diretrizes específicas
+
+Nós nos esforçamos para:
+
+1. Sermos abertos. Convidamos qualquer pessoa a participar da nossa comunidade. Preferimos usar métodos públicos de comunicação para mensagens relacionadas aos projetos, a menos que estejamos discutindo algo sensível. Isso se aplica a mensagens em busca de ajuda ou suporte relacionado ao projeto também; não só é muito mais provável que um pedido de ajuda público resulte em uma resposta, mas isso também garante que qualquer erro involuntário na resposta seja mais facilmente detectado e corrigido.
+2. Sermos empáticos, acolhedores, amigáveis e pacientes. Trabalhamos juntos para resolver conflitos e acreditamos em boas intenções. Todos nós podemos sentir alguma frustração de vez em quando, mas não permitimos que a frustração se transforme num ataque pessoal. Uma comunidade onde as pessoas se sentem desconfortáveis ou ameaçadas não é uma comunidade produtiva.
+3. Sermos colaborativos. O nosso trabalho será utilizado por outras pessoas e, por sua vez, dependeremos do trabalho dos outros. Quando fazemos algo em benefício do projeto, estamos dispostos a explicar aos outros como esse algo funciona, para que outros possam desenvolver o trabalho e torná-lo ainda melhor. Qualquer decisão que tomemos afetará nossos usuários e os colegas, e levamos essas consequências a sério quando tomamos decisões.
+4. Sermos questionadores. Ninguém sabe tudo! Fazer perguntas antecipadamente evita muitos problemas mais tarde, por isso encorajamos as perguntas, embora possamos encaminhá-las para um fórum adequado. Vamos nos esforçar para sermos sensíveis e úteis.
+5. Termos cuidado com as palavras que escolhemos. Sejamos cuidadosos e respeitosos na nossa comunicação e tomemos para nós a responsabilidade pelo nosso próprio discurso. Seja gentil com os outros. Não insulte ou deprecie outros participantes. Nós não aceitaremos assédio ou outros comportamentos exclusivos, como:
+ * Ameaças ou linguagem violenta direcionadas contra outra pessoa.
+ * Piadas e linguagem sexista, racista ou discriminatória.
+ * Postagem de material sexualmente explícito ou violento.
+ * Postar (ou ameaçar postar) informações pessoais de outras pessoas (“doxing”).
+ * Compartilhar conteúdo privado, como e-mails enviados de maneira privada ou não-pública, ou fóruns não registrados, como histórico de canais IRC, sem o consentimento do remetente.
+ * Insultos pessoais, especialmente aqueles que utilizam termos racistas ou sexistas.
+ * Atenção sexual não consentida.
+ * Profanidade excessiva. Por favor, evite palavrões; as pessoas diferem muito na sua sensibilidade à linguagem.
+ * Assédio reiterado. Em geral, se alguém pedir que você pare, então pare.
+ * Advogar em favor ou encorajar qualquer um dos comportamentos acima.
+
+### Declaração de diversidade
+
+O projeto NumPy convida e incentiva a participação de todas as pessoas. Estamos empenhados em ser uma comunidade da qual todas as pessoas gostem de fazer parte. Embora nem sempre sejamos capazes de acomodar as preferências de cada indivíduo, nós tentamos o nosso melhor para tratar todos gentilmente.
+
+Não importa como você se identifica ou como os outros percebem você: nós lhe damos as boas-vindas. Embora nenhuma lista possa esperar ser totalmente abrangente, honramos explicitamente a diversidade em: idade, cultura, etnia, genótipo, identidade ou expressão de gênero, língua, origem, neurotipo, fenotipo, crenças políticas, profissão, raça, religião, orientação sexual, estado socioeconômico, subcultura e capacidade técnica, na medida em que não entrem em conflito com este código de conduta.
+
+Embora sejamos receptivos às pessoas fluentes em todas as línguas, o desenvolvimento do NumPy é conduzido em inglês.
+
+Padrões de comportamento na comunidade NumPy estão detalhados no Código de Conduta acima. Os participantes da nossa comunidade devem se comportar de acordo com esses padrões em todas as suas interações e ajudar os outros a fazê-lo também (veja a próxima seção).
+
+### Diretrizes de Resposta a Incidentes
+
+Sabemos que é mais comum do que o desejado que a comunicação na Internet comece ou se transforme em abusos óbvios e flagrantes. Reconhecemos também que, por vezes, as pessoas podem ter um dia ruim, ou não conhecer algumas das orientações deste Código de Conduta. Tenha isto em mente ao decidir como responder a uma violação deste Código.
+
+Em caso de violações claramente intencionais, o Comitê do Código de Conduta (veja abaixo) deve ser informado. Para violações possivelmente não intencionais, você pode responder à pessoa e apontar este código de conduta (seja em público ou em privado, o que for mais apropriado). Se preferir não o fazer, sinta-se à vontade para informar diretamente o Comitê do Código de Conduta, ou peça ao Comitê um conselho, sigilosamente.
+
+Você pode relatar problemas ao Comitê do Código de Conduta NumPy em numpy-conduct@googlegroups.com.
+
+Atualmente, o comitê é formato por:
+
+* Stefan van der Walt
+* Melissa Weber Mendonça
+* Anirudh Subramanian
+
+Se o seu relatório envolve algum membro da comissão, ou se você sentir que existe um conflito de interesses em tratá-lo, então os membros abster-se-ão de considerar o seu relatório. Como alternativa, se por qualquer razão você se sentir desconfortável em fazer um relatório à comissão, então você também pode entrar em contato com a equipe sênior da NumFOCUS em [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### Resolução de Incidentes & Execução do Código de Conduta
+
+_Esta seção resume os pontos mais importantes, mais detalhes podem ser encontrados em_ [Código de Conduta do NumPy - Como dar seguimento a um relatório](/report-handling-manual).
+
+Vamos investigar e responder a todas as queixas. O Comitê do Código de Conduta do NumPy e o Comitê Diretor do NumPy (se envolvido) protegerão a identidade do relatante, e tratarão o conteúdo das reclamações como confidencial (a menos que o relatante aceite o contrário).
+
+Em caso de violações graves e óbvias, por exemplo, ameaça pessoal ou linguagem violenta, sexista ou racista, vamos imediatamente desconectar a pessoa relatada dos canais de comunicação do NumPy; por favor, consulte o manual para mais detalhes.
+
+Em casos que não envolvam claras violações graves e óbvias deste Código de Conduta, o processo de ação referente a qualquer relato de violação do Código de Conduta recebido será:
+
+1. acusar o recebimento do relato,
+2. discussão/feedback razoável,
+3. mediação (se o feedback não ajudar e somente se ambos o relatante e relatado concordarem com isso),
+4. aplicação de solução via decisão transparente (veja as [Resoluções](/report-handling-manual#resolutions)) do Comitê do Código de Conduta.
+
+O comitê responderá a qualquer relatório o mais rapidamente possível e, no máximo, no prazo de 72 horas.
+
+### Notas
+
+Somos gratos aos grupos responsáveis pelos documentos abaixo, dos quais retiramos conteúdo e inspiração:
+
+- [The SciPy Code of Conduct](https://docs.scipy.org/doc/scipy/reference/dev/conduct/code_of_conduct.html)
diff --git a/content/pt/community.md b/content/pt/community.md
new file mode 100644
index 0000000000..bc930270be
--- /dev/null
+++ b/content/pt/community.md
@@ -0,0 +1,65 @@
+---
+title: Comunidade
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). A liderança do NumPy assumiu um forte compromisso de criar uma comunidade aberta, inclusiva e positiva. Por favor, leia [o Código de Conduta NumPy](/pt/code-of-conduct) para orientações sobre como interagir com os outros de uma forma que faça a comunidade prosperar.
+
+Oferecemos vários canais de comunicação para aprender, compartilhar seu conhecimento e se conectar com outros dentro da comunidade NumPy.
+
+
+## Participar online
+
+Abaixo, listamos algumas formas de se envolver diretamente com o projeto e a comunidade do NumPy. _Por favor, note que encorajamos os usuários e membros da comunidade a apoiarem-se uns aos outros para perguntas sobre utilização - veja [Obter Ajuda](/gethelp)._
+
+
+### [Lista de discussões NumPy](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+Esta lista é o principal fórum para discussões mais longas, como adicionar novos recursos ao NumPy, fazer alterações no roadmap do NumPy e em todos os tipos de tomada de decisão para todo o projeto. Anúncios sobre o NumPy, como novas versões, reuniões de desenvolvedores, sprints ou palestras de conferência também são feitas nesta lista.
+
+Nesta lista, por favor, use *bottom posting*, responda à lista (em vez de a outro remetente), e não responda aos *digests*. A searchable archive of this list is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [Página de issues do GitHub](https://github.com/numpy/numpy/issues)
+
+- Para relatórios de bugs (por exemplo, "`np.arange(3).shape` retorna `(5,)`, quando deveria retornar `(3,)`");
+- problemas de documentação (ex. "Eu achei esta seção confusa");
+- e pedidos de recursos (por exemplo, "Eu gostaria de ter um novo método de interpolação em `np.percentile`").
+
+_Por favor, note que o GitHub não é o lugar certo para relatar uma vulnerabilidade de segurança. Se você acha que encontrou uma vulnerabilidade de segurança no NumPy, relate-a [aqui](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+Uma sala de bate-papo em tempo real para fazer perguntas sobre _contribuir_ para o NumPy. Este é um fórum privado, especificamente para pessoas hesitantes em levantar suas perguntas ou idéias em uma grande lista de e-mails públicos ou no GitHub. Por favor, clique [aqui](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) para mais detalhes e como obter um convite.
+
+
+## Grupos de Estudo e Meetups
+
+Se você gostaria de encontrar um encontro ou grupo de estudo local para aprender mais sobre o NumPy e o ecossistema mais amplo de pacotes Python para ciência de dados e computação científica, recomendamos explorar os [meetups PyData](https://www.meetup.com/pro/pydata/) (mais de 150 encontros, mais de 100.000 membros).
+
+O NumPy também organiza sprints presenciais para sua equipe e colaboradores interessados ocasionalmente. Estes eventos são normalmente planejados com vários meses de antecedência e serão anunciados na [lista de discussão](https://mail.python.org/mailman/listinfo/numpy-discussion) e no [Twitter](https://twitter.com/numpy_team).
+
+
+## Conferências
+
+O projeto NumPy não organiza suas próprias conferências. As conferências que tradicionalmente têm sido mais populares com mantenedores, colaboradores e usuários são as conferências SciPy e PyData:
+
+- [SciPy US](https://conference.scipy.org)
+- [EuroSciPy](https://www.euroscipy.org)
+- [SciPy Latin America](https://www.scipyla.org)
+- [SciPy India](https://scipy.in)
+- [SciPy Japan](https://conference.scipy.org)
+- [conferências PyData](https://pydata.org/event-schedule/) (15-20 eventos por ano espalhados por muitos países)
+
+Muitas dessas conferências incluem dias de tutorial sobre o NumPy e/ou sprints onde você pode aprender como contribuir com o NumPy ou projetos de código aberto relacionados.
+
+
+## Junte-se à comunidade NumPy
+
+Para prosperar, o projeto NumPy precisa de sua experiência e entusiasmo. Não é uma pessoa programadora? Sem problemas! Existem muitas maneiras de contribuir com o NumPy.
+
+Se você está interessado em se tornar um contribuidor do NumPy (oba!) recomendamos que você confira nossa página sobre [Contribuições](/pt/contribute).
+
diff --git a/content/pt/config.yaml b/content/pt/config.yaml
new file mode 100644
index 0000000000..9ca2f96a65
--- /dev/null
+++ b/content/pt/config.yaml
@@ -0,0 +1,165 @@
+---
+languageName: Português
+params:
+ description: Por que NumPy? Arrays n-dimensionais poderosas. Ferramentas para computação numérica. Interoperabilidade. Alto desempenho. Código aberto.
+ navbarlogo:
+ image: logo.svg
+ link: /pt/
+ hero:
+ #Main hero title
+ title: NumPy
+ #Hero subtitle (optional)
+ subtitle: A biblioteca fundamental para computação científica com Python
+ #Button text
+ buttontext: Comece aqui
+ #Where the main hero button links to
+ buttonlink: "/pt/install"
+ #Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ promptlabel: console interativo
+ button:
+ -
+ label: Habilita o tutorial com console interativo
+ text: Habilitar
+ shellcontent:
+ intro:
+ -
+ title: Experimentar o NumPy
+ text: Ativar o console interativo
+ loading:
+ -
+ title: Enquanto esperamos...
+ text: Iniciando container em mybinder.org...
+ docslink: Não se esqueça de conferir a documentação.
+ casestudies:
+ title: ESTUDOS DE CASO
+ features:
+ -
+ title: A Primeira Imagem de um Buraco Negro
+ text: Como o NumPy, junto com outras bibliotecas como SciPy e Matplotlib que dependem do NumPy, permitiram ao Event Horizon Telescope gerar a primeira imagem de um buraco negro da história.
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: Primeira imagem de um buraco negro. É um círculo laranja em um fundo preto.
+ url: /pt/case-studies/blackhole-image
+ -
+ title: Descoberta de Ondas Gravitacionais
+ text: Em 1916, Albert Einstein previu ondas gravitacionais; 100 anos depois, sua existência foi confirmada pelos cientistas do LIGO usando NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Duas esferas orbitando a si mesmas. Elas deslocam a gravidade em seu entorno.
+ url: /pt/case-studies/gw-discov
+ -
+ title: Análise Esportiva
+ text: A análise de críquete está mudando o jogo ao melhorar o desempenho de jogadores e times através de modelagem estatística e análise preditiva. O NumPy possibilita muitas dessas análises.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Bola de críquete em um campo verde
+ url: /pt/case-studies/cricket-analytics
+ -
+ title: Estimação de poses usando deep learning
+ text: DeepLabCut usa o NumPy para acelerar estudos científicos que envolvem comportamento animal para entender melhor o controle motor em várias espécies e escalas de tempo.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Análise de pose de um guepardo
+ url: /pt/case-studies/deeplabcut-dnn
+ keyfeatures:
+ features:
+ -
+ title: Arrays n-dimensionais poderosas
+ text: Rápidos e versáteis, os conceitos de vetorização, indexação e broadcasting do NumPy são, na prática, o padrão em computação com arrays.
+ -
+ title: Ferramentas de computação numérica
+ text: O NumPy oferece um conjunto completo de funções matemáticas, geradores de números aleatórios, rotinas de álgebra linear, transformadas de Fourier, e mais.
+ -
+ title: Interoperabilidade
+ text: O NumPy suporta um grande número de plataformas de hardware e computação, e pode ser combinada com bibliotecas de computação com arrays esparsas, distribuidas ou em GPUs.
+ -
+ title: Alto desempenho
+ text: O núcleo do NumPy é feito de código otimizado em C. Experimente a flexibilidade do Python com a velocidade de código compilado.
+ -
+ title: Fácil de usar
+ text: A sintaxe de alto nível do NumPy torna-o acessível e produtivo para programadores de qualquer nível de experiência e formação.
+ -
+ title: Código aberto
+ text: Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+ tabs:
+ title: ECOSSISTEMA
+ section5: false
+navbar:
+ -
+ title: Instalação
+ url: /pt/install
+ -
+ title: Documentação
+ url: https://numpy.org/doc/stable
+ -
+ title: Aprenda
+ url: /pt/learn
+ -
+ title: Comunidade
+ url: /pt/community
+ -
+ title: Sobre
+ url: /pt/about
+ -
+ title: Contribuir
+ url: /pt/contribute
+footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ -
+ link: https://github.com/numpy/numpy
+ icon: github
+ -
+ link: https://twitter.com/numpy_team
+ icon: twitter
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ -
+ text: Instalação
+ link: /pt/install
+ -
+ text: Documentação
+ link: https://numpy.org/doc/stable
+ -
+ text: Aprenda
+ link: /pt/learn
+ -
+ text: Citando o Numpy
+ link: /pt/citing-numpy
+ -
+ text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ -
+ text: Sobre
+ link: /pt/about
+ -
+ text: Comunidade
+ link: /pt/community
+ -
+ text: User surveys
+ link: /user-surveys
+ -
+ text: Contribute
+ link: /contribute
+ -
+ text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ -
+ text: Ajuda
+ link: /pt/gethelp
+ -
+ text: Termos de uso (EN)
+ link: /pt/terms
+ -
+ text: Privacidade
+ link: /pt/privacy
+ -
+ text: Kit de imprensa
+ link: /pt/press-kit
+
diff --git a/content/pt/contribute.md b/content/pt/contribute.md
new file mode 100644
index 0000000000..be44edae3c
--- /dev/null
+++ b/content/pt/contribute.md
@@ -0,0 +1,78 @@
+- - -
+title: Contribua com o NumPy sidebar: false
+- - -
+
+O projeto NumPy precisa de sua experiência e entusiasmo! Suas opções não são limitadas à programação -- além de
+
+- [Escrever código](#writing-code)
+
+você pode:
+
+- [Revisar pull requests](#reviewing-pull-requests)
+- [Desenvolver tutoriais, apresentações e outros materiais educacionais](#developing-educational-materials)
+- [Fazer triagem em issues](#issue-triaging)
+- [Trabalhar no nosso site](#website-development)
+- [Contribuir com design gráfico](#graphic-design)
+- [Traduzir conteúdo do site](#translating-website-content)
+- [Trabalhar coordenando a comunidade](#community-coordination-and-outreach)
+- [Escrever propostas e ajudar com outras atividades para financiamento](#fundraising)
+
+Se você não sabe por onde começar ou como suas habilidades podem ajudar, _fale conosco!_ Você pode perguntar na nossa [lista de emails](https://mail.python.org/mailman/listinfo/numpy-discussion) ou [GitHub](http://github.com/numpy/numpy) (abrindo uma [issue](https://github.com/numpy/numpy/issues) ou comentando em uma issue relevante).
+
+Estes são os nossos canais de comunicação preferidos (projetos de código aberto são abertos por natureza!). No entanto, se você preferir discutir em privado, entre em contato com os coordenadores da comunidade em ou no [Slack](https://numpy-team.slack.com) (envie um e-mail para para obter um convite antes de entrar).
+
+Nós também temos uma _reunião aberta da comunidade_ a cada duas semanas. Os detalhes são anunciados na nossa [lista de emails](https://mail.python.org/mailman/listinfo/numpy-discussion). Convidamos você a participar desta chamada se quiser. Se você nunca contribuiu para projetos de código aberto, recomendamos fortemente que você leita [esse guia](https://opensource.guide/how-to-contribute/).
+
+Nossa comunidade deseja tratar todos da mesma forma e valorizar todas as contribuições. Temos um [Código de Conduta](/pt/code-of-conduct) para promover um ambiente aberto e acolhedor.
+
+### Escrevendo código
+
+Para pessoas programadoras, este [guia](https://numpy.org/devdocs/dev/index.html#development-process-summary) explica como contribuir para a base de código.
+
+### Revisar pull requests
+O projeto tem mais de 250 pull requests abertos -- o que significa que muitas potenciais melhorias e muitos contribuidores de código aberto estão aguardando feedback. Se você é uma pessoa programadora que conhece o NumPy, você pode ajudar, mesmo que não tenha familiaridade com o código. Você pode:
+* resumir uma discussão longa
+* fazer triagem de PRs de documentação
+* testar alterações propostas
+
+
+### Desenvolvimento de materiais educacionais
+
+O [Guia do Usuário](https://numpy.org/devdocs) do Numpy está sendo reformado. Precisamos de novos tutoriais, how-to's e de explicações de conceitos, e o site precisa de reestruturação. Oportunidades não se limitam a pessoas com experiência em escrita técnica. Também procuramos exemplos práticos, notebooks e vídeos. A [NEP 44](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html) explica nossas ideias para reestruturar a documentação do NumPy — talvez você também tenha outras ideias.
+
+
+### Triagem de Issues
+
+O [*issue tracker* do NumPy](https://github.com/numpy/numpy/issues) tem _um monte_ de issues abertas. Algumas não são mais válidas, algumas deveriam ser priorizadas, e algumas poderiam ser boas para pessoas que estão procurando sua primeira contribuição. Você pode:
+
+* verificar se erros mais antigos ainda estão presentes
+* encontrar issues duplicadas e criar links entre issues relacionadas
+* adicionar bons exemplos autocontidos que reproduzam issues
+* rotular issues corretamente (isso requer direitos de triagem -- basta perguntar)
+
+Sinta-se à vontade!
+
+
+### Desenvolvimento do site
+
+Acabamos de renovar o nosso site, mas estamos longe de terminar. Se você adora o desenvolvimento web, estas [issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign) listam algumas de nossas necessidades não atendidas -- e sinta-se livre para compartilhar suas próprias ideias.
+
+
+### Design gráfico
+
+Nós mal podemos começar a listar as contribuições que uma pessoa com conhecimento em design gráfico pode fazer aqui. Nossa documentação precisa de ilustrações; nosso site crescente precisa de imagens -- há muitas oportunidades.
+
+
+### Traduzir conteúdo do site
+
+Planejamos várias traduções do [numpy.org](https://numpy.org) para tornar o NumPy acessível aos usuários em seu idioma nativo. Tradutores voluntários estão no coração deste esforço. Veja [aqui](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n) para informações; comente [nesta issue do GitHub](https://github.com/numpy/numpy.org/issues/55) para se envolver.
+
+
+### Coordenação e promoção na comunidade
+
+Através do contato com a comunidade podemos compartilhar nosso trabalho para mais pessoas e descobrir onde precisamos trabalhar mais. Estamos ansiosos para que mais pessoas se envolvam em esforços como nossa conta no [Twitter](https://twitter.com/numpy_team), na organização de [sprints](https://scisprints.github.io/) sobre o NumPy, uma newsletter, e talvez um blog.
+
+### Financiamento
+
+O NumPy foi um projeto totalmente voluntário por muitos anos, mas conforme sua importância cresceu, tornou-se clara a necessidade de apoio financeiro para garantir estabilidade e crescimento. [Esta palestra na SciPy'19](https://www.youtube.com/watch?v=dBTJD_FDVjU) explica quanta diferença esse suporte fez. Como todo o mundo das organizações sem fins lucrativos, nós estamos constantemente procurando bolsas, patrocinadores e outros tipos de apoio. Nós temos uma série de ideias e é claro que nós damos as boas-vindas a mais. Habilidade de buscar financiamento é uma habilidade rara aqui -- apreciaríamos a sua ajuda.
+
diff --git a/content/pt/diversity_sep2020.md b/content/pt/diversity_sep2020.md
new file mode 100644
index 0000000000..ef3030d5f7
--- /dev/null
+++ b/content/pt/diversity_sep2020.md
@@ -0,0 +1,48 @@
+---
+title: NumPy Diversity and Inclusion Statement
+sidebar: false
+---
+
+
+_In light of the foregoing discussion on social media after publication of the NumPy paper in Nature and the concerns raised about the state of diversity and inclusion on the NumPy team, we would like to issue the following statement:_
+
+
+It is our strong belief that we are at our best, as a team and community, when we are inclusive and equitable. Being an international team from the onset, we recognize the value of collaborating with individuals from diverse backgrounds and expertise. A culture where everyone is welcomed, supported, and valued is at the core of the NumPy project.
+
+## The Past
+
+Contributing to open source has always been a pastime in which most historically marginalized groups, especially women, faced more obstacles to participate due to a number of societal constraints and expectations. Open source has a severe diversity gap that is well documented (see, e.g., the [2017 GitHub Open Source Survey](https://opensourcesurvey.org/2017/) and [this blog post](https://medium.com/tech-diversity-files/if-you-think-women-in-tech-is-just-a-pipeline-problem-you-haven-t-been-paying-attention-cb7a2073b996)).
+
+Since its inception and until 2018, NumPy was maintained by a handful of volunteers often working nights and weekends outside of their day jobs. At any one time, the number of active core developers, the ones doing most of the heavy lifting as well as code review and integration of contributions from the community, was in the range of 4 to 8. The project didn't have a roadmap or mechanism for directing resources, being driven by individual efforts to work on what seemed needed. The authors on the NumPy paper are the individuals who made the most significant and sustained contributions to the project over a period of 15 years (2005 - 2019). The lack of diversity on this author list is a reflection of the formative years of the Python and SciPy ecosystems.
+
+2018 has marked an important milestone in the history of the NumPy project. Receiving funding from The Gordon and Betty Moore Foundation and Alfred P. Sloan Foundation allowed us to provide full-time employment for two software engineers with years of experience contributing to the Python ecosystem. Those efforts brought NumPy to a much healthier technical state.
+
+This funding also created space for NumPy maintainers to focus on project governance, community development, and outreach to underrepresented groups. [The diversity statement](https://figshare.com/articles/online_resource/Diversity_and_Inclusion_Statement_NumPy_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/12980852) written in mid 2019 for the CZI EOSS program grant application details some of the challenges as well as the advances in our efforts to bring in more diverse talent to the NumPy team.
+
+## The Present
+
+Offering employment opportunities is an effective way to attract and retain diverse talent in OSS. Therefore, we used two-thirds of our second grant that became available in Dec 2019 to employ Melissa Weber Mendonça and Mars Lee.
+
+As a result of several initiatives aimed at community development and engagement led by Inessa Pawson and Ralf Gommers, the NumPy project has received a number of valuable contributions from women and other underrepresented groups in open source in 2020:
+
+- Melissa Weber Mendonça gained commit rights, is maintaining numpy.f2py and is leading the documentation team,
+- Shaloo Shalini created all case studies on numpy.org,
+- Mars Lee contributed web design and led our accessibility improvements work,
+- Isabela Presedo-Floyd designed our new logo,
+- Stephanie Mendoza, Xiayoi Deng, Deji Suolang, and Mame Fatou Thiam designed and fielded the first NumPy user survey,
+- Yuki Dunn, Dayane Machado, Mahfuza Humayra Mohona, Sumera Priyadarsini, Shaloo Shalini, and Kriti Singh (former Outreachy intern) helped the survey team to reach out to non-English speaking NumPy users and developers by translating the questionnaire into their native languages,
+- Sayed Adel, Raghuveer Devulapalli, and Chunlin Fang are driving the work on SIMD optimizations in the core of NumPy.
+
+While we still have much more work to do, the NumPy team is starting to look much more representative of our user base. And we can assure you that the next NumPy paper will certainly have a more diverse group of authors.
+
+## The Future
+
+We are fully committed to fostering inclusion and diversity on our team and in our community, and to do our part in building a more just and equitable future.
+
+We are open to dialogue and welcome every opportunity to connect with organizations representing and supporting women and minorities in tech and science. We are ready to listen, learn, and support.
+
+Please get in touch with us on [our mailing list](https://scipy.org/scipylib/mailing-lists.html#mailing-lists), [GitHub](https://github.com/numpy/numpy/issues), [Slack](https://numpy.org/contribute/), in private at numpy-team@googlegroups.com, or join our [bi-weekly community meeting](https://hackmd.io/76o-IxCjQX2mOXO_wwkcpg).
+
+
+_Sayed Adel, Sebastian Berg, Raghuveer Devulapalli, Chunlin Fang, Ralf Gommers, Allan Haldane, Stephan Hoyer, Mars Lee, Melissa Weber Mendonça, Jarrod Millman, Inessa Pawson, Matti Picus, Nathaniel Smith, Julian Taylor, Pauli Virtanen, Stéfan van der Walt, Eric Wieser, on behalf of the NumPy team_
+
diff --git a/content/pt/gethelp.md b/content/pt/gethelp.md
new file mode 100644
index 0000000000..bba586e7f2
--- /dev/null
+++ b/content/pt/gethelp.md
@@ -0,0 +1,34 @@
+---
+title: Obter ajuda
+sidebar: false
+---
+
+**Perguntas de usuários:** A melhor maneira de obter ajuda é postar sua pergunta em um site como [StackOverflow](http://stackoverflow.com/questions/tagged/numpy), com milhares de usuários disponíveis para responder. Outras alternativas incluem [IRC](https://webchat.freenode.net/?channels=%23numpy), [Gitter](https://gitter.im/numpy/numpy)e [Reddit](https://www.reddit.com/r/Numpy/). Gostaríamos de poder ficar de olho nestes sites, ou responder perguntas diretamente, mas o volume é imenso!
+
+**Issues sobre desenvolvimento:** Para assuntos relacionados ao desenvolvimento do NumPy (por exemplo, relatórios de bugs), veja a [Comunidade](/community).
+
+
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+Um fórum para fazer perguntas sobre a utilização da biblioteca, por exemplo: "Como faço X no NumPy?". Por favor [use a tag `#numpy`](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+Outro fórum para perguntas de utilização.
+
+***
+
+### [Gitter](https://gitter.im/numpy/numpy)
+
+Uma sala de bate-papo em tempo real onde usuários e membros da comunidade se ajudam uns aos outros.
+
+***
+
+### [IRC](https://webchat.freenode.net/?channels=%23numpy)
+
+Outra sala de bate-papo em tempo real onde usuários e membros da comunidade se ajudam uns aos outros.
+
+***
diff --git a/content/pt/history.md b/content/pt/history.md
new file mode 100644
index 0000000000..2ddc33eb57
--- /dev/null
+++ b/content/pt/history.md
@@ -0,0 +1,21 @@
+---
+title: Histórico do NumPy
+sidebar: false
+---
+
+NumPy é uma biblioteca Python fundamental que fornece estruturas de *arrays* de dados e rotinas numéricas rápidas relacionadas a estas arrays. Quando começou, a biblioteca tinha pouco financiamento e foi escrita principalmente por estudantes de pós-graduação—muitos deles sem educação em ciência da computação e, muitas vezes, sem autorização dos seus orientadores. Imaginar que um pequeno grupo de programadores estudantis "desobedientes" poderiam subverter o já bem estabelecido ecossistema de software de pesquisa - apoiado por milhões em financiamento e muitas centenas de engenheiros altamente qualificados - era absurdo. No entanto, as motivações filosóficas por trás de uma ferramenta totalmente aberta, em combinação com a vibrante, amigável comunidade com foco singular, provaram ser auspiciosas a longo prazo. Hoje em dia, cientistas, engenheiros e muitos outros profissionais ao redor do mundo confiam no NumPy. Por exemplo, os scripts usados e publicados na análise de ondas gravitacionais importam o NumPy, e o projeto de imagem para buraco negro M87 cita diretamente o NumPy.
+
+Para um histórico aprofundado dos marcos no desenvolvimento do NumPy e bibliotecas relacionadas, por favor veja [arxiv.org](arxiv.org/abs/1907.10121).
+
+Se você quiser obter uma cópia das bibliotecas Numeric e Numarray, siga os links abaixo:
+
+[Página de download para *Numeric*](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)*
+
+[Página de download para *Numarray*](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)*
+
+*Por favor, note que esses pacotes antigos não são mais mantidos, e os usuários são fortemente aconselhados a usar o NumPy para quaisquer propósitos relacionados a arrays e matrizes ou refatorar qualquer código pré-existente para utilizar a biblioteca do NumPy.
+
+### Documentação Histórica
+
+[Baixe o manual do *`Numeric'*](static/numeric-manual.pdf)
+
diff --git a/content/pt/install.md b/content/pt/install.md
new file mode 100644
index 0000000000..179ca126e7
--- /dev/null
+++ b/content/pt/install.md
@@ -0,0 +1,142 @@
+---
+title: Instalando o NumPy
+sidebar: false
+---
+
+O único pré-requisito para instalar o NumPy é o próprio Python. Se você ainda não tem o Python e quer começar do jeito mais simples, nós recomendamos que você use a [Distribuição Anaconda](https://www.anaconda.com/distribution) - ela inclui Python, NumPy e outros pacotes comumente usados para computação científica e ciência de dados.
+
+O NumPy pode ser instalado com `conda`, com `pip`, com um gerenciador de pacotes no macOS e Linux, ou [pelo código fonte](https://numpy.org/devdocs/user/building.html). Para obter instruções mais detalhadas, consulte nosso [guia de instalação do Python e do NumPy](#python-numpy-install-guide) abaixo.
+
+**CONDA**
+
+Se você usar o `conda`, você pode instalar o NumPy do canal `defaults` ou do `conda-forge`:
+
+```bash
+# Recomenda-se usar um ambiente novo ao invés de instalar no ambiente-base
+conda create -n my-env
+conda activate my-env
+# Se quiser instalar do conda-forge
+conda config --env --add channels conda-forge
+# O comando para instalação
+conda install numpy
+```
+
+**PIP**
+
+Se você usa o `pip`, você pode instalar o NumPy com:
+
+```bash
+pip install numpy
+```
+Também ao usar o pip, é uma boa prática usar um ambiente virtual - veja em [Instalações Reprodutíveis](#reproducible-installs) abaixo por quê, e [esse guia](https://dev.to/bowmanjd/python-tools-for-managing-virtual-environments-3bko#howto) para detalhes sobre o uso de ambientes virtuais.
+
+
+
+# Guia de instalação do Python e do NumPy
+
+Instalar e gerenciar pacotes no Python pode ser complicado. Há várias soluções alternativas para a maioria das tarefas. Este guia tenta dar ao leitor um resumo das melhores (ou mais populares) soluções e dar recomendações claras. Ele se concentra em usuários do Python, NumPy e do PyData (ou computação numérica) em sistemas operacionais e hardware comuns.
+
+## Recomendações
+
+Vamos começar com recomendações baseadas no nível de experiência do usuário e no sistema operacional de interesse. Se você estiver entre "iniciante" e "avançado", por favor, escolha "iniciante" se você quiser manter as coisas simples, e "avançado" se você quiser trabalhar de acordo com as melhores práticas que te ajudarão a ir mais longe no futuro.
+
+### Usuários iniciantes
+
+Em Windows, macOS e Linux:
+
+- Instale o [Anaconda](https://www.anaconda.com/distribution/) (instala todos os pacotes que você precisa e todas as outras ferramentas mencionadas abaixo).
+- Para escrever e executar código, use notebooks no [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/index.html) para a computação exploratória e interativa, e o [Spyder](https://www.spyder-ide.org/) ou [Visual Studio Code](https://code.visualstudio.com/) para escrever scripts e pacotes.
+- Use o [Anaconda Navigator](https://docs.anaconda.com/anaconda/navigator/) para gerenciar seus pacotes e iniciar o JupyterLab, Spyder ou o Visual Studio Code.
+
+
+### Usuários avançados
+
+#### Windows ou macOS
+
+- Instale o [Miniconda](https://docs.conda.io/en/latest/miniconda.html).
+- Mantenha o ambiente conda `base` mínimo, e use um ou mais [ambientes conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) para instalar o pacote que você precisa para a tarefa ou projeto em que você está trabalhando.
+- A menos que você esteja satisfeito com apenas os pacotes no canal `defaults`, faça do `conda-forge` seu canal padrão [definindo a prioridade do canal](https://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge).
+
+
+#### Linux
+
+Se você não tiver problemas em ter pacotes um pouco desatualizados e preferir estabilidade ao invés de ser capaz de usar as últimas versões das bibliotecas:
+- Use seu gerenciador de pacotes do SO o máximo possível (para o Python, NumPy e outras bibliotecas).
+- Instale pacotes não fornecidos pelo seu gerenciador de pacotes com `pip install algumpacote --user`.
+
+Se você usa uma GPU:
+- Instale o [Miniconda](https://docs.conda.io/en/latest/miniconda.html).
+- Mantenha o ambiente conda `base` mínimo, e use um ou mais [ambientes conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) para instalar o pacote que você precisa para a tarefa ou projeto em que você está trabalhando.
+- Use o canal conda`defaults` (`conda-forge` não tem bom suporte para pacotes de GPU).
+
+Caso contrário:
+- Instale o [Miniforge](https://github.com/conda-forge/miniforge).
+- Mantenha o ambiente conda `base` mínimo, e use um ou mais [ambientes conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) para instalar o pacote que você precisa para a tarefa ou projeto em que você está trabalhando.
+
+
+#### Alternativa se você preferir pip/PyPI
+
+Para usuários que preferem uma solução baseada em pip/PyPI, por preferência pessoal ou leitura sobre as principais diferenças entre o conda e o pip, nós recomendamos:
+- Instale o Python a partir de, por exemplo, [python.org](https://www.python.org/downloads/), [Homebrew](https://brew.sh/), ou seu gerenciador de pacotes Linux.
+- Use [Poetry](https://python-poetry.org/) como a ferramenta mais bem mantida que fornece um resolvedor de dependências e recursos de gerenciamento de ambiente de forma semelhante ao que o conda faz.
+
+
+## Gerenciamento de pacotes Python
+
+Gerenciar pacotes é um problema desafiador e, como resultado, há muitas ferramentas. Para o desenvolvimento web e de propósito geral em Python, há uma [série de ferramentas](https://packaging.python.org/guides/tool-recommendations/) complementares com pip. Para computação de alto desempenho (HPC), vale a pena considerar o [Spack](https://github.com/spack/spack). Para a maioria dos usuários NumPy, porém, o [conda](https://conda.io/en/latest/) e o [pip](https://pip.pypa.io/en/stable/) são as duas ferramentas mais populares.
+
+
+### Pip & conda
+
+As duas principais ferramentas que instalam pacotes do Python são `pip` e `conda`. Algumas de suas funcionalidades são redundantes (por exemplo, ambos podem instalar o `numpy`). No entanto, elas também podem trabalhar juntas. Vamos discutir as principais diferenças entre o pip e o conda aqui - é importante entender isso se você deseja gerenciar pacotes de forma efetiva.
+
+A primeira diferença é que "conda" é multilinguagens e pode instalar o Python, enquanto o pip é instalado em um determinado Python em seu sistema e instala outros pacotes apenas para essa mesma instalação de Python. Isto também significa que o conda pode instalar bibliotecas e ferramentas não-Python das quais você pode precisar (por exemplo, compiladores, CUDA, HDF5), enquanto pip não pode.
+
+A segunda diferença é que o pip instala do Índice de Pacotes Python (Python Packaging Index - PyPI), enquanto o conda instala de seus próprios canais (tipicamente "defaults" ou "conda-forge"). PyPI é a maior coleção de pacotes, no entanto, todos os pacotes populares também estão disponíveis para conda.
+
+A terceira diferença é que o conda é uma solução integrada para gerenciar pacotes, dependências e ambientes, enquanto com o pip você pode precisar de outra ferramenta (há muitas!) para lidar com ambientes ou dependências complexas.
+
+
+### Instalações reprodutíveis
+
+À medida que as bibliotecas são atualizadas, os resultados obtidos ao executar seu código podem mudar, ou o seu código pode parar de funcionar. É importante poder reconstruir o conjunto de pacotes e versões que você está usando. A recomendação é:
+
+1. usar um ambiente diferente para cada projeto em que você trabalha,
+2. gravar nomes de pacotes e versões usando seu instalador de pacotes; cada um tem seu próprio formato de metadados para essa tarefa:
+ - Conda: [ambientes conda e arquivos environment.yml](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)
+ - Pip: [ambientes virtuais](https://docs.python.org/3/tutorial/venv.html) e [requirements.txt](https://pip.readthedocs.io/en/latest/user_guide/#requirements-files)
+ - Poetry: [ambientes virtuais e pyproject.toml](https://python-poetry.org/docs/basic-usage/)
+
+
+
+## Pacotes NumPy & bibliotecas de álgebra linear aceleradas
+
+O NumPy não depende de quaisquer outros pacotes Python. No entanto, depende de uma biblioteca de álgebra linear acelerada - tipicamente [Intel MKL](https://software.intel.com/en-us/mkl) ou [OpenBLAS](https://www.openblas.net/). Os usuários não precisam se preocupar com a instalação desses pacotes (eles são incluídos automaticamente em todos os métodos de instalação do NumPy). No entanto, usuários experientes podem querer saber os detalhes, porque o BLAS usado pode afetar o desempenho, o comportamento e o tamanho em disco:
+
+- As wheels da NumPy no PyPI, que é o que o pip instala, são compiladas com OpenBLAS. As bibliotecas da OpenBLAS são empacotadas dentro da wheel. Isso faz com que a wheel fique maior, e se um usário também instalar (por exemplo) a SciPy, terá agora duas cópias da OpenBLAS no disco.
+
+- No canal defaults do conda, a NumPy é compilada com a Intel MKL. MKL é um pacote separado que será instalado no ambiente do usuário quando instalar a NumPy.
+
+- No canal do conda-Forge, a NumPy é compilada com um pacote "BLAS" fictício. Quando um usuário instala o NumPy do conda-forge, esse pacote BLAS então é instalado juntamente com a biblioteca real - o padrão é OpenBLAS, mas também pode ser MKL (do canal defaults), ou até mesmo [BLIS](https://github.com/flame/blis) ou *reference BLAS*.
+
+- O pacote MKL é muito maior que o OpenBLAS, ocupa cerca de 700 MB no disco enquanto OpenBLAS ocupa cerca de 30 MB.
+
+- A MKL é normalmente um pouco mais rápida e mais robusta do que a OpenBLAS.
+
+Além do tamanho instalado, desempenho e robustez, há mais duas coisas a se considerar:
+
+- A Intel MKL não é de código aberto. Para uso normal isto não é um problema, mas se um usuário precisa redistribuir uma aplicação compilada com a NumPy, isso pode ser um problema.
+- Tanto MKL quanto OpenBLAS usarão multi-threading para chamadas de função como `np.dot`, com o número de threads sendo determinado tanto por uma opção no momento da compilação quanto por uma variável de ambiente. Muitas vezes, todos os núcleos de CPU serão usados. Isto é, às vezes, inesperado para usuários; o NumPy em si não paraleliza automaticamente nenhuma chamada de função. Normalmente, isso produz melhor desempenho, mas também pode ser prejudicial - por exemplo, ao usar outro nível de paralelização com Dask, scikit-learn ou multiprocessamento.
+
+
+## Solução de problemas
+
+Se sua instalação falhar com a mensagem abaixo, consulte [Solucionando ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html).
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/pt/learn.md b/content/pt/learn.md
new file mode 100644
index 0000000000..90d8904e4d
--- /dev/null
+++ b/content/pt/learn.md
@@ -0,0 +1,90 @@
+---
+title: Aprenda
+sidebar: false
+---
+
+Para a **documentação oficial do NumPy** visite [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+## Iniciantes
+
+Você pode encontrar um conjunto de tutoriais e materiais educativos criados pela comunidade do NumPy em [NumPy Tutorials](https://numpy.org/numpy-tutorials). O objetivo desta página é fornecer recursos de alta qualidade pelo projeto NumPy, tanto para autoaprendizado como para o ensino, no formato de notebooks Jupyter. Se você tiver interesse em adicionar o seu próprio conteúdo, verifique o repositório [numpy-tutorials no GitHub](https://github.com/numpy/numpy-tutorials).
+
+***
+
+Abaixo está uma coleção de recursos externos selecionados. Para contribuir, veja o [fim desta página](#add-to-this-list).
+
+## Iniciantes
+
+Há uma tonelada de informações sobre o NumPy lá fora. Se você está começando, recomendamos fortemente estes:
+
+ **Tutoriais**
+
+* [NumPy Quickstart Tutorial (Tutorial de Início Rápido)](https://numpy.org/devdocs/user/quickstart.html)
+* [NumPy Illustrated: The Visual Guide to NumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+* [SciPy Lectures](https://scipy-lectures.org/) Além de incluir conteúdo sobre a NumPy, estas aulas oferecem uma introdução mais ampla ao ecossistema científico do Python.
+* [NumPy: the absolute basics for beginners ("o básico absoluto para inciantes")](https://numpy.org/devdocs/user/absolute_beginners.html)
+* [Machine Learning Plus - Introduction to ndarray](https://www.machinelearningplus.com/python/numpy-tutorial-part1-array-python-examples/)
+* [Edureka - Learn NumPy Arrays with Examples ](https://www.edureka.co/blog/python-numpy-tutorial/)
+* [Dataquest - NumPy Tutorial: Data Analysis with Python](https://www.dataquest.io/blog/numpy-tutorial-python/)
+* [NumPy tutorial *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
+* [Stanford CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
+* [NumPy User Guide (Guia de Usuário NumPy)](https://numpy.org/devdocs)
+
+ **Livros**
+
+* [Guide to NumPy *de Travis E. Oliphant*](http://web.mit.edu/dvp/Public/numpybook.pdf) Essa é uma versão free de 2006. Para a última versão (2015) veja [aqui](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007).
+* [From Python to NumPy *por Nicolas P. Rougier*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *por Juan Nunez-Iglesias, Stefan van der Walt, e Harriet Dashnow*
+
+Você também pode querer conferir a [lista Goodreads](https://www.goodreads.com/shelf/show/python-scipy) sobre o tema "Python+SciPy. A maioria dos livros lá serão sobre o "ecossistema SciPy", que tem o NumPy em sua essência.
+
+ **Vídeos**
+
+* [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) *por Alex Chabot-Leclerc*
+
+***
+
+## Avançados
+
+Experimente esses recursos avançados para uma melhor compreensão dos conceitos da NumPy, como indexação avançada, splitting, stacking, álgebra linear e muito mais.
+
+ **Tutoriais**
+
+* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *por Nicolas P. Rougier*
+* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) *por M. Scott Shell*
+* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) *por Stéfan van der Walt*
+* [NumPy in Python (Advanced)](https://www.geeksforgeeks.org/numpy-python-set-2-advanced/)
+* [Advanced Indexing](https://www.tutorialspoint.com/numpy/numpy_advanced_indexing.htm)
+* [Machine Learning and Data Analytics with NumPy](https://www.machinelearningplus.com/python/numpy-tutorial-python-part2/)
+
+ **Livros**
+
+* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057) *por Jake Vanderplas*
+* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662) *por Wes McKinney*
+* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *por Robert Johansson*
+
+ **Vídeos**
+
+* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) *por Juan Nunuz-Iglesias*
+* [Advanced Indexing Operations in NumPy Arrays](https://www.youtube.com/watch?v=2WTDrSkQBng) *por Amuls Academy*
+
+***
+
+## Palestras sobre NumPy
+
+* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *por Jaime Fernández* (2016)
+* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *por Ralf Gommers* (2019)
+* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *por Matti Picus* (2019)
+* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *por Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris* (2019)
+* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *por Travis Oliphant* (2019)
+
+***
+
+## Citando o NumPy
+
+Se a NumPy é importante na sua pesquisa, e você gostaria de dar reconhecimento ao projeto na sua publicação acadêmica, por favor veja [estas informações sobre citações](/citing-numpy).
+
+## Contribua para esta lista
+
+
+Para adicionar a essa coleção, envie uma recomendação [através de um pull request](https://github.com/numpy/numpy.org/blob/master/content/en/learn.md). Diga por que sua recomendação merece ser mencionada nesta página e também qual o público que mais se beneficiaria.
diff --git a/content/pt/news.md b/content/pt/news.md
new file mode 100644
index 0000000000..43f1262292
--- /dev/null
+++ b/content/pt/news.md
@@ -0,0 +1,145 @@
+---
+title: Notícias
+sidebar: false
+newsHeader: NumPy 1.22.0 released
+date:
+---
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+## Lançamentos
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/pt/press-kit.md b/content/pt/press-kit.md
new file mode 100644
index 0000000000..1418154f57
--- /dev/null
+++ b/content/pt/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Kit de imprensa
+sidebar: false
+---
+
+Gostaríamos de facilitar a inclusão da identidade do projeto NumPy em seu próximo documento acadêmico, materiais educacionais ou apresentação.
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). Note que usando os recursos numpy.org, você aceita o [Código de Conduta do NumPy](/code-of-conduct).
diff --git a/content/pt/privacy.md b/content/pt/privacy.md
new file mode 100644
index 0000000000..c95f1d5ec1
--- /dev/null
+++ b/content/pt/privacy.md
@@ -0,0 +1,8 @@
+---
+title: Política de privacidade
+sidebar: false
+---
+
+**numpy.org** é operado por [NumFOCUS, Inc.](https://numfocus.org), o patrocinador fiscal do projeto NumPy. Para a Política de Privacidade deste site, consulte https://numfocus.org/privacy-policy.
+
+Se você tiver alguma dúvida sobre a política ou as práticas de coleta de dados do NumFOCUS, uso e divulgação, entre em contato com a equipe do NumFOCUS em privacy@numfocus.org.
diff --git a/content/pt/report-handling-manual.md b/content/pt/report-handling-manual.md
new file mode 100644
index 0000000000..f5047bdca7
--- /dev/null
+++ b/content/pt/report-handling-manual.md
@@ -0,0 +1,95 @@
+---
+title: Código de Conduta NumPy - Como dar seguimento a um relatório
+sidebar: false
+---
+
+Este é o manual seguido pelo Comitê do Código de Conduta do NumPy. É usado quando respondemos a um incidente para nos certificarmos de que somos pessoas consistentes e justas.
+
+Garantir que o [Código de Conduta](/code-of-conduct) seja respeitado afeta nossa comunidade hoje e no futuro. É uma ação que levamos muito a sério. Ao analisar medidas de aplicação do Código de Conduta, o Comitê terá em mente os seguintes valores e orientações:
+
+* Agir de forma pessoal e não impessoal. O Comitê pode levar as partes a compreender a situação, respeitando simultaneamente a privacidade e a necessária confidencialidade das pessoas relatantes. No entanto, por vezes, é necessário comunicar diretamente com um ou mais indivíduos: o objetivo do Comitê é melhorar a saúde da nossa comunidade, em vez de produzir apenas uma decisão formal.
+* Enfatizar empatia pelos indivíduos ao invés de julgar o comportamento, evitando rótulos binários de "bom" e "mau". Existem atos de agressão e assédio claros e visíveis, e vamos abordá-los com firmeza. Mas muitos cenários que podem ser desafiadores são aqueles em que as discordâncias normais se transformam em comportamento desnecessário ou prejudicial de várias partes. Compreender o contexto completo e encontrar um caminho que traga um entendimento entre as partes é difícil, mas, em última análise, é o resultado mais produtivo para a nossa comunidade.
+* Compreendemos que o e-mail é um meio difícil e que pode causar uma sensação de isolamento. Receber críticas por e-mail, sem contato pessoal, pode ser particularmente doloroso. Significa também que temos de ser transparentes nas nossas ações, e que faremos tudo o que estiver ao nosso alcance para garantir que todos os nossos membros sejam tratados de forma justa e com simpatia. Isto faz com que seja especialmente importante manter um clima de respeito aberto pelas opiniões dos outros.
+* A discriminação pode ser sutil e pode ser inconsciente. Pode revelar-se em tratamentos injustos e hostis em interações que normalmente seriam ordinárias. Sabemos que isso acontece, e teremos o cuidado de ter isso em mente. Gostaríamos muito de ouvir se você acha que foi tratado injustamente, e usaremos esses procedimentos para garantir que a sua reclamação seja ouvida e abordada.
+* Ajudar a aumentar o envolvimento em uma boa prática de discussão: tentar identificar onde a discussão pode ter falhado, e fornecer informações úteis, indicadores e recursos que podem levar a mudanças positivas nestes pontos.
+* Estar ciente das necessidades de novos membros: fornecer-lhes apoio e consideração explícitos, com o objetivo de aumentar a participação de grupos sub-representados, em particular.
+* As pessoas vêm de meios culturais e linguísticos diferentes. Tentar identificar quaisquer mal-entendidos honestos causados por falantes não-nativos e ajudá-los a entender a questão e o que pode ser modificado para evitar causar ofensa. Uma discussão complexa numa língua estrangeira pode ser muito intimidante, e queremos aumentar a nossa diversidade também entre nacionalidades e culturas.
+
+
+## Mediação
+
+A mediação informal voluntária é um instrumento à nossa disposição. Em contextos em que duas ou mais partes escalaram ao ponto de demonstrarem comportamento inapropriado (algo tristemente comum no conflito humano), poderá ser útil facilitar um processo de mediação. Isto é apenas um exemplo: em todo caso, o Comitê pode considerar a mediação, tendo em conta que o processo se destina a ser estritamente voluntário e que nenhuma das partes pode ser pressionada a participar. Se o Comitê sugerir mediação, deve:
+
+* Encontrar uma pessoa candidata que possa servir de mediadora.
+* Obter o acordo da(s) pessoa(s) relatante(s). A(s) pessoa(s) relatante(s) têm total liberdade para recusar a ideia de mediação ou propor um mediador alternativo.
+* Obter o acordo da(s) pessoa(s) relatada(s).
+* Estabelecer uma pessoa mediadora: enquanto as partes podem propor um mediador diferente da pessoa sugerida, o processo só poderá avançar se for alcançado um acordo comum em todos os termos.
+* Estabelecer um cronograma para a mediação ser concluida, idealmente dentro de duas semanas.
+
+A pessoa mediadora entrará em contato com todas as partes e procurará uma resolução satisfatória para todos. Após a sua conclusão, a pessoa mediadora apresentará ao Comitê um relatório (examinado por todas as partes envolvidas no processo) com recomendações sobre outras medidas. O Comitê avaliará então esses resultados (em caso de resolução satisfatória ou não) e decidirá sobre quaisquer medidas adicionais consideradas necessárias.
+
+
+## Como o Comitê responderá aos relatórios
+
+Quando o Comitê (ou um membro do Comitê) recebe um relatório, será inicialmente determinado se o relatório é sobre uma violação clara e severa (como definido abaixo). Em caso afirmativo, medidas imediatas serão tomadas para além do processo regular de tratamento dos relatórios.
+
+
+## Ações claras e severas de violação
+
+Sabemos que é mais comum do que o desejado que a comunicação na Internet comece ou se transforme em abusos óbvios e flagrantes. Trataremos rapidamente de violações claras e severas como ameaças pessoais, linguagem violenta, sexista ou racista.
+
+Quando um membro do Comitê do Código de Conduta tomar conhecimento de uma violação clara e grave, fará o seguinte:
+
+* Desligará imediatamente a pessoa originadora de todos os canais de comunicação do NumPy.
+* Responderá à pessoa relatante para informá-la que seu relatório foi recebido e que a pessoa originadora foi desligada.
+* Em todos os casos, a pessoa moderadora deve fazer um esforço razoável para entrar em contato com a pessoa originadora, e dizer-lhes especificamente como sua linguagem ou ações se qualificam como uma "violação clara e severa". A pessoa moderadora deve também dizer que, se a pessoa originadora considerar que isso é injusto ou quiser ser reconectada ao NumPy, tem o direito de solicitar uma revisão, de acordo com as disposições do Comitê do Código de Conduta. A pessoa moderadora deve copiar esta explicação para o Comitê do Código de Conduta.
+* O Comitê do Código de Conduta procederá formalmente à análise e decisão em todos os casos em que este mecanismo tenha sido aplicado para garantir que não seja utilizado para controlar desentendimentos acalorados comuns.
+
+
+## Tratamento de relatórios
+
+Quando um relatório é enviado ao Comitê, ele responderá imediatamente à pessoa relatante para confirmar a sua recepção. Esta resposta deve ser enviada no prazo de 72 horas, e o grupo deve esforçar-se por responder muito mais rapidamente.
+
+Se um relatório não contiver informações suficientes, o Comitê obterá todos os dados relevantes antes de agir. O Comitê tem poderes para agir em nome do Conselho Diretor ao contactar quaisquer pessoas envolvidas para obter um relato mais completo dos acontecimentos.
+
+O Comitê analisará então o incidente e determinará, do melhor jeito possível:
+
+* O que aconteceu.
+* Se este evento constitui ou não uma violação do Código de Conduta.
+* Quem são as pessoas responsáveis.
+* Se se trata de uma situação contínua, e existe uma ameaça para a segurança física de alguém.
+
+Estas informações serão recolhidas por escrito e, sempre que possível, as deliberações do grupo serão gravadas e armazenadas (por exemplo, transcrições de conversas, discussões por e-mail, chamadas gravadas de videoconferência, resumos de conversas por voz, etc).
+
+É importante manter um arquivo de todas as atividades deste Comitê para garantir a consistência no comportamento e fornecer memória institucional ao projeto. Para ajudar com isto, o canal de discussão padrão para este Comitê será uma lista de e-mail privada, acessível a atuais e futuros membros do Comitê, bem como aos membros do Conselho Diretor a pedido justificado. Se o Comitê sentir a necessidade de usar comunicações fora da lista (por exemplo, chamadas por telefone para resposta precoce/rápida), deve em todos os casos resumi-las de volta para a lista, para que haja um bom registro do processo.
+
+O Comitê do Código de Conduta deve ter por objetivo chegar a um acordo sobre uma resolução no prazo de duas semanas. Caso uma resolução não possa ser determinada nesse período, o Comitê responderá à(s) pessoa(s) relatante(s) com uma atualização e cronograma previsto para a resolução.
+
+
+## Resoluções
+
+O Comitê tem de chegar a um acordo sobre uma resolução por consenso. Se o grupo não conseguir chegar a um consenso e permanece bloqueado durante mais de uma semana, o grupo encaminhará o assunto para o Conselho Diretor para resolução.
+
+Possíveis respostas podem incluir:
+
+* Não tomar nenhuma outra ação:
+ - se determinarmos que não ocorreram violações;
+ - se a questão tiver sido resolvida publicamente enquanto o Comitê estava considerando uma resposta.
+* Coordenação de mediação voluntária: se todas as partes envolvidas concordarem, o Comitê poderá facilitar um processo de mediação, conforme detalhado acima.
+* Salientar publicamente que alguns comportamentos, ações ou linguagem foram julgados inapropriados ou podem ser considerados danosos para algumas pessoas, explicando por que no contexto atual e solicitando que a comunidade se auto-ajuste.
+* Uma advertência privada do Comitê para a(s) pessoa(s) envolvida(s). Neste caso, a pessoa presidente do Comitê irá entregar essa advertência à(s) pessoa(s) por e-mail, em cópia (CC) ao grupo.
+* Uma advertência pública. Neste caso, a pessoa presidente do Comitê vai apresentar essa advertência no mesmo fórum em que ocorreu a violação, dentro dos limites da viabilidade. Exemplo: a lista original para uma violação de e-mail, mas para uma discussão em sala de bate-papo onde a pessoa/contexto pode sumir, isto pode ser feito por outros meios. O grupo pode optar por publicar esta mensagem em outro local para fins de documentação.
+* Um pedido de desculpas públicas ou privadas, supondo que a(s) pessoa(s) relatante(s) concorde(m) com esta ideia: a(s) pessoa(s) pode(m), a seu critério, recusar contatos adicionais com a pessoa relatada. A Presidência dará seguimento a este pedido. O Comitê, se escolher, pode anexar condições adicionais a este pedido inicial: por exemplo, o grupo pode pedir à pessoa relatada que se desculpe para que tenha o direito de manter a sua adesão a uma lista de e-mails.
+* Um “acordo mútuo de trégua” onde o Comitê solicita à pessoa que se abstenha temporariamente da participação na comunidade. Se a pessoa optar por não fazer uma pausa temporária voluntariamente, o Comitê pode aplicar um “período de afastamento obrigatório”.
+* Um banimento permanente ou temporário de alguns ou todos os espaços do NumPy (listas de e-mails, gitter.im, etc.). O grupo manterá registro de todas essas proibições, para que elas possam ser revistas no futuro ou mantidas.
+
+Uma vez aprovada uma resolução, mas antes de ser efetivamente aplicada, o Comitê entrará em contato com a pessoa relatante original e quaisquer outras partes afetadas e explicará a resolução proposta. O Comitê perguntará se esta resolução é aceitável e terá de tomar nota da sua resposta para registro futuro.
+
+Finalmente, o Comitê apresentará um relatório ao Conselho Diretor do NumPy (bem como ao time *core* do NumPy no caso de uma resolução em curso, como um banimento).
+
+O Comitê nunca discutirá publicamente a questão; todas as declarações públicas serão feitas pela pessoa presidente do Comitê do Código de Conduta ou pelo Conselho Diretor do NumPy.
+
+
+## Conflitos de Interesse
+
+Em caso de conflito de interesses, um membro do Comitê deve notificar imediatamente os outros membros e abdicar de sua participação no processo caso seja necessário.
diff --git a/content/pt/tabcontents.yaml b/content/pt/tabcontents.yaml
new file mode 100644
index 0000000000..aa5868769e
--- /dev/null
+++ b/content/pt/tabcontents.yaml
@@ -0,0 +1,219 @@
+---
+machinelearning:
+ paras:
+ -
+ para1: O NumPy forma a base de bibliotecas de aprendizagem de máquina poderosas como [scikit-learn](https://scikit-learn.org) e [SciPy](https://www.scipy.org). À medida que a disciplina de aprendizagem de máquina cresce, a lista de bibliotecas construidas a partir do NumPy também cresce. As funcionalidades de deep learning do [TensorFlow](https://www.tensorflow.org) tem diversas aplicações — entre elas, reconhecimento de imagem e de fala, aplicações baseadas em texto, análise de séries temporais, e detecção de vídeo. O [PyTorch](https://pytorch.org), outra biblioteca de deep learning, é popular entre pesquisadores em visão computacional e processamento de linguagem natural. O [MXNet](https://github.com/apache/incubator-mxnet) é outro pacote de IA, que fornece templates e protótipos para deep learning.
+ para2: Técnicas estatísticas chamadas métodos de [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) tais como binning, bagging, stacking, e boosting estão entre os algoritmos de ML implementados por ferramentas tais como [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), e [CatBoost](https://catboost.ai) — um dos motores de inferência mais rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) e [Eli5](https://eli5.readthedocs.io/en/latest/) oferecem visualizações para aprendizagem de máquina.
+arraylibraries:
+ intro:
+ -
+ text: A API do NumPy é o ponto de partida quando bibliotecas são escritas para explorar hardware inovador, criar tipos de arrays especializados, ou adicionar capacidades além do que o NumPy fornece.
+ headers:
+ -
+ text: Biblioteca de Arrays
+ -
+ text: Recursos e áreas de aplicação
+ libraries:
+ -
+ title: Dask
+ text: Arrays distribuídas e paralelismo avançado para análise, permitindo desempenho em escala.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ -
+ title: CuPy
+ text: Biblioteca de matriz compatível com NumPy para computação acelerada pela GPU com Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.chainer.org
+ -
+ title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://github.com/google/jax
+ -
+ title: Xarray
+ text: Arrays multidimensionais rotuladas e indexadas para análise e visualização avançadas
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ -
+ title: Sparse
+ text: Biblioteca de arrays compatíveis com o NumPy que pode ser integrada com Dask e álgebra linear esparsa da SciPy.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ -
+ title: PyTorch
+ text: Framework de deep learning que acelera o caminho entre prototipação de pesquisa e colocação em produção.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ -
+ title: TensorFlow
+ text: Uma plataforma completa para aprendizagem de máquina que permite construir e colocar em produção aplicações usando ML facilmente.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ -
+ title: MXNet
+ text: Framework de deep learning voltado para flexibilizar prototipação em pesquisa e produção.
+ img: /images/content_images/arlib/mxnet_logo.png
+ alttext: MXNet
+ url: https://mxnet.apache.org/
+ -
+ title: Arrow
+ text: Uma plataforma de desenvolvimento multi-linguagens para dados e análise para dados armazenados em colunas na memória.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://github.com/apache/arrow
+ -
+ title: xtensor
+ text: Arrays multidimensionais com broadcasting e avaliação preguiçosa (lazy computing) para análise numérica.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ -
+ title: XND
+ text: Desenvolva bibliotecas para computação em arrays, recriando os conceitos fundamentais do NumPy.
+ img: /images/content_images/arlib/xnd.png
+ alttext: xnd
+ url: https://xnd.io
+ -
+ title: uarray
+ text: Sistema de backend Python que dissocia a API da implementação; unumpy fornece uma API NumPy.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ -
+ title: tensorly
+ text: Aprendizagem com tensores, algebra e backends para usar NumPy, MXNet, PyTorch, TensorFlow ou CuPy sem esforço.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+scientificdomains:
+ intro:
+ -
+ text: Quase todos os cientistas que trabalham em Python se baseiam na potência do NumPy.
+ -
+ text: "NumPy traz o poder computacional de linguagens como C e Fortran para Python, uma linguagem muito mais fácil de aprender e usar. Com esse poder vem a simplicidade: uma solução no NumPy é frequentemente clara e elegante."
+ librariesrow1:
+ -
+ title: Computação quântica
+ alttext: Um chip de computador.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ -
+ title: Computação estatística
+ alttext: Um gráfico com uma linha em movimento para cima.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ -
+ title: Processamento de sinais
+ alttext: Um gráfico de barras com valores positivos e negativos.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ -
+ title: Processamento de imagens
+ alttext: Uma fotografia das montanhas.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ -
+ title: Gráficos e Redes
+ alttext: Um grafo simples.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ -
+ title: Processos de Astronomia
+ alttext: Um telescópio.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ -
+ title: Psicologia Cognitiva
+ alttext: Uma cabeça humana com engrenagens.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ librariesrow2:
+ -
+ title: Bioinformática
+ alttext: Um pedaço de DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ -
+ title: Inferência Bayesiana
+ alttext: Um gráfico com uma curva em forma de sino.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ -
+ title: Análise Matemática
+ alttext: Quatro símbolos matemáticos.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ -
+ title: Química
+ alttext: Um tubo de ensaio.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ -
+ title: Geociências
+ alttext: A Terra.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ -
+ title: Processamento Geográfico
+ alttext: Um mapa.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ -
+ title: Arquitetura e Engenharia
+ alttext: Uma placa de desenvolvimento de microprocessador.
+ img: /images/content_images/sc_dom_img/robotics.svg
+datascience:
+ intro: "NumPy está no centro de um rico ecossistema de bibliotecas de ciência de dados. Um fluxo de trabalho típico de ciência de dados exploratório pode parecer assim:"
+ image1:
+ -
+ img: /images/content_images/ds-landscape.png
+ alttext: Diagrama de bibliotecas Python. As cinco categorias são 'Extrair, Transformar, Carregar', 'Exploração de Dados', 'Modelo de Dados', 'Avaliação de Dados' e 'Apresentação de Dados'.
+ image2:
+ -
+ img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ -
+ text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ -
+ text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ -
+ text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ -
+ text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ content:
+ -
+ text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org) and [Prefect](https://www.prefect.io)).
+visualization:
+ images:
+ -
+ url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: Um streamplot feito em matplotlib
+ -
+ url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: Um gráfico scatter-plot feito em ggpy
+ -
+ url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: Um box-plot feito no plotly
+ -
+ url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: Um gráfico streamgraph feito em altair
+ -
+ url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A plot duplo com dois tipos de gráficos, um plot-graph e um gráfico de frequência feitos no seaborn
+ -
+ url: https://docs.pyvista.org/examples/index.html
+ img: /images/content_images/v_pyvista.png
+ alttext: Uma renderização de volume 3D feita no PyVista.
+ -
+ url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: Uma imagem multidimensional, feita em napari.
+ -
+ url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: Diagrama de Voronoi feito com vispy.
+ content:
+ -
+ text: NumPy é um componente essencial no crescente [campo de visualização em Python](https://pyviz.org/overviews/index.html), que inclui [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), e [PyVista](https://github.com/pyvista/pyvista), para citar alguns.
+ -
+ text: O processamento de grandes arrays acelerado pela NumPy permite que os pesquisadores visualizem conjuntos de dados muito maiores do que o Python nativo poderia permitir.
diff --git a/content/pt/teams.md b/content/pt/teams.md
new file mode 100644
index 0000000000..0c24455d18
--- /dev/null
+++ b/content/pt/teams.md
@@ -0,0 +1,20 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research communities worldwide by building quality, open-source software. [Join us]({{< relref "/contribute" >}})!
+
+{{< include-html "static/gallery/maintainers.html" >}}
+
+{{< include-html "static/gallery/web-team.html" >}}
+
+{{< include-html "static/gallery/triage-team.html" >}}
+
+{{< include-html "static/gallery/survey-team.html" >}}
+
+{{< include-html "static/gallery/emeritus-maintainers.html" >}}
+
+# Governance
+
+For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/pt/terms.md b/content/pt/terms.md
new file mode 100644
index 0000000000..a294b49483
--- /dev/null
+++ b/content/pt/terms.md
@@ -0,0 +1,178 @@
+---
+title: Termos de Uso
+sidebar: false
+---
+
+*Última atualização em 4 de janeiro de 2020*
+
+
+## AGREEMENT TO TERMS
+
+These Terms of Use constitute a legally binding agreement made between you, whether personally or on behalf of an entity (“you”) and NumPy ("**Project**", “**we**”, “**us**”, or “**our**”), concerning your access to and use of the numpy.org website as well as any other media form, media channel, mobile website or mobile application related, linked, or otherwise connected thereto (collectively, the “Site”). You agree that by accessing the Site, you have read, understood, and agreed to be bound by all of these Terms of Use. IF YOU DO NOT AGREE WITH ALL OF THESE TERMS OF USE, THEN YOU ARE EXPRESSLY PROHIBITED FROM USING THE SITE AND YOU MUST DISCONTINUE USE IMMEDIATELY.
+
+
+
+Supplemental terms and conditions or documents that may be posted on the Site from time to time are hereby expressly incorporated herein by reference. We reserve the right, in our sole discretion, to make changes or modifications to these Terms of Use at any time and for any reason. We will alert you about any changes by updating the “Last updated” date of these Terms of Use, and you waive any right to receive specific notice of each such change. It is your responsibility to periodically review these Terms of Use to stay informed of updates. You will be subject to, and will be deemed to have been made aware of and to have accepted, the changes in any revised Terms of Use by your continued use of the Site after the date such revised Terms of Use are posted.
+
+
+
+The information provided on the Site is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to law or regulation or which would subject us to any registration requirement within such jurisdiction or country. Accordingly, those persons who choose to access the Site from other locations do so on their own initiative and are solely responsible for compliance with local laws, if and to the extent local laws are applicable.
+
+
+## USER REPRESENTATIONS
+
+By using the Site, you represent and warrant that: (1) you have the legal capacity and you agree to comply with these Terms of Use; (2) you will not use the Site for any illegal or unauthorized purpose; and (3) your use of the Site will not violate any applicable law or regulation.
+
+
+If you provide any information that is untrue, inaccurate, not current, or incomplete, we have the right to refuse any and all current or future use of the Site (or any portion thereof).
+
+
+## PROHIBITED ACTIVITIES
+
+You may not access or use the Site for any purpose other than that for which we make the Site available.
+
+As a user of the Site, you agree not to:
+
+1. Systematically retrieve data or other content from the Site to create or compile, directly or indirectly, a collection, compilation, database, or directory without written permission from us.
+
+2. Make any unauthorized use of the Site, including collecting usernames and/or email addresses of users by electronic or other means for the purpose of sending unsolicited email, or creating user accounts by automated means or under false pretenses.
+
+3. Use the Site to advertise or offer to sell goods and services.
+
+4. Circumvent, disable, or otherwise interfere with security-related features of the Site.
+
+5. Engage in unauthorized framing of or linking to the Site.
+
+6. Trick, defraud, or mislead us and other users, especially in any attempt to learn sensitive account information such as user passwords.
+
+7. Make improper use of our support services or submit false reports of abuse or misconduct.
+
+8. Engage in any automated use of the system, such as using scripts to send comments or messages, or using any data mining, robots, or similar data gathering and extraction tools.
+
+9. Interfere with, disrupt, or create an undue burden on the Site or the networks or services connected to the Site.
+
+10. Attempt to impersonate another user or person or use the username of another user.
+
+11. Use any information obtained from the Site in order to harass, abuse, or harm another person.
+
+12. Disparage, tarnish, or otherwise harm, in our opinion, us and/or the Site.
+
+13. Except as may be the result of standard search engine or Internet browser usage, use, launch, develop, or distribute any automated system, including without limitation, any spider, robot, cheat utility, scraper, or offline reader that accesses the Site, or using or launching any unauthorized script or other software.
+
+14. Upload or transmit (or attempt to upload or to transmit) any material that acts as a passive or active information collection or transmission mechanism, including without limitation, clear graphics interchange formats (“gifs”), 1×1 pixels, web bugs, cookies, or other similar devices (sometimes referred to as “spyware” or “passive collection mechanisms” or “pcms”).
+
+15. Upload or transmit (or attempt to upload or to transmit) viruses, Trojan horses, or other material, including excessive use of capital letters and spamming (continuous posting of repetitive text), that interferes with any party’s uninterrupted use and enjoyment of the Site or modifies, impairs, disrupts, alters, or interferes with the use, features, functions, operation, or maintenance of the Site.
+
+16. Harass, annoy, intimidate, or threaten any of our employees or agents engaged in providing any portion of the Site to you.
+
+17. Attempt to bypass any measures of the Site designed to prevent or restrict access to the Site, or any portion of the Site.
+
+
+## SUBMISSIONS
+
+You acknowledge and agree that any questions, comments, suggestions, ideas, feedback, or other information regarding the Site ("Submissions") provided by you to us are non-confidential and shall become our sole property. We shall own exclusive rights, including all intellectual property rights, and shall be entitled to the unrestricted use and dissemination of these Submissions for any lawful purpose, commercial or otherwise, without acknowledgment or compensation to you. You hereby waive all moral rights to any such Submissions, and you hereby warrant that any such Submissions are original with you or that you have the right to submit such Submissions. You agree there shall be no recourse against us for any alleged or actual infringement or misappropriation of any proprietary right in your Submissions.
+
+## THIRD-PARTY WEBSITES AND CONTENT
+
+The Site may contain (or you may be sent via the Site) links to other websites ("Third-Party Websites") as well as articles, photographs, text, graphics, pictures, designs, music, sound, video, information, applications, software, and other content or items belonging to or originating from third parties ("Third-Party Content"). Such Third-Party Websites and Third-Party Content are not investigated, monitored, or checked for accuracy, appropriateness, or completeness by us, and we are not responsible for any Third-Party Websites accessed through the Site or any Third-Party Content posted on, available through, or installed from the Site, including the content, accuracy, offensiveness, opinions, reliability, privacy practices, or other policies of or contained in the Third-Party Websites or the Third-Party Content. Inclusion of, linking to, or permitting the use or installation of any Third-Party Websites or any Third-Party Content does not imply approval or endorsement thereof by us. If you decide to leave the Site and access the Third-Party Websites or to use or install any Third-Party Content, you do so at your own risk, and you should be aware these Terms of Use no longer govern. You should review the applicable terms and policies, including privacy and data gathering practices, of any website to which you navigate from the Site or relating to any applications you use or install from the Site. Any purchases you make through Third-Party Websites will be through other websites and from other companies, and we take no responsibility whatsoever in relation to such purchases which are exclusively between you and the applicable third party. You agree and acknowledge that we do not endorse the products or services offered on Third-Party Websites and you shall hold us harmless from any harm caused by your purchase of such products or services. Additionally, you shall hold us harmless from any losses sustained by you or harm caused to you relating to or resulting in any way from any Third-Party Content or any contact with Third-Party Websites.
+
+
+## SITE MANAGEMENT
+
+We reserve the right, but not the obligation, to: (1) monitor the Site for violations of these Terms of Use; (2) take appropriate legal action against anyone who, in our sole discretion, violates the law or these Terms of Use, including without limitation, reporting such user to law enforcement authorities; (3) in our sole discretion and without limitation, refuse, restrict access to, limit the availability of, or disable (to the extent technologically feasible) any of your Contributions or any portion thereof; (4) in our sole discretion and without limitation, notice, or liability, to remove from the Site or otherwise disable all files and content that are excessive in size or are in any way burdensome to our systems; and (5) otherwise manage the Site in a manner designed to protect our rights and property and to facilitate the proper functioning of the Site.
+
+
+## PRIVACY POLICY
+
+We care about data privacy and security. Please review our [Privacy Policy](/privacy). By using the Site, you agree to be bound by our Privacy Policy, which is incorporated into these Terms of Use. Please be advised the Site is hosted in the United States. If you access the Site from the European Union, Asia, or any other region of the world with laws or other requirements governing personal data collection, use, or disclosure that differ from applicable laws in the United States, then through your continued use of the Site, you are transferring your data to the United States, and you expressly consent to have your data transferred to and processed in the United States. Further, we do not knowingly accept, request, or solicit information from children or knowingly market to children. Therefore, in accordance with the U.S. Children’s Online Privacy Protection Act, if we receive actual knowledge that anyone under the age of 13 has provided personal information to us without the requisite and verifiable parental consent, we will delete that information from the Site as quickly as is reasonably practical.
+
+## TERM AND TERMINATION
+
+These Terms of Use shall remain in full force and effect while you use the Site. WITHOUT LIMITING ANY OTHER PROVISION OF THESE TERMS OF USE, WE RESERVE THE RIGHT TO, IN OUR SOLE DISCRETION AND WITHOUT NOTICE OR LIABILITY, DENY ACCESS TO AND USE OF THE SITE (INCLUDING BLOCKING CERTAIN IP ADDRESSES), TO ANY PERSON FOR ANY REASON OR FOR NO REASON, INCLUDING WITHOUT LIMITATION FOR BREACH OF ANY REPRESENTATION, WARRANTY, OR COVENANT CONTAINED IN THESE TERMS OF USE OR OF ANY APPLICABLE LAW OR REGULATION. WE MAY TERMINATE YOUR USE OR PARTICIPATION IN THE SITE OR DELETE ANY CONTENT OR INFORMATION THAT YOU POSTED AT ANY TIME, WITHOUT WARNING, IN OUR SOLE DISCRETION.
+
+
+## MODIFICATIONS AND INTERRUPTIONS
+
+We reserve the right to change, modify, or remove the contents of the Site at any time or for any reason at our sole discretion without notice. However, we have no obligation to update any information on our Site. We also reserve the right to modify or discontinue all or part of the Site without notice at any time. We will not be liable to you or any third party for any modification, suspension, or discontinuance of the Site.
+
+We cannot guarantee the Site will be available at all times. We may experience hardware, software, or other problems or need to perform maintenance related to the Site, resulting in interruptions, delays, or errors. We reserve the right to change, revise, update, suspend, discontinue, or otherwise modify the Site at any time or for any reason without notice to you. You agree that we have no liability whatsoever for any loss, damage, or inconvenience caused by your inability to access or use the Site during any downtime or discontinuance of the Site. Nothing in these Terms of Use will be construed to obligate us to maintain and support the Site or to supply any corrections, updates, or releases in connection therewith.
+
+
+## GOVERNING LAW
+
+These Terms of Use and your use of the Site are governed by and construed in accordance with the laws of the State of Texas applicable to agreements made and to be entirely performed within the State of Texas, without regard to its conflict of law principles.
+
+
+## DISPUTE RESOLUTION
+
+### Informal Negotiations
+
+To expedite resolution and control the cost of any dispute, controversy, or claim related to these Terms of Use (each a "Dispute" and collectively, the “Disputes”) brought by either you or us (individually, a “Party” and collectively, the “Parties”), the Parties agree to first attempt to negotiate any Dispute (except those Disputes expressly provided below) informally for at least thirty (30) days before initiating arbitration. Such informal negotiations commence upon written notice from one Party to the other Party.
+
+
+### Binding Arbitration
+
+If the Parties are unable to resolve a Dispute through informal negotiations, the Dispute (except those Disputes expressly excluded below) will be finally and exclusively resolved by binding arbitration. YOU UNDERSTAND THAT WITHOUT THIS PROVISION, YOU WOULD HAVE THE RIGHT TO SUE IN COURT AND HAVE A JURY TRIAL. The arbitration shall be commenced and conducted under the Commercial Arbitration Rules of the American Arbitration Association ("AAA") and, where appropriate, the AAA’s Supplementary Procedures for Consumer Related Disputes ("AAA Consumer Rules"), both of which are available at the AAA website www.adr.org. Your arbitration fees and your share of arbitrator compensation shall be governed by the AAA Consumer Rules and, where appropriate, limited by the AAA Consumer Rules. If such costs are determined to by the arbitrator to be excessive, we will pay all arbitration fees and expenses. The arbitration may be conducted in person, through the submission of documents, by phone, or online. The arbitrator will make a decision in writing, but need not provide a statement of reasons unless requested by either Party. The arbitrator must follow applicable law, and any award may be challenged if the arbitrator fails to do so. Except where otherwise required by the applicable AAA rules or applicable law, the arbitration will take place in Travis County, Texas. Except as otherwise provided herein, the Parties may litigate in court to compel arbitration, stay proceedings pending arbitration, or to confirm, modify, vacate, or enter judgment on the award entered by the arbitrator.
+
+If for any reason, a Dispute proceeds in court rather than arbitration, the Dispute shall be commenced or prosecuted in the state and federal courts located in Travis County, Texas, and the Parties hereby consent to, and waive all defenses of lack of personal jurisdiction, and forum non conveniens with respect to venue and jurisdiction in such state and federal courts. Application of the United Nations Convention on Contracts for the International Sale of Goods and the the Uniform Computer Information Transaction Act (UCITA) are excluded from these Terms of Use.
+
+In no event shall any Dispute brought by either Party related in any way to the Site be commenced more than one (1) years after the cause of action arose. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+### Restrictions
+
+The Parties agree that any arbitration shall be limited to the Dispute between the Parties individually. To the full extent permitted by law, (a) no arbitration shall be joined with any other proceeding; (b) there is no right or authority for any Dispute to be arbitrated on a class-action basis or to utilize class action procedures; and (c) there is no right or authority for any Dispute to be brought in a purported representative capacity on behalf of the general public or any other persons.
+
+
+### Exceptions to Informal Negotiations and Arbitration
+
+The Parties agree that the following Disputes are not subject to the above provisions concerning informal negotiations and binding arbitration: (a) any Disputes seeking to enforce or protect, or concerning the validity of, any of the intellectual property rights of a Party; (b) any Dispute related to, or arising from, allegations of theft, piracy, invasion of privacy, or unauthorized use; and (c) any claim for injunctive relief. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+## CORRECTIONS
+
+There may be information on the Site that contains typographical errors, inaccuracies, or omissions. We reserve the right to correct any errors, inaccuracies, or omissions and to change or update the information on the Site at any time, without prior notice.
+
+
+## DISCLAIMER
+
+THE SITE IS PROVIDED ON AN AS-IS AND AS-AVAILABLE BASIS. YOU AGREE THAT YOUR USE OF THE SITE AND OUR SERVICES WILL BE AT YOUR SOLE RISK. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THE SITE AND YOUR USE THEREOF, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. WE MAKE NO WARRANTIES OR REPRESENTATIONS ABOUT THE ACCURACY OR COMPLETENESS OF THE SITE’S CONTENT OR THE CONTENT OF ANY WEBSITES LINKED TO THE SITE AND WE WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR ANY (1) ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS, (2) PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM YOUR ACCESS TO AND USE OF THE SITE, (3) ANY UNAUTHORIZED ACCESS TO OR USE OF OUR SECURE SERVERS AND/OR ANY AND ALL PERSONAL INFORMATION AND/OR FINANCIAL INFORMATION STORED THEREIN, (4) ANY INTERRUPTION OR CESSATION OF TRANSMISSION TO OR FROM THE SITE, (5) ANY BUGS, VIRUSES, TROJAN HORSES, OR THE LIKE WHICH MAY BE TRANSMITTED TO OR THROUGH THE SITE BY ANY THIRD PARTY, AND/OR (6) ANY ERRORS OR OMISSIONS IN ANY CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT POSTED, TRANSMITTED, OR OTHERWISE MADE AVAILABLE VIA THE SITE. WE DO NOT WARRANT, ENDORSE, GUARANTEE, OR ASSUME RESPONSIBILITY FOR ANY PRODUCT OR SERVICE ADVERTISED OR OFFERED BY A THIRD PARTY THROUGH THE SITE, ANY HYPERLINKED WEBSITE, OR ANY WEBSITE OR MOBILE APPLICATION FEATURED IN ANY BANNER OR OTHER ADVERTISING, AND WE WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY TRANSACTION BETWEEN YOU AND ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR SERVICES. AS WITH THE PURCHASE OF A PRODUCT OR SERVICE THROUGH ANY MEDIUM OR IN ANY ENVIRONMENT, YOU SHOULD USE YOUR BEST JUDGMENT AND EXERCISE CAUTION WHERE APPROPRIATE.
+
+
+## LIMITATIONS OF LIABILITY
+
+IN NO EVENT WILL WE OR OUR DIRECTORS, EMPLOYEES, OR AGENTS BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING LOST PROFIT, LOST REVENUE, LOSS OF DATA, OR OTHER DAMAGES ARISING FROM YOUR USE OF THE SITE, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED HEREIN, OUR LIABILITY TO YOU FOR ANY CAUSE WHATSOEVER AND REGARDLESS OF THE FORM OF THE ACTION, WILL AT ALL TIMES BE LIMITED TO THE AMOUNT PAID, IF ANY, BY YOU TO US DURING THE SIX (6) MONTH PERIOD PRIOR TO ANY CAUSE OF ACTION ARISING. CERTAIN STATE LAWS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EXCLUSION OR LIMITATION OF CERTAIN DAMAGES. IF THESE LAWS APPLY TO YOU, SOME OR ALL OF THE ABOVE DISCLAIMERS OR LIMITATIONS MAY NOT APPLY TO YOU, AND YOU MAY HAVE ADDITIONAL RIGHTS.
+
+
+## INDEMNIFICATION
+
+You agree to defend, indemnify, and hold us harmless, including our subsidiaries, affiliates, and all of our respective officers, agents, partners, and employees, from and against any loss, damage, liability, claim, or demand, including reasonable attorneys’ fees and expenses, made by any third party due to or arising out of: (1) use of the Site; (2) breach of these Terms of Use; (3) any breach of your representations and warranties set forth in these Terms of Use; (4) your violation of the rights of a third party, including but not limited to intellectual property rights; or (5) any overt harmful act toward any other user of the Site with whom you connected via the Site. Notwithstanding the foregoing, we reserve the right, at your expense, to assume the exclusive defense and control of any matter for which you are required to indemnify us, and you agree to cooperate, at your expense, with our defense of such claims. We will use reasonable efforts to notify you of any such claim, action, or proceeding which is subject to this indemnification upon becoming aware of it.
+
+
+## USER DATA
+
+We will maintain certain data that you transmit to the Site for the purpose of managing the performance of the Site, as well as data relating to your use of the Site. Although we perform regular routine backups of data, you are solely responsible for all data that you transmit or that relates to any activity you have undertaken using the Site. You agree that we shall have no liability to you for any loss or corruption of any such data, and you hereby waive any right of action against us arising from any such loss or corruption of such data.
+
+
+## ELECTRONIC COMMUNICATIONS, TRANSACTIONS, AND SIGNATURES
+
+Visiting the Site, sending us emails, and completing online forms constitute electronic communications. You consent to receive electronic communications, and you agree that all agreements, notices, disclosures, and other communications we provide to you electronically, via email and on the Site, satisfy any legal requirement that such communication be in writing. YOU HEREBY AGREE TO THE USE OF ELECTRONIC SIGNATURES, CONTRACTS, ORDERS, AND OTHER RECORDS, AND TO ELECTRONIC DELIVERY OF NOTICES, POLICIES, AND RECORDS OF TRANSACTIONS INITIATED OR COMPLETED BY US OR VIA THE SITE. You hereby waive any rights or requirements under any statutes, regulations, rules, ordinances, or other laws in any jurisdiction which require an original signature or delivery or retention of non-electronic records, or to payments or the granting of credits by any means other than electronic means.
+
+
+## CALIFORNIA USERS AND RESIDENTS
+
+If any complaint with us is not satisfactorily resolved, you can contact the Complaint Assistance Unit of the Division of Consumer Services of the California Department of Consumer Affairs in writing at 1625 North Market Blvd., Suite N 112, Sacramento, California 95834 or by telephone at (800) 952-5210 or (916) 445-1254.
+
+
+## MISCELLANEOUS
+
+These Terms of Use and any policies or operating rules posted by us on the Site or in respect to the Site constitute the entire agreement and understanding between you and us. Our failure to exercise or enforce any right or provision of these Terms of Use shall not operate as a waiver of such right or provision. These Terms of Use operate to the fullest extent permissible by law. We may assign any or all of our rights and obligations to others at any time. We shall not be responsible or liable for any loss, damage, delay, or failure to act caused by any cause beyond our reasonable control. If any provision or part of a provision of these Terms of Use is determined to be unlawful, void, or unenforceable, that provision or part of the provision is deemed severable from these Terms of Use and does not affect the validity and enforceability of any remaining provisions. There is no joint venture, partnership, employment or agency relationship created between you and us as a result of these Terms of Use or use of the Site. You agree that these Terms of Use will not be construed against us by virtue of having drafted them. You hereby waive any and all defenses you may have based on the electronic form of these Terms of Use and the lack of signing by the parties hereto to execute these Terms of Use.
+
+## CONTACT US
+
+In order to resolve a complaint regarding the Site or to receive further information regarding use of the Site, please contact us at:
+
+NumFOCUS, Inc. P.O. Box 90596 Austin, TX, USA 78709 info@numfocus.org +1 (512) 222-5449
+
+
+
diff --git a/content/pt/user-survey-2020.md b/content/pt/user-survey-2020.md
new file mode 100644
index 0000000000..0cb175d668
--- /dev/null
+++ b/content/pt/user-survey-2020.md
@@ -0,0 +1,16 @@
+---
+title: PESQUISA SOBRE A COMUNIDADE NUMPY 2020
+sidebar: false
+---
+
+Em 2020, o time de pesquisas do NumPy realizou a primeira pesquisa oficial sobre a comunidade NumPy, em parceria com alunos e docentes de um Mestrado em metodologia de pesquisa realizado conjuntamente pela Universidade de Michigan e pela Universidade da Maryland. Mais de 1200 usuários de 75 países participaram para nos ajudar a mapear uma paisagem da comunidade NumPy e expressaram seus pensamentos sobre o futuro do projeto.
+
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Página de capa do relatório da pesquisa de usuários do NumPy 2020, chamado 'NumPy Community Survey 2020 - results'" width="250">}}
+
+**[Faça o download do relatório](/surveys/NumPy_usersurvey_2020_report.pdf)** para ver os detalhes sobre os resultados encontrados.
+
+
+Para os destaques, confira **[este infográfico](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+Quer saber mais? Visite **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/pt/user-surveys.md b/content/pt/user-surveys.md
new file mode 100644
index 0000000000..89a2aa0460
--- /dev/null
+++ b/content/pt/user-surveys.md
@@ -0,0 +1,10 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020** The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/zh/404.md b/content/zh/404.md
new file mode 100644
index 0000000000..0f27a36ee9
--- /dev/null
+++ b/content/zh/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+抱歉······ 目标网页并不存在。
+
+如果您认为这个页面应该展示些什么东西,请在 GitHub 上面 [发起一个 issue](https://github.com/numpy/numpy.org/issues).
diff --git a/content/zh/about.md b/content/zh/about.md
new file mode 100644
index 0000000000..fc4063180f
--- /dev/null
+++ b/content/zh/about.md
@@ -0,0 +1,85 @@
+---
+title: 关于我们
+sidebar: false
+---
+
+_下面是 NumPy 项目和社区的一些信息:_
+
+NumPy 是一个使 Python 支持数值计算的开源项目, 它诞生于 2005 年,早期由 Numeric 和 Numarray 库发展而来。 NumPy will always be 100% open source software, free for all to use and released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+经过 Numpy 和 Python 科学计算社区协商讨论,最终决定将 Numpy 在 GitHub 上开源。 想要了解更多与社区治理有关的信息,请参阅我们的[治理文件](https://www.numpy.org/devdocs/dev/governance/index.html)。
+
+
+## 指导委员会
+
+指导委员会的成员们通过与 Numpy 社区合作并提供服务的形式来确保项目的长期发展,包括技术层面和社区层面。 Numpy 指导委员会目前由下列成员组成(按字母顺序排列):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Stephan Hoyer
+- Melissa Weber Mendonça
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Eric Wieser
+
+荣誉会员:
+
+- Travis Oliphant(项目创始人,2005-2012年)
+- Alex Griffing(2015-2017年)
+- Marten van Kerkwijk (2017-2019年)
+- Allan Haldane (2015-2021)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Pauli Virtanen (2008-2021)
+- Jaime Fernández del Río (2014-2021)
+
+
+## 团队
+
+The NumPy project is growing! 🎉 We have teams for:
+
+- 编码
+- 文档
+- 网站
+- 分类
+- survey
+- funding and grants
+
+See the [}}">Team]({{< relref) page for individual team members.
+
+## NumFOCUS小组委员会
+
+- Charles Harris
+- Ralf Gommers
+- Melissa Weber Mendonça
+- Sebastian Berg
+- 外部成员:Thomas Caswell
+
+## 赞助商
+
+NumPy 直接从下列来源获得资金:
+{{< sponsors >}}
+
+
+## 机构合作伙伴
+
+机构合作伙伴指那些通过雇用为 NumPy 做贡献的人来支持该项目的组织。 目前的机构伙伴包括:
+
+- UC Berkeley (Stefan van der Walt, Sebastian Berg, Ross Barnowski)
+- Quansight(Ralf Gommers、Melissa Weber Mendonceda、Mars Lee、Matti Picus、Pearu Peterson)
+
+{{< partners >}}
+
+
+## 捐赠
+
+如果您发现 NumPy 对您的工作、研究或公司有用,请考虑向该项目发起捐款。 任何金额都有帮助! 所有捐款将严格用于 NumPy 开源软件、文档和社区的开发。
+
+NumPy 是美国 501(c)(3) 非营利慈善机构 NumFOCUS 的一个赞助项目。 NumFOCUS 向 NumPy 提供财政、法律和行政支助,帮助确保该项目的健康和可持续性。 访问 [numfocus.org](https://numfocus.org) 获取更多信息。
+
+对 NumPy 的捐赠将由 [NumFOCUS](https://numfocus.org) 进行管理。 对于在美国的捐赠者,在法律规定的范围内,你的赠品可以免税。 如同任何捐赠一样,您应该与您的税务顾问商讨您的特定税务状况。
+
+NumPy 指导委员会将就如何最佳利用收到的任何资金作出决定。 技术和基础设施相关的优先事项已记录在 [NumPy 路线图](https://www.numpy.org/neps/index.html#roadmap) 上。
+{{< numfocus >}}
diff --git a/content/zh/arraycomputing.md b/content/zh/arraycomputing.md
new file mode 100644
index 0000000000..09dd3ab2fc
--- /dev/null
+++ b/content/zh/arraycomputing.md
@@ -0,0 +1,21 @@
+---
+title: 数组计算
+sidebar: false
+---
+
+*数组计算是统计学、数学和当代数据科学及应用(如数据可视化、数字信号处理、图像处理、生物信息学、机器学习、AI等) 中的科学计算领域的基础。*
+
+大规模数据操作和转换取决于高效率高性能的数组计算。 数据分析、机器学习和数值计算首选的语言是 **Python**。
+
+NumPy 是 Python 语言中支持大型、多维数组和矩阵计算、并附有大量高级数学功能的默认标准库。
+
+自2006年NumPy推出以来,Pandas于2008年出现,直到几年前,更多数组计算库才连续出现,充实数组计算领域。 许多这些较新库都具有类似NumPy的功能,包含较新的算法和功能,适合机器学习和人工智能应用。
+
+
+
+**数组计算** 基于 **数组** 这一数据结构。 *数组*用于处理大量数据,使他们便于有效存储、搜索、计算和变换。
+
+数组计算是 *独特*的 ,因为它需要 *同时*操作整个数据阵列。 这意味着任何数组操作应用于整个数组的每个值。 这种向量化的方法使得程序员能够对数据进行整体操作,无需使用循环操作标量,从而使代码更高效和简洁。
diff --git a/content/zh/case-studies/blackhole-image.md b/content/zh/case-studies/blackhole-image.md
new file mode 100644
index 0000000000..466504d87a
--- /dev/null
+++ b/content/zh/case-studies/blackhole-image.md
@@ -0,0 +1,70 @@
+---
+title: "案例研究:人类有史以来首张黑洞照片"
+sidebar: false
+---
+
+{{{< figsrc="/images/content_images/cs/blackhole.jpg" caption="**Black Hole M87**" alt="black hole image" tot="*(Image Credits: Event Horizon Telesmall Collection Collaboration)*" tomlink="https://www.jpl.nasa.gov/images/universse/20190410/blackhole20190410.jpg" >}}
+
+
+
+## 关于 [引力波](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) and [LIGO](https://www.ligo.caltech.edu)
+
+引力波是空间和时间结构中的涟漪。由宇宙中的灾难性事件产生,例如两个黑洞的碰撞和合并或双星或超新星的合并。 观测引力波不仅有助于研究引力,而且有助于了解遥远宇宙中一些不为人知的现象及其影响。
+
+[激光干涉引力波天文台(LIGO)](https://www.ligo.caltech.edu)旨在通过直接探测爱因斯坦广义相对论预测的引力波来打开引力波天体物理学领域。 It comprises two widely separated interferometers within the United States — one in Hanford, Washington and the other in Livingston, Louisiana — operated in unison to detect gravitational waves. 每一个仪器都装载使用了激光干涉测量法的公里级引力波探测器。 LIGO科学计算团队(LSC) 是由来自美国各地大学和其他 14 个国家的 1000 多名科学家组成的团体,得到了 90 多所大学和研究机构的支持;大约 250 名学生积极参与项目合作。 LIGO 的新发现是关于对引力波本身的首次观测,通过测量引力波在穿过地球时对空间和时间造成的微小扰动而制成。 它开辟了新的天体物理学研究方向,致力于探索宇宙扭曲的一面—研究由扭曲的时空构成的物体和现象。
+
+
+### 关键目标
+
+* 虽然它的 [任务](https://www.ligo.caltech.edu/page/what-is-ligo) 是探测宇宙中反应最剧烈和能量最集中的区域产生的引力波,但 LIGO 收集的数据可能会对物理学的许多领域产生深远的影响,包括引力、相对论、天体物理学、宇宙学、粒子物理学和核物理。
+* 通过涉及复杂数学的数值相对论来计算和处理观测数据,以便从噪声中辨别信号、滤除相关信号并统计估计观测数据的重要性。
+* 数据可视化,以便可以理解二进制/数值结果。
+
+
+
+### 面临的挑战
+
+* **计算**
+
+ 引力波很难被探测到,因为它们产生的影响非常小,与物质的相互作用也很小。 处理和分析 LIGO 的所有数据需要庞大的计算基础设施。在处理数十亿倍于引力波信号的噪声后,仍然需要使用非常复杂的相对论方程来处理海量数据,这带来了计算挑战: [二进制合并分析需要花费O(10^ 7) 级别的 CPU 小时数](https://youtu.be/7mcHknWWzNI)才能完成,这些计算过程由 6 个专用 LIGO 集群分摊解决。
+
+* **数据泛滥**
+
+ 随着观测设备变得更加敏感和可靠,数据泛滥和大海捞针所带来的挑战成倍增加。 LIGO 每天生成数 TB 的数据! 每一次检测之后要理解这些数据都要付出巨大的努力。 例如,LIGO 收集的信号必须由超级计算机与数十万个可能的引力波特征模板进行匹配。
+
+* **可视化**
+
+ 一旦解决了理解爱因斯坦方程以及使用超级计算机求解这些方程相关的障碍,下一个重大挑战就是使人脑能够理解数据。 仿真建模以及信号检测需要有效的可视化技术。 在纯科学爱好者的眼中,可视化在为数值相对论提供更多可信度方面也发挥了作用,在成像和模拟使更多人更容易理解结果之前,他们并没有对数值相对论给予足够的重视。 使用最新的实验输入和见解来加快复杂计算和渲染、重新渲染图像和模拟的速度可能是一项耗时的活动,给该领域的研究人员带来严峻挑战。
+
+{{< figsrc="/images/content_images/cs/gw_strain_amplitude ng" class="fig-center" alt="引力波应变幅值” caption="**来自GW150914的估计引力波应变幅度**"Attorney="(**图表来源:** 从二元黑洞合并中观察引力波,ResearchGate 出版物)" tourlink="https://www. esearchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger” >}}
+
+## Numpy 在引力波检测中的作用
+
+除了使用超级计算机暴力计算数值相对论之外,目前还无法使用任何其它技术计算黑洞合并发出的引力波。 LIGO 收集的数据量之大,就像无比微弱的引力波信号一样,令人难以置信。
+
+NumPy 是 Python 的标准数值分析包,被用于 LIGO GW 检测项目期间执行的各种任务的软件所使用。 NumPy 有助于高性能处理复杂的数学问题和数据操作。 这里有一些例子:
+
+* [信号处理](https://www.uv.es/virgogroup/Denoising_ROF.html): 毛刺检测, [噪音识别和数据表征](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplab, pandas, pyCharm)
+* 数据检索:决定哪些数据可以用于分析,确定它是否包含信号—犹如大海捞针
+* 统计分析:估计观测数据的统计显著性,通过与模型比较来估计信号参数(如恒星质量、自旋速度和距离)。
+* 数据可视化
+ - 时间序列
+ - 频谱图
+* 计算相关性
+* 在GW 数据分析中开发的关键 [软件](https://github.com/lscsoft) 例如: [GwPy](https://gwpy.github.io/docs/stable/overview.html) 和 [PyCBC](https://pycbc.org) 使用 NumPy 和 AstroPy 为实用程序、工具和方法提供基于对象的接口,用于研究来自引力波探测器的数据。
+
+{{< figsrc="/images/content_images/cs/gwpy-numpy-dep-graph.png" class="fig-center" alt="gwpy-numpy depgraph" caption="**GwPy 包的软件依赖关系**>}}
+
+----
+
+{{< figsrc="/images/content_images/cs/PyCBC-numpy-dep-graph.png" class="fig-center" alt="PyCBC-numpy depgraph" caption="**PyCBC包的软件依赖关系图**>}}
+
+## 总结
+
+GW 探测使研究人员能够发现完全出乎意料的现象,同时为许多已知的最深刻的天体物理现象提供了新的见解。 数学运算和数据可视化是帮助科学家深入了解从科学观察中收集到的数据并理解结果的关键步骤。 计算是复杂的,除非使用计算机模拟进行可视化,并提供真实的观察数据和分析,否则人类无法理解。 NumPy 与其他 Python 包(例如 matplotlib、pandas 和 scikit-learn)一起[使研究人员](https://www.gw-openscience.org/events/GW150914/)能够回答复杂的问题并开拓我们理解宇宙的新视角。
+
+{{< figsrc="/images/content_images/cs/numpy_gw_benefits.png" class="fig-center" alt="numpy benefits" caption="**Numpy核心能力的应用**" >}}
diff --git a/content/zh/citing-numpy.md b/content/zh/citing-numpy.md
new file mode 100644
index 0000000000..a5db3deb31
--- /dev/null
+++ b/content/zh/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: 引用 NumPy
+sidebar: false
+---
+
+如果 NumPy 在您的研究中很重要, 您想在您的学术出版物中致谢这个项目,我们建议您引用以下论文:
+
+* Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Publisher link](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_BibTeX 格式:_
+
+ ```
+@Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+}
+```
diff --git a/content/zh/code-of-conduct.md b/content/zh/code-of-conduct.md
new file mode 100644
index 0000000000..65f28b634e
--- /dev/null
+++ b/content/zh/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: NumPy 行为守则
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### 引言
+
+本行为守则适用于 NumPy 项目管理的所有网络空间,包括所有公共和私人的邮件列表、问题追踪器、 维基、 博客、 推特以及本社区使用的任何其他交流频道。 NumPy 项目不组织面对面活动。 然而,与本社区有关的活动应有一个与本社区内涵上类似的行为守则。
+
+本行为守则应由每个正式或非正式参加本社区的、与项目有关的、与项目的活动有关的、特别是在代表项目时的人来遵守。
+
+该守则不详尽,也不完整。 它有助于提升我们对协作、共享环境和目标的共识。 请尽量从内涵上遵循这一守则,以创造一个友好、高效益的环境来丰富有关的社区。
+
+### 具体准则
+
+要努力去:
+
+1. 敞开心扉。 我们邀请任何人参加本社区。 我们更喜欢公开交流与项目有关的信息,除非讨论某些敏感问题时。 这也适用于帮助或项目支持的信息; 向公众寻求支持帮助不仅更有可能得到对某个问题的答复, 它还能确保更容易发现和纠正任何无意中的错误。
+2. 充满热情、欢迎、友善和耐心。 我们怀着美好的意愿共同努力解决冲突。 我们都可能时不时遭受某种挫折,但我们不允许把沮丧变成个人攻击的工具。 一个让人感到不舒服或受到威胁的社区并不是一个富有成效的社区。
+3. 保持合作。 我们的工作成果将被其他人使用,反过来,我们依靠其他人的工作来进行改进。 当我们在项目中添加一些有用的功能时,我们愿意向其他人解释它是如何运作的。 这样他们就能够在这些功能的基础上进一步改善工作效率。 我们作出的任何决定都将影响到用户和开发者,因此在作出决定时必须认真考虑后果。
+4. 勤于向人请教。 没人知道所有事! 提早提问可以避免很多麻烦的发生,所以我们鼓励提问,尽管我们可能把它们引向更合适的论坛中。 我们将努力做出反应并提供帮助。
+5. 谨慎用词 我们在沟通过程中保持谨慎和尊重,我们对自己的发言负有全部责任。 善待他人。 不要侮辱或贬低其他参与者。 我们不接受骚扰或其他排斥行为,例如:
+ * 针对他人的暴力威胁或语言。
+ * 性别、种族主义或其他歧视性笑话和语言。
+ * 露骨或粗暴的素材;
+ * 发布(或威胁发布)他人个人身份信息(“敲诈”)。
+ * 未经发件人同意分享私人内容,例如私下发送电子邮件、或发送至非公开/未登录论坛,如IRC 频道。
+ * 个人侮辱,尤其是使用种族主义或性别歧视术语的侮辱。
+ * 不受欢迎的性关注。
+ * 过于夸张。 请避免使用骂人的话;人们对咒骂的敏感度差异很大。
+ * 对他人的反复骚扰。 一般来说,如果有人要求你停止,你就要停止了。
+ * 鼓吹或鼓励上述任何行为。
+
+### 多样性声明
+
+NumPy项目欢迎并鼓励每个人参与。 我们致力于成为一个人人都参与的共同体。 虽然我们可能并不总是能够照顾到每个人的喜好,但我们尽力善待每一个人。
+
+无论你如何看待自己,也无论其他人如何看待你:我们欢迎你的参与。 虽然社区文化不可能做到包罗万象,但我们明确尊重在年龄、文化、族裔、基因、性别认同或表达、语言、民族血统、神经型、表型、政治信仰、职业、种族、宗教、性取向、社会经济地位、亚文化和技术水平等方面的多样性,在不违反本行为守则的情况下,任何人都可以参与到社区中。
+
+虽然我们欢迎精通多语种的人群,但NumPy的开发是用英语进行的。
+
+上面的《行为守则》详细介绍了NumPy社区的行为标准。 我们社区的参与者应在其所有互动过程中遵守这些标准,并帮助其他参与者也这样做(见下一节)。
+
+### 举报指南
+
+我们知道,互联网通信平台从诞生开始就演变为非常普遍的辱骂恶意中伤的场所。 我们还认识到,有时人们可能会有不愉快的时候,或不知道本行为守则中的一些准则。 在决定如何应对违反本守则的行为时,请铭记这一点。
+
+关于明显故意违反行为,向行为守则委员会报告(见下文)。 对于可能无意的违规行为,您可以回复此人并指出此行为准则(无论是在公开场合还是私下场合,选择一种最合适的方式)。 如果你不愿意这样做,请随时直接向行为守则委员会汇报, 或以保密方式向委员会征求意见。
+
+您可以在 numpy-conduct@googlegroups.com上向NumPy行为守则委员会报告问题。
+
+目前,该委员会包含如下成员:
+
+* Stefan van der Walt
+* Melissa Weber Mendonça
+* Anirudh Subramanian
+
+如果你的举报涉及委员会的任何成员,或他们认为对举报的处理存在利益冲突, 他们将回避审议你的报告。 或者,如果你出于任何原因感到不方便向委员会提交报告, 那么您也可以通过 [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible)联系NumFOCUS高级工作人员。
+
+### 事故报告决议 & 行为守则执行
+
+_本节概述最重要的环节。 更多详细信息可在_ [NumPy行为守则-如何对举报采取后续行动](/report-handling-manual) 中找到。
+
+我们将调查并答复所有指控。 NumPy行为守则委员会和NumPy指导委员会(如果涉及的话)将保护举报者的身份,并将投诉内容视为保密(除非举报人另有约定)。
+
+如果发生严重和明显的违约行为,例如人身攻击和恐吓、性别或种族歧视, 我们将立即断开发起人与 NumPy 通信频道的联系;详情请参阅手册。
+
+在不涉及明显严重和明显违反本行为守则行为的情况下,就收到的任何违反行为守则行为报告采取行动的程序将是:
+
+1. 声明已收到举报信息。
+2. 合理的讨论/反馈。
+3. 调解(如果反馈意见没有产生帮助,并且只有当举报方和被举报方都同意这样做时),
+4. 《行为守则》委员会通过公开透明的决定(见 [决议](/report-handling-manual#resolutions)) 来执行。
+
+委员会将尽快、至多在72小时内对任何举报作出答复。
+
+### 尾注
+
+我们感谢以下文件背后的团体,我们从这些文件中吸取了内容和灵感:
+
+- [《SciPy行为守则》](https://docs.scipy.org/doc/scipy/reference/dev/conduct/code_of_conduct.html)
diff --git a/content/zh/community.md b/content/zh/community.md
new file mode 100644
index 0000000000..f4904d9cbd
--- /dev/null
+++ b/content/zh/community.md
@@ -0,0 +1,65 @@
+---
+title: 社区
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). Numpy的领导层承诺要打造一个开放,包容,积极向上的社区。 请阅读 [ NumPy 行为准则](/code-of-conduct) 以了解如何用促进社区繁荣的方式与他人交流互动。
+
+我们提供多种交流渠道,可以用来学习知识、分享您的专业见解、或是与 NumPy 社区中的其他人联系。
+
+
+## 线上参与
+
+以下是直接参与 NumPy 项目和社区的方法。 _注意,我们鼓励用户和社区成员在使用问题上相互帮助——参阅 [获取帮助](/gethelp)。_
+
+
+### [NumPy 邮件列表](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+这个列表是较长形式讨论的主要讨论区,例如将新功能添加到Numpy,更改Numpy 路线图或是各种项目级的决策。 同时也是NumPy的公告区,例如releases,开发者会议,Sprints 或是会议演讲也在这个列表中。
+
+在这个列表上,请用包含引文回复的方式回复邮件列表(而不是另一个发送者),并且不要回复摘要。 A searchable archive of this list is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [Github issue 追踪器](https://github.com/numpy/numpy/issues)
+
+- 报告bug (例如:"`np.arange(3).shop`本应该返回 `(3),`,却返回结果 `(5),`");
+- 文档问题 (例如:"我发现这一节没写清楚");
+- 特性请求 (例如:"我想在 `np.percentile` 中加一个新的插值方法")。
+
+_注意,Github不是报告安全漏洞的正确位置! 如果你认为你在 NumPy 中找到了一个安全漏洞,请在 [这里](https://tidelift.com/docs/security) 报告。_
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+一个用于询问有关为NumPy做 _贡献_ 的问题的实时聊天室。 这是一个私密空间,特别适用于那些在大型公共邮件列表或GitHub上提出他们的问题或想法时犹豫不决的人。 在 [这里](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) 获取更多详情以及如何才能受邀加入这个空间的方法。
+
+
+## 学习小组和 Meetups
+
+如果你想找一个用于了解NumPy以及更广泛的数据科学和科学计算python包生态的本地meetup或是学习小组,我们建议你探索一下[PyData meetups](https://www.meetup.com/pro/pydata/)(开展过150+次 meetups, 包含100,000+ 名成员)。
+
+NumPy还偶尔为其团队和感兴趣的贡献者组织亲身Sprints。 这往往会提前几个月计划,并在[邮件列表](https://mail.python.org/mailman/listinfo/numpy-discussion)和[Twitter](https://twitter.com/numpy_team)上发布通知。
+
+
+## 会议
+
+NumPy 项目不会组织自己的会议。 历来最受 NumPy 维护者、贡献者和用户欢迎的会议是SciPy 和 PyData 系列会议如下:
+
+- [SciPy US](https://conference.scipy.org)
+- [EuroSciPy](https://www.euroscipy.org)
+- [SciPy Latin America](https://www.scipyla.org)
+- [SciPy India](https://scipy.in)
+- [SciPy Japan](https://conference.scipy.org)
+- [PyData conferences](https://pydata.org/event-schedule/) (分布在许多国家,每年有15-20个活动)
+
+这些会议大部分都包括一些教程日涵盖 NumPy 和/或 sprints ,您可以从中学习如何为NumPy 或相关的开源项目做贡献。
+
+
+## 加入 NumPy 社区
+
+NumPy 项目的繁荣发展需要您的专业知识和热情。 不是coder? 没关系! 有许多方式可以为NumPy做贡献。
+
+如果您有兴趣成为NumPy贡献者 (好耶!) ,建议查看 [贡献](/contribute) 页面。
+
diff --git a/content/zh/config.yaml b/content/zh/config.yaml
new file mode 100644
index 0000000000..fcd0b546f0
--- /dev/null
+++ b/content/zh/config.yaml
@@ -0,0 +1,165 @@
+---
+languageName: 英语
+params:
+ description: 为什么使用 Numpy?它有强大的高维数组、有数字计算工具、互可操作、高性能、开源。
+ navbarlogo:
+ image: logo.svg
+ link: /
+ hero:
+ #Main hero title
+ title: NumPy
+ #Hero subtitle (optional)
+ subtitle: 使用 Python 进行科学计算的基本包
+ #Button text
+ buttontext: 入门
+ #Where the main hero button links to
+ buttonlink: "/install"
+ #Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: 占位符
+ promptlabel: 交互式shell提示
+ button:
+ -
+ label: 启用交互式教程shell。
+ text: 启用
+ shellcontent:
+ intro:
+ -
+ title: 尝试使用NumPy
+ text: 启用交互式教程shell。
+ loading:
+ -
+ title: 当我们等待时...
+ text: 正在前往 mybinder.org 启动容器...
+ docslink: 别忘了查看 用户手册。
+ casestudies:
+ title: 案例研究
+ features:
+ -
+ title: 第一张黑洞图像
+ text: NumPy 是怎么配合 SciPy 和 Matplotlib 等库来让事件视界望远镜(Eht)生成第一张黑洞图像的
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: 这是黑洞的第一张图像。它是黑色背景上衬着的一个橙色圆环。
+ url: /case-studies/blackhole-image
+ -
+ title: 引力波探测
+ text: 在1916年,阿尔伯特·爱因斯坦预测了引力波的存在。100年后,激光干涉引力波天文台(LIGO)的科学家利用 NumPy 证明了引力波的存在。
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: 两个相互环绕的天体。它们改变了周围的引力。
+ url: /case-studies/gw-discov
+ -
+ title: 运动分析
+ text: Cricket Analytics 正在通过统计模型和预测分析来改进队员的团队的表现,改变体育界。NumPy 让其中很多的分析成为了可能。
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: 绿色的赛场上的板球。
+ url: /case-studies/cricket-analytics
+ -
+ title: 使用深度学习进行估计
+ text: DeepLabCut 使用 NumPy 来加速进行涉及观察动物行为的科学研究,以便跨物种和时间尺度推动研究发展。
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: 猎豹姿势分析
+ url: /case-studies/deeplabcut-dnn
+ keyfeatures:
+ features:
+ -
+ title: 强大的高维数组
+ text: 快速、多面性、NumPy向量化、索引化和广播概念是当今数组计算的事实标准。
+ -
+ title: 数字计算工具
+ text: NumPy 提供了丰富全面的数学函数、随机数生成器、线性代数函数、傅式变换等等。
+ -
+ title: 互操作性
+ text: NumPy 支持范围广泛的硬件和计算平台,并且在分布式、GPU和稀疏数组库中也能得到很好的应用。
+ -
+ title: 高性能
+ text: NumPy 的核心是高度优化的 C 代码,同时兼顾了Python语言的灵活性和编译代码的高性能。
+ -
+ title: 简单易用
+ text: NumPy的高度模块化的语法使得任何背景或经验级别的程序员都能够快速上手。
+ -
+ title: 开放源代码
+ text: Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+ tabs:
+ title: 生态系统
+ section5: false
+navbar:
+ -
+ title: 安装
+ url: /install
+ -
+ title: 文档
+ url: https://numpy.org/doc/stable
+ -
+ title: 学习指南
+ url: /learn
+ -
+ title: 社区
+ url: /community
+ -
+ title: 关于我们
+ url: /about
+ -
+ title: 参与贡献
+ url: /contribute
+footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ -
+ link: https://github.com/numpy/numpy
+ icon: github
+ -
+ link: https://twitter.com/numpy_team
+ icon: 推特
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ -
+ text: 安装
+ link: /install
+ -
+ text: 文档
+ link: https://numpy.org/doc/stable
+ -
+ text: 学习指南
+ link: /learn
+ -
+ text: 引用 NumPy
+ link: /citing-numpy
+ -
+ text: 版本规划
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ -
+ text: 关于我们
+ link: /about
+ -
+ text: 社区
+ link: /community
+ -
+ text: User surveys
+ link: /user-surveys
+ -
+ text: Contribute
+ link: /contribute
+ -
+ text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ -
+ text: 获得帮助
+ link: /gethelp
+ -
+ text: 使用条款
+ link: /terms
+ -
+ text: 隐私政策
+ link: /privacy
+ -
+ text: 宣传材料
+ link: /press-kit
+
diff --git a/content/zh/contribute.md b/content/zh/contribute.md
new file mode 100644
index 0000000000..79e22d590d
--- /dev/null
+++ b/content/zh/contribute.md
@@ -0,0 +1,78 @@
+- - -
+title: Numpy贡献者指南 sidebar: false
+- - -
+
+NumPy 项目的繁荣发展需要您的专业知识和热情! 您在社区能做的不仅限于编程 - 除了
+
+- [写代码](#writing-code)
+
+你还可以
+
+- [检视合并请求](#reviewing-pull-requests)
+- [开发教程、演示文稿和其它教育材料](#developing-educational-materials)
+- [对问题分类](#issue-triaging)
+- [优化社区官网](#website-development)
+- [贡献图形设计](#graphic-design)
+- [翻译网站内容](#translating-website-content)
+- [担任社区协调员](#community-coordination-and-outreach)
+- [撰写捐款提案并帮助完成其他筹款活动](#fundraising)
+
+如果你不确定从哪里开始或你的技能如何匹配社区, _向我们求助吧!_ 您可以在 [邮件列表](https://mail.python.org/mailman/listinfo/numpy-discussion) 或[GitHub](http://github.com/numpy/numpy) (打开一个[issue](https://github.com/numpy/numpy/issues) 或评论相关的问题)。
+
+这些是我们的首选联系渠道(开源的本质是开放),但如果您更喜欢私下交流,请通过 或 [Slack](https://numpy-team.slack.com)联系我们的社区协调员(发送邮件至以获得邀请)
+
+我们还有一个双周的 _社区电话例会_,详细信息会在[邮件列表 ](https://mail.python.org/mailman/listinfo/numpy-discussion)中公布。 非常欢迎您的加入。 如果您刚开始为开源做贡献,我们也强烈建议您阅读[本指南](https://opensource.guide/how-to-contribute/)
+
+我们的社区渴望平等对待每个人并重视所有贡献。 我们有一套 [行为准则 ](/code-of-conduct)来营造一个开放和热情的环境。
+
+### 编写代码
+
+面向程序员, 此[指南](https://numpy.org/devdocs/dev/index.html#development-process-summary)解释如何为代码库做出贡献。
+
+### 审核其他人提交的 merge request
+本项目有超过250个开放的合入请求 — 这意味着许多潜在的改进和许多等待反馈的开源贡献者。 如果您是一位了解 NumPy 的开发人员,即使您不熟悉代码库,也可以提供帮助。 您可以:
+* 对长时间讨论的话题进行总结
+* 对文档的PR进行分类
+* 对做出的修改进行测试
+
+
+### 开发教材
+
+NumPy的 [用户指南](https://numpy.org/devdocs) 正在进行整改。 我们需要新的教程、入门指南和深入细致的解释,并且官网结构也需要重新组织。 贡献机会也不限于编写教材。 我们也欢迎使用示例、学习笔记和教学视频。 [NEP 44 — 重构NumPy文档](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)列出了我们目前的想法,您可能还有其他想法。
+
+
+### 问题分类
+
+[NumPy的问题跟踪器 ](https://github.com/numpy/numpy/issues)有 _很多_未关闭的问题。 有些问题不再合理范围,有些问题应该优先考虑,有些是新贡献者带来的好问题。 您可以:
+
+* 检查之前的问题是否仍然存在
+* 找出重复出现的问题并将其关联起来
+* 为问题添加清晰的可复现代码
+* 为问题添加正确的标签(这需要分类权限 - 发邮件咨询即可获取)
+
+只管尽情探索吧。
+
+
+### 网站开发
+
+我们刚刚更新了我们的网站,但离完成还有很长的距离。 如果您喜欢网站开发,这些[问题](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)列出了一些我们尚未满足的需求 -- 请随时分享您的想法。
+
+
+### 平面设计
+
+我们几乎无法开始列出平面设计师可以在这里做出的贡献。 社区文档为了准确生动的描述而生;日益成长壮大的网站迫切需要大量的平面设计图片-这里的机会比比皆是。
+
+
+### 翻译网站内容
+
+我们计划对 [numpy.org](https://numpy.org) 进行多语种翻译,让用户可以用他们的母语访问 NumPy。 翻译志愿者是这项工作的核心。 请参阅[此处](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)了解翻译背景; 对此 [GitHub问题](https://github.com/numpy/numpy.org/issues/55) 发表评论以加入到翻译队伍中.
+
+
+### 社区协调和宣传
+
+通过社区我们可以更广泛地分享我们的工作,并了解我们的不足之处。 我们渴望让更多的人参与进来,比如关注我们的[Twitter](https://twitter.com/numpy_team) 帐户、组织NumPy [代码比赛](https://scisprints.github.io/)、时事通讯以及博客宣传中。
+
+### 筹款活动
+
+NumPy 多年来一直都是靠志愿者发展起来的,但随着其重要性的增加,很明显,为了确保稳定和成长,我们需要经济上的支持。 [这个SciPy'19 演讲](https://www.youtube.com/watch?v=dBTJD_FDVjU) 解释了这种支持产生了多大的不同。 与所有非营利组织一样,我们一直在寻求捐款、赞助和其他类型的支持。 我们有很多想法,当然我们欢迎大家提供更多意见。 筹款在这里是一项稀缺技能 - 我们迫切需要您的帮助。
+
diff --git a/content/zh/diversity_sep2020.md b/content/zh/diversity_sep2020.md
new file mode 100644
index 0000000000..ef3030d5f7
--- /dev/null
+++ b/content/zh/diversity_sep2020.md
@@ -0,0 +1,48 @@
+---
+title: NumPy Diversity and Inclusion Statement
+sidebar: false
+---
+
+
+_In light of the foregoing discussion on social media after publication of the NumPy paper in Nature and the concerns raised about the state of diversity and inclusion on the NumPy team, we would like to issue the following statement:_
+
+
+It is our strong belief that we are at our best, as a team and community, when we are inclusive and equitable. Being an international team from the onset, we recognize the value of collaborating with individuals from diverse backgrounds and expertise. A culture where everyone is welcomed, supported, and valued is at the core of the NumPy project.
+
+## The Past
+
+Contributing to open source has always been a pastime in which most historically marginalized groups, especially women, faced more obstacles to participate due to a number of societal constraints and expectations. Open source has a severe diversity gap that is well documented (see, e.g., the [2017 GitHub Open Source Survey](https://opensourcesurvey.org/2017/) and [this blog post](https://medium.com/tech-diversity-files/if-you-think-women-in-tech-is-just-a-pipeline-problem-you-haven-t-been-paying-attention-cb7a2073b996)).
+
+Since its inception and until 2018, NumPy was maintained by a handful of volunteers often working nights and weekends outside of their day jobs. At any one time, the number of active core developers, the ones doing most of the heavy lifting as well as code review and integration of contributions from the community, was in the range of 4 to 8. The project didn't have a roadmap or mechanism for directing resources, being driven by individual efforts to work on what seemed needed. The authors on the NumPy paper are the individuals who made the most significant and sustained contributions to the project over a period of 15 years (2005 - 2019). The lack of diversity on this author list is a reflection of the formative years of the Python and SciPy ecosystems.
+
+2018 has marked an important milestone in the history of the NumPy project. Receiving funding from The Gordon and Betty Moore Foundation and Alfred P. Sloan Foundation allowed us to provide full-time employment for two software engineers with years of experience contributing to the Python ecosystem. Those efforts brought NumPy to a much healthier technical state.
+
+This funding also created space for NumPy maintainers to focus on project governance, community development, and outreach to underrepresented groups. [The diversity statement](https://figshare.com/articles/online_resource/Diversity_and_Inclusion_Statement_NumPy_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/12980852) written in mid 2019 for the CZI EOSS program grant application details some of the challenges as well as the advances in our efforts to bring in more diverse talent to the NumPy team.
+
+## The Present
+
+Offering employment opportunities is an effective way to attract and retain diverse talent in OSS. Therefore, we used two-thirds of our second grant that became available in Dec 2019 to employ Melissa Weber Mendonça and Mars Lee.
+
+As a result of several initiatives aimed at community development and engagement led by Inessa Pawson and Ralf Gommers, the NumPy project has received a number of valuable contributions from women and other underrepresented groups in open source in 2020:
+
+- Melissa Weber Mendonça gained commit rights, is maintaining numpy.f2py and is leading the documentation team,
+- Shaloo Shalini created all case studies on numpy.org,
+- Mars Lee contributed web design and led our accessibility improvements work,
+- Isabela Presedo-Floyd designed our new logo,
+- Stephanie Mendoza, Xiayoi Deng, Deji Suolang, and Mame Fatou Thiam designed and fielded the first NumPy user survey,
+- Yuki Dunn, Dayane Machado, Mahfuza Humayra Mohona, Sumera Priyadarsini, Shaloo Shalini, and Kriti Singh (former Outreachy intern) helped the survey team to reach out to non-English speaking NumPy users and developers by translating the questionnaire into their native languages,
+- Sayed Adel, Raghuveer Devulapalli, and Chunlin Fang are driving the work on SIMD optimizations in the core of NumPy.
+
+While we still have much more work to do, the NumPy team is starting to look much more representative of our user base. And we can assure you that the next NumPy paper will certainly have a more diverse group of authors.
+
+## The Future
+
+We are fully committed to fostering inclusion and diversity on our team and in our community, and to do our part in building a more just and equitable future.
+
+We are open to dialogue and welcome every opportunity to connect with organizations representing and supporting women and minorities in tech and science. We are ready to listen, learn, and support.
+
+Please get in touch with us on [our mailing list](https://scipy.org/scipylib/mailing-lists.html#mailing-lists), [GitHub](https://github.com/numpy/numpy/issues), [Slack](https://numpy.org/contribute/), in private at numpy-team@googlegroups.com, or join our [bi-weekly community meeting](https://hackmd.io/76o-IxCjQX2mOXO_wwkcpg).
+
+
+_Sayed Adel, Sebastian Berg, Raghuveer Devulapalli, Chunlin Fang, Ralf Gommers, Allan Haldane, Stephan Hoyer, Mars Lee, Melissa Weber Mendonça, Jarrod Millman, Inessa Pawson, Matti Picus, Nathaniel Smith, Julian Taylor, Pauli Virtanen, Stéfan van der Walt, Eric Wieser, on behalf of the NumPy team_
+
diff --git a/content/zh/gethelp.md b/content/zh/gethelp.md
new file mode 100644
index 0000000000..7268b84f77
--- /dev/null
+++ b/content/zh/gethelp.md
@@ -0,0 +1,34 @@
+---
+title: 获取帮助
+sidebar: false
+---
+
+**用户问题:** 获得帮助的最佳方法是将您的问题发布到[StackOverflow](http://stackoverflow.com/questions/tagged/numpy)这样的有数以千计用户可以回答的网站上。 更轻量的备选方案包括 [IRC](https://webchat.freenode.net/?channels=%23numpy), [Gitter](https://gitter.im/numpy/numpy), 和 [Reddit](https://www.reddit.com/r/Numpy/)。 我们也希望我们能够关注这些站点的动向或者直接回答问题,但数量实在是太多了!
+
+**开发问题:** 与 Numpy 开发有关的事项(例如bug报告),请看 [社区](/community)。
+
+
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+是一个询问使用问题的论坛,例如"我如何在 NumPy 中执行 X 操作?” 请 [使用 `#numpy` 标签](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+另一个询问使用问题的论坛。
+
+***
+
+### [Gitter](https://gitter.im/numpy/numpy)
+
+一个用户和社区成员相互帮助的实时聊天室。
+
+***
+
+### [IRC](https://webchat.freenode.net/?channels=%23numpy)
+
+另一个用户和社区成员相互帮助的实时聊天室。
+
+***
diff --git a/content/zh/history.md b/content/zh/history.md
new file mode 100644
index 0000000000..f54be68d26
--- /dev/null
+++ b/content/zh/history.md
@@ -0,0 +1,21 @@
+---
+title: NumPy的历史
+sidebar: false
+---
+
+NumPy 是一个提供数组数据结构和相关快速数值计算程序的基础 Python 库。 一开始,这个库并没有多少资金,主要由研究生撰写,并且其中许多人没有接受过计算机科学教育。也常常得不到他们顾问的支持。 很难想象,这样一小群三流学生编程者能够颠覆具有数百万资金和高级工程师支持的成熟研究软件生态。 然而,事实证明,从长远来看,完全开放工具栈背后的哲学依据加上兴奋、友好、专注的社区是更好的。 现在,世界各地的科学家、工程师和许多其他专业人员都依赖于Numpy。 例如,已发表的用于引力波分析的脚本导入了NumPy,M87黑洞成像项目直接引用了NumPy。
+
+有关NumPy和相关库发展里程碑的详细说明,请参见[arxiv.org](arxiv.org/abs/1907.10121)。
+
+如果您想要获得数字和数组库的原始副本,请点击下面的链接:
+
+[*Numeric* 下载页](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)*
+
+[ *Numarray* 下载页 ](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)*
+
+*请注意,这些旧的数组包不再维护,强烈建议用户将NumPy用于任何与数组相关的目的,或重构早期代码以利用NumPy库。
+
+### 历史文档
+
+[下载 *"Numeric"* 手册](static/numeric-manual.pdf)
+
diff --git a/content/zh/install.md b/content/zh/install.md
new file mode 100644
index 0000000000..d8eb2369bb
--- /dev/null
+++ b/content/zh/install.md
@@ -0,0 +1,143 @@
+---
+title: 安装NumPy
+sidebar: false
+---
+
+安装 NumPy 的唯一前提条件是安装了 Python 。 如果您还没有Python,并且想以最简单的方式开始, 我们建议您使用[Anaconda Distribution](https://www.anaconda.com/distribution) - 它包括 Python, NumPy,以及许多其他常用的科学计算和数据科学软件包。
+
+NumPy 可以使用 `conda` 安装,用 `pip` 安装, 在macOS 和Linux用软件包管理器安装或用[源码安装](https://numpy.org/devdocs/user/building.html)。 更详细的说明,查阅下方的 [ Python和NumPy安装指南 ](#python-numpy-install-guide)。
+
+**CONDA**
+
+如果您使用 `conda`,您可以从 `defaults` 或 `conda-forge` 频道安装 NumPy
+
+```bash
+# 最佳练习 使用环境而不是在基础环境中安装
+conda create -n my-env
+conda activer my-env
+
+# 如果你想从conda-forge频道安装
+conda config --env --add channel conda-full
+
+# 实际的安装命令
+conda install numpy
+```
+
+**PIP**
+
+如果您使用 `pip`,您可以用如下命令安装NumPy:
+
+```bash
+pip install numpy
+```
+另外,当使用 pip 时,最好使用虚拟环境。查看 [Rupuable Installs](#reproducible-installs) 了解原因。 查看 [指南](https://dev.to/bowmanjd/python-tools-for-managing-virtual-environments-3bko#howto) 了解关于使用虚拟环境的详情。
+
+
+
+# Python 和 NumPy 安装指南
+
+在 Python 上安装和管理软件包很复杂,大部分工作任务都有许多可选择的解决方案。 本指南试图给读者一种最佳(或最受欢迎) 解决方案,并给出清晰的建议。 它侧重于在通用操作系统和硬件上使用Python、NumPy和PyData (或数学计算) 这些技术栈的用户。
+
+## 建议
+
+我们将首先根据用户的经验水平和有兴趣的操作系统提出建议。 如果您在“开始”和“高级”之间纠结,我们建议,如果您想简单点请使用"开始",如果您想按长期最佳实践去做,请看"高级"。
+
+### 开始用户
+
+在所有Windows、 macOS和Linux上:
+
+- 安装 [Anaconda](https://www.anaconda.com/distribution/) (包含了您需要的所有软件包以及下面提到的所有其他工具)。
+- 编写和执行代码,使用[JupyterLab](https://jupyterlab.readthedocs.io/en/stable/index.html) 的notebooks 用于探索式和交互式计算, 使用 [Spyder](https://www.spyder-ide.org/) 或 [Visual Studio Code](https://code.visualstudio.com/) 编写脚本和软件包。
+- 用 [Anaconda Navigator](https://docs.anaconda.com/anaconda/navigator/) 管理你的软件包并启动JupyterLab, Spyder或Visual Studio Code.
+
+
+### 高级用户
+
+#### Windows 或 macOS
+
+- 安装 [Miniconda](https://docs.conda.io/en/latest/miniconda.html)。
+- 保持 `base` conda 环境最小化, 并使用一个或多个[conda 环境](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) 用于安装你需要的包以完成你正在做的任务或项目。
+- 除非你只需要 `defaults` 频道的包, 否则请通过 [设置频道优先级](https://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge) 将 `conda-forge` 设为您的默认频道
+
+
+#### Linux
+
+如果您觉得稍旧点的库还不错,并且相比于使用最新版本的库更喜欢稳定性:
+- 尽可能使用您操作系统自带的包管理器进行管理(python本身、NumPy和其他库)。
+- 使用 `pip install somepackage --user` 安装来包管理器未提供的包。
+
+如果您使用GPU:
+- 安装 [Miniconda](https://docs.conda.io/en/latest/miniconda.html)。
+- 保持 `base` conda 环境最小化, 并使用一个或多个[conda 环境](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) 用于安装你需要的包以完成你正在做的任务或项目。
+- 使用 `defaults` conda 频道 (`conda-forge` 尚不支持 GPU 软件包)。
+
+否则:
+- 安装[Miniforge](https://github.com/conda-forge/miniforge).
+- 保持 `base` conda 环境最小化, 并使用一个或多个[conda 环境](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#) 用于安装你需要的包以完成你正在做的任务或项目。
+
+
+#### 如果您更喜欢pip/pyPI
+
+对出于个人喜好或看完下面 conda 和 pip之间的主要差异后更喜欢基于 pip/PyPI 的解决方案的用户,我们建议:
+- 从 [python.org](https://www.python.org/downloads/), [Homebrew](https://brew.sh/)或 Linux 软件包管理器安装 Python。
+- 使用 [Poetry](https://python-poetry.org/) ,它是具有与conda 相似的依赖解析器和环境管理能力的完善工具。
+
+
+## Python 软件包管理
+
+软件包管理是一个具有挑战性的问题,因此有许多的工具出现。 对于Web和一般Python开发有一整套能与pip互补的[工具](https://packaging.python.org/guides/tool-recommendations/)。 对于高性能计算 (HPC),[Spack](https://github.com/spack/spack) 值得考虑。 但对于大多数NumPy用户来说, [conda](https://conda.io/en/latest/) 和 [pip](https://pip.pypa.io/en/stable/) 是两个最受欢迎的工具。
+
+
+### Pip & conda
+
+安装 Python 软件包的两个主要工具是 `pip` and `conda`。 他们的功能部分重叠(例如两者都可以安装 `numpy`),但他们也可以一起工作。 我们将在这里讨论 pip 与 conda 的主要差异——这对于理解如何有效地管理软件包非常重要。
+
+第一点不同是conda是跨语言的,它可以安装 Python,然而 pip 安装在您的系统的特定的 Python 之上, 并只为那一个特定的Python安装其他的软件包。 这也意味着conda 可以安装非Python 库和其他您可能需要的工具(例如编译器、CUDA、HDF5),pip则不行。
+
+第二个不同是 pip 以Python包索引(PyPI) 作为安装源。 而conda从自己的渠道安装(通常是"defaults"或 "conda-forge")。 PyPI 是迄今为止最大的软件包集合,不过所有流行的软件包也可用于 conda。
+
+第三个不同点,conda是依赖关系、环境和软件包管理的集成解决方案。而 pip 可能需要其他工具 (很多!) 用于处理环境或复杂的依赖关系。
+
+
+### 可复现安装
+
+随着库的更新,代码的运行结果可能会改变,甚至您的代码完全跑不起来。 能重建你使用的对应版本软件包集合就很重要了。 最佳做法如下:
+
+1. 为你的每一个项目构建不同的环境
+2. 用软件包管理器记录软件包名称和版本; 每个包管理器都有自己的元数据格式:
+ - Conda: [conda environments and environment.yml](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#)
+ - Pip: [virtual environments ](https://docs.python.org/3/tutorial/venv.html) and [requirements.txt](https://pip.readthedocs.io/en/latest/user_guide/#requirements-files)
+ - Poetry: [virtual environments and pyproject.toml](https://python-poetry.org/docs/basic-usage/)
+
+
+
+## NumPy包 & 快速线性代数库
+
+NumPy 不依赖任何其他Python 包。 不过它依赖于一个快速线性代数库 - 通常是[Intel MKL](https://software.intel.com/en-us/mkl) 或 [OpenBLAS](https://www.openblas.net/)。 用户不必担心要如何安装那些库 (他们会自动包含在所有NumPy 的安装脚本中)。 高级用户可能仍然想知道详细信息,因为使用 BLAS 会影响磁盘的性能、行为和空间:
+
+- 用pip安装的 NumPy,线性代数库是 OpenBLAS。 OpenBLAS 库包含在NumPy的轮子中。 这让轮子变得更大,而且如果用户安装了 (假设) SciPy,他们现在会在磁盘上有两份OpenBLAS 副本。
+
+- 在 conda 的默认频道中,NumPy 是用 Intel MKL 构建的。 MKL 是个单独的软件包,在安装Numpy时会将它安装到用户环境中。
+
+- 在 conda-forge 通道中,NumPy 是用虚构的“BLAS”软件包构建的。 当用户从conda-forge安装NumPy时,BLAS 软件包就会与实际库一起安装 - 默认是OpenBLAS ,不过它也可以是 MKL (默认频道),乃至是[BLIS](https://github.com/flame/blis) 或reference BLAS(Netlib的参考实现版本)。
+
+- MKL包比OpenBLAS大得多,它在磁盘上有大约700MB,而OpenBLAS 大约30MB。
+
+- MKL通常比OpenBLAS更快,更强大。
+
+除了安装大小、性能和强大性能外,还有两个东西需要考虑:
+
+- Intel MKL不开源。 对于正常使用,这倒不是一个问题。 但如果用户需要重新发布基于 NumPy 构建的应用程序。这可能是个问题。
+- MKL 和 OpenBLAS 都将使用多线程进行函数调用,如`np.dot`,而线程数量同时由构建时间选项和一个环境变量决定。 通常所有的CPU核心都能用上。 这有时并不是用户期望的;NumPy本身并不进行任何自动并行函数调用。 多线程通常能产生更好的性能,但也可能降低性能――例如,当使用 Dask、scikit-learn 或 multiprocessing 的另一个并行化等级时。
+
+
+## 故障排查
+
+如果您的安装失败并显示如下信息,请参阅 [故障排查 ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html)。
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for different reasons, often due to issues with your setup.
+```
+
diff --git a/content/zh/learn.md b/content/zh/learn.md
new file mode 100644
index 0000000000..ccd7981d25
--- /dev/null
+++ b/content/zh/learn.md
@@ -0,0 +1,90 @@
+---
+title: 学习指南
+sidebar: false
+---
+
+有关 **官方NumPy文档**,请访问 [numpy.org/doc/stable](https://numpy.org/doc/stable)。
+
+## Numpy入门教程
+
+您可以在[NumPy教程](https://numpy.org/numpy-tutorials)中找到 NumPy 社区的一套教程和教材。 本页面的目标是通过 NumPy 项目以 Jupyter Notebooks 的格式提供高质量的资源,用于自学和教学课程。 如果您有兴趣添加自己的内容,请查看 GitHub上的 [numpy-tutorials项目](https://github.com/numpy/numpy-tutorials) 。
+
+***
+
+以下是精选的外部资源合集。 要做出贡献,请参阅 [本页末尾](#add-to-this-list)。
+
+## 初学者
+
+外部有大量关于 NumPy 的信息。 如果您是新手,我们强烈推荐学习这些资源:
+
+ **教程**
+
+* [NumPy 快速入门教程](https://numpy.org/devdocs/user/quickstart.html)
+* [NumPy图解: *Lev Maximov编写的*NumPy可视化指南](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+* [SciPy 讲座](https://scipy-lectures.org/) 除了涵盖NumPy之外,这些讲座还对Python科学生态系统提供了更广泛的介绍。
+* [NumPy:初学者的必读基础课](https://numpy.org/devdocs/user/absolute_beginners.html)
+* [机器学习之家-ndarray简介](https://www.machinelearningplus.com/python/numpy-tutorial-part1-array-python-examples/)
+* [Edureka - 通过示例学习 NumPy 数组 ](https://www.edureka.co/blog/python-numpy-tutorial/)
+* [Dataquek - NumPy 教程:使用 Python 进行数据分析](https://www.dataquest.io/blog/numpy-tutorial-python/)
+* [*Nicolas Rougier的*NumPy 教程](https://github.com/rougier/numpy-tutorial)
+* [*由 Justin Johnson 编写的*斯坦福 CS231。](http://cs231n.github.io/python-numpy-tutorial/)
+* [NumPy用户指南](https://numpy.org/devdocs)
+
+ **图书**
+
+* [Travis E. Oliphant的*NumPy 指南*](http://web.mit.edu/dvp/Public/numpybook.pdf),这是从2006年开始的免费版本。 最新的副本 (2015) 请参见 [此处](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007)。
+* [*Nicolas P. Rougier的*从 Python 到 NumPy](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+* *由 Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow编写的*[优雅的SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877)
+
+您也可能想要查看有关“Python+SciPy”主题的 [Goodreads列表](https://www.goodreads.com/shelf/show/python-scipy) 。 那里的大部分书籍都是有关以NumPy为核心构建起来的“SciPy生态系统”。
+
+ **视频**
+
+* *由Alex Chabot-Leclerc制作的*[NumPy数值计算导论](http://youtu.be/ZB7BZMhfPgk)
+
+***
+
+## 进阶资源
+
+学习这些进阶资源以更好地理解 NumPy 概念,例如高级索引、拆分、堆叠、线性代数等。
+
+ **教程**
+
+* *Nicolas P. Rougier的*[100 NumPy练习题](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html)
+* * M. Scott Shell的*[NumPy 和 Scipy 介绍](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf)
+* *Stéfan van der Walt的*[Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/)
+* [Python 中的 NumPy(进阶)](https://www.geeksforgeeks.org/numpy-python-set-2-advanced/)
+* [高级索引](https://www.tutorialspoint.com/numpy/numpy_advanced_indexing.htm)
+* [使用NumPy进行机器学习和数据分析](https://www.machinelearningplus.com/python/numpy-tutorial-python-part2/)
+
+ **图书**
+
+* *Jake Vanderplas编写的*[Python 数据科学手册](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057)
+* *Wes McKinney的*[Python数据分析](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662)
+* *Robert Johansson的*[数值Python: 使用 Numpy、SciPy 和 Matplotlib 进行科学计算和数据科学应用](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459)
+
+ **视频**
+
+* *Juan Nunez-Iglesias的*[NumPy进阶 - 广播机制、步幅和高级索引](https://www.youtube.com/watch?v=cYugp9IN1-Q)
+* *AMuls Academy的*[在 NumPy 数组中的高级索引操作](https://www.youtube.com/watch?v=2WTDrSkQBng)
+
+***
+
+## NumPy演讲
+
+* *Jaime Fernadez的*[NumPy索引的未来](https://www.youtube.com/watch?v=o0EacbIbf58) (2016)
+* *Ralf Gommers的*[Python数组计算的演变史](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) (2019)
+* *Matti Picus的*[NumPy:什么已经改变,什么将要改变?](https://www.youtube.com/watch?v=YFLVQFjRmPY) (2019)
+* *Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris谈谈*[NumPy揭秘](https://www.youtube.com/watch?v=dBTJD_FDVjU) (2019)
+* *Travis Oliphant的* [ Python 数组计算概述](https://www.youtube.com/watch?v=f176j2g2eNc) (2019)
+
+***
+
+## 引用 NumPy
+
+如果NumPy在您的研究中具有重要意义,您希望在您的学术出版物中向该项目致谢。 请参阅 [此引用信息](/citing-numpy)。
+
+## 为本页面的资源列表做出贡献
+
+
+若要添加资源到本页面,请[通过提交合并请求](https://github.com/numpy/numpy.org/blob/master/content/en/learn.md) 来提交建议 。 需要详细说明为什么您的推荐值得在此页面上被提及,以及哪些受众最受益。
diff --git a/content/zh/news.md b/content/zh/news.md
new file mode 100644
index 0000000000..14f677fcea
--- /dev/null
+++ b/content/zh/news.md
@@ -0,0 +1,145 @@
+---
+title: 社区快讯
+sidebar: false
+newsHeader: NumPy 1.22.0 released
+date:
+---
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+## 版本发布
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/zh/press-kit.md b/content/zh/press-kit.md
new file mode 100644
index 0000000000..d95ce2760e
--- /dev/null
+++ b/content/zh/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: 宣传材料
+sidebar: false
+---
+
+我们希望能让您在下一篇学术论文、课程材料或演示文稿中轻松地加入NumPy项目标识。
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). 注意,使用 numpy.org 资源意味着你接受 [NumPy 行为准则](/code-of-conduct)。
diff --git a/content/zh/privacy.md b/content/zh/privacy.md
new file mode 100644
index 0000000000..ef0dfe8c96
--- /dev/null
+++ b/content/zh/privacy.md
@@ -0,0 +1,8 @@
+---
+title: 隐私政策
+sidebar: false
+---
+
+**numpy.org** 由NumPy 项目的财政赞助者 [NumFOCUS, Inc.](https://numfocus.org)运营。 关于本网站的隐私政策,请访问 https://numfocus.org/privacy-policy。
+
+如果您对隐私政策或NumFOCUS的数据收集、使用和披露做法有任何疑问,请通过privacy@numfocus.org联系NumFOCUS工作人员。
diff --git a/content/zh/report-handling-manual.md b/content/zh/report-handling-manual.md
new file mode 100644
index 0000000000..a86407d368
--- /dev/null
+++ b/content/zh/report-handling-manual.md
@@ -0,0 +1,95 @@
+---
+title: Numpy行为准则应知应会
+sidebar: false
+---
+
+这是NumPy行为准则委员会的指导手册。 它保证我们对问题做出一致且公正的回应。
+
+[行为守则](/code-of-conduct) 的执行影响到我们的社区现在和未来。 我们很重视它。 在审查执行措施时,行为准则委员会将牢记以下价值观和准则:
+
+* 人性化方式运作而非不近人情。 委员会会让各方了解情况,同时尊重举报者的隐私和任何必要的保密性。 然而,仍然存在着这种情况。 有时有必要与一个或多个人直接沟通:委员会的目标是改善我们社区的健康状况,而不仅仅是作出正式决定。
+* 强调对个人遭遇的同情,而不是一味批评行为,避免出现“好”和“坏/邪恶”的二元对立标签。 我们将坚定地处理公开、明显的挑衅和骚扰问题。 但许多可能被证明具有挑战性的情形是有些正常的分歧会转化为多方无助或有害的行为。 了解整个背景并找到一条使所有人都能重新参与进来的道路是困难的,但最终对我们社区最有成效。
+* 我们都知道,电子邮件是一个孤立的、沟通困难的媒介。 在没有个人联系方式的情况下收到匿名举报邮件,可能特别令人痛苦。 这使得保持一种尊重他人意见的开放气氛变得特别重要。 这还意味着我们的所有行为必须公开透明。 我们将竭尽全力确保我们所有成员得到公平和同情的待遇。
+* 歧视可能是微妙且不负责任的。 它在一定程度上表现出不公平和敌意的态度,而不是正常的互动。 我们知道这种情况确实发生了,我们将仔细寻找并应对这种情况。 如果你觉得受到了不公平的待遇,我们非常希望听到你们的声音, 我们将利用这些流程确保你的申诉得到关注和处理。
+* 帮助增加良性讨论的实践:想方设法识别出讨论可能已经产生歧义和偏斜的地方。 并提供可实施的信息、方向和资源,以便在这些方面产生积极的影响。
+* 重点关注新成员的需求:向他们提供明确的支持和关心, 目的是增加代表人数不足的群体的参与度。
+* 每个人都拥有不同的文化背景和语言习惯。 尽可能识别对非英文为母语的参与者造成的任何不必要的误解,并帮助他们了解这一问题以及作出哪些改变以避免造成冒犯。 用一门外语进行复杂的讨论可能非常具有威胁性,我们希望在不同民族和不同文化之间扩大我们的多样性。
+
+
+## 调解
+
+自愿非正式调解是一种好的调解方式。 在两个或多个当事方都已升级到不适当行为程度的情况下(可悲的是在人类冲突中很常见), 促进调解进程可能是有益的。 这只是一个例子:委员会在任何情况下都可以考虑调解。 考虑到这一进程完全是自愿的,任何一方都不能被迫参与。 如果委员会建议进行调解,它应当:
+
+* 找到一个可以担任调解员的候选人。
+* 取得举报者的同意。 举报者完全可以自由地拒绝调解或提出一名候补调解人。
+* 取得被举报人的同意。
+* 调解人的问题:各方可以提出不同于推荐候选人的调解人, 只有就所有条件达成共同协议,该进程才能向前推进。
+* 最好在两周内确定完成调解的时间计划表。
+
+调解人将与所有参与方接触,寻求各方都满意的解决办法。 在调解完成后,调解方将向委员会提交一份书面报告(经调解过程中所有各方审查通过),并就今后的实施细则提出建议。 然后委员会将评估调解结果(无论是否达成了令人满意的解决方案),并对必要的额外的调解动作作出决定。
+
+
+## 委员会将如何对举报作出回应
+
+当委员会(或委员会成员) 收到举报时, 他们将首先要确定该报告是否涉及明显和严重的违约行为(定义见下文)。 如果确认属实,需要立即采取行动并启动常规的举报调解流程。
+
+
+## 明确和严重的违约行为
+
+我们知道,互联网通信平台从诞生开始就演变为非常普遍的辱骂恶意中伤的场所。 我们将迅速处理明显和严重的侵权行为,如人身威胁、暴力、性别歧视或种族主义语言。
+
+如果行为守则委员会的一名成员发现明显和严重的违反行为,他们将采取下列行动:
+
+* 立即断开始作俑者与所有NumPy 通信频道的连接。
+* 告知举报者,他们的报告已经收到,被举报人已经断开和Numpy的联系。
+* 在每种情况下,调解人都应作出努力与被举报人联系。 并明确的告诉他们,他们的语言或行动是如何构成“明显和严重的违反行为”的。 调解人还应指出,如果被举报人认为这是不公平的,或者他们想要重新和NumPy取得联系, 他们有权要求行为守则委员会进行下面描述的审查。 调解人应将这一审查结果报送给行为守则委员会。
+* 行为守则委员会将正式审查和签署所有适用这一行为的案件,以确保其不被用来进行普通程度争执的仲裁。
+
+
+## 举报处理
+
+当报告送交委员会时,他们将立即答复报告人以确认收到。 这种答复必须在72小时内完成,委员会会尽最大努力比这更快一些。
+
+如果报告没有提供足够多的资料,委员会将在采取行动之前获得所有相关数据。 委员有权代表指导委员会与任何相关个体联系,以更完整地了解事件的来龙去脉。
+
+委员会随后将审查这一事件,并尽力确定如下事项:
+
+* 发生了什么。
+* 这一事件是否违反《行为守则》。
+* 谁是责任方。
+* 这种情况是否正在发生,而且对个人的人身安全产生了威胁。
+
+这种信息将以书面形式收集,只要有可能,委员会的任何相关动作都将记录并保存(比如聊天记录、电子邮件讨论、会议录音、语音对话总结等)。
+
+必须保留委员会所有活动的档案,以确保行为上的一致性,并为项目提供机构记忆。 为了协助这方面的工作, 本委员会的默认沟通渠道将是一份私人邮件列表,供委员会现有和未来成员以及指导委员会成员在提出正当要求时查阅。 如果委员会认为有必要使用列表外的沟通方式(例如: 早期/快速响应的电话呼叫),在所有情况下都应该及时将沟通方式收敛到列表中,以便有一个良好的过程记录。
+
+行为守则委员会应争取在两周内商定一项决议。 如果在那个时候无法确定某项决议, 委员会将向报告者提供最新情况和预计的决议时间表。
+
+
+## 解决方案
+
+委员会必须以协商一致方式商定一项决议。 如果该小组在一个多星期内无法达成共识和陷入僵局,该小组将把问题提交给指导委员会解决。
+
+可能的应对措施包括:
+
+* 不采取进一步行动:
+ - 如果确定没有发生侵犯行为;
+ - 如果问题在委员会审议答复时已经公开解决了。
+* 协商自愿调解:如果所有有关各方同意,委员会可促进上面详述的调解进程。
+* 公开提醒并指出某些行为/行动/语言被认为是不恰当的,在目前情况下发生的合理性说明, 或者只能伤害特定人群,要求社区进行自我调整。
+* 委员会对有关个体进行私下训诫。 在这种情况下,小组主席将通过电子邮件向个人发出谴责,并抄送小组成员。
+* 公开谴责。 在这种情况下,委员会主席将在实际可行的限度内在同一地点对侵权行为进行申斥。 例如,在原始邮件列表中进行邮件控诉, 有可能被控诉对象未参与到聊天室的讨论中,虽然可以通过其他方式联系到。 该群组可以选择在别处发布控诉消息作为文档备份。
+* 要求公开或私下道歉, 假定举报者同意这一想法:他们可酌情拒绝与侵权者进一步接触。 委员会主席将传递这一请求。 委员会可按其意愿对这项要求附加“严格”条件:该群组可能要求侵权者道歉,以便在邮件列表中保留一个会员资格。
+* 委员会要求个人暂时停止社区参与的“相互商定的间歇”。 如果个人选择不自愿暂停,委员会可发布“强制性冷却期”。
+* 永远或暂时禁止参与NumPy (如邮件列表、gitter.im等等)。 工作组将保存所有这类禁令的记录,以便今后对其进行审查或备案。
+
+一旦商定了一项决议,在该决议颁布之前, 委员会将与原报告人和任何其他受影响的各方进行联系,并解释拟议的决议。 委员会将询问这项决议是否可以接受,并且必须将反馈意见记录在案。
+
+最后,委员会将向NumPy指导委员会进行汇报(也将向NumPy核心小组以诸如禁令的例行事件形式汇报)。
+
+委员会绝不公开讨论这个问题。 所有公开声明将由行为守则委员会主席或NumPy指导委员会作出。
+
+
+## 利益冲突
+
+如果出现利益冲突,委员会成员必须立即通知其他成员,必要时需要回避。
diff --git a/content/zh/tabcontents.yaml b/content/zh/tabcontents.yaml
new file mode 100644
index 0000000000..3406a94d9d
--- /dev/null
+++ b/content/zh/tabcontents.yaml
@@ -0,0 +1,219 @@
+---
+machinelearning:
+ paras:
+ -
+ para1: NumPy 是诸如 [scikit-learn](https://sikit-learn)和[SciPy](https://www.scipy.org)等强大的机器学习库的基础。随着机器学习的增长,函式库列表也在成长。 [TensorFlow's](https://www.tensorflow.org) 深度学习能力有广泛的应用程序 — ,其中包括语音和图像识别、基于文本的应用、时间序列分析和视频检测。 [PyTorch](https://pytorch.org)是另一个深层学习图书馆,在计算机视力和自然语言处理的研究人员中很受欢迎。 [MXNet](https://github.com/apache/incubator-mxnet) 是另一个 AI 包,提供了深入学习的蓝图和模板。
+ para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+arraylibraries:
+ intro:
+ -
+ text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ -
+ text: Array Library
+ -
+ text: Capabilities & Application areas
+ libraries:
+ -
+ title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ -
+ title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.chainer.org
+ -
+ title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://github.com/google/jax
+ -
+ title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ -
+ title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ -
+ title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ -
+ title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ -
+ title: MXNet
+ text: Deep learning framework suited for flexible research prototyping and production.
+ img: /images/content_images/arlib/mxnet_logo.png
+ alttext: MXNet
+ url: https://mxnet.apache.org/
+ -
+ title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://github.com/apache/arrow
+ -
+ title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ -
+ title: XND
+ text: Develop libraries for array computing, recreating NumPy's foundational concepts.
+ img: /images/content_images/arlib/xnd.png
+ alttext: xnd
+ url: https://xnd.io
+ -
+ title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ -
+ title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+scientificdomains:
+ intro:
+ -
+ text: Nearly every scientist working in Python draws on the power of NumPy.
+ -
+ text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ librariesrow1:
+ -
+ title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ -
+ title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ -
+ title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ -
+ title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ -
+ title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ -
+ title: Astronomy Processes
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ -
+ title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ librariesrow2:
+ -
+ title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ -
+ title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ -
+ title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ -
+ title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ -
+ title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ -
+ title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ -
+ title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ -
+ img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ -
+ img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ -
+ text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ -
+ text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ -
+ text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ -
+ text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ content:
+ -
+ text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org) and [Prefect](https://www.prefect.io)).
+visualization:
+ images:
+ -
+ url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ -
+ url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ -
+ url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ -
+ url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ -
+ url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ -
+ url: https://docs.pyvista.org/examples/index.html
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ -
+ url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ -
+ url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ -
+ text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), and [PyVista](https://github.com/pyvista/pyvista), to name a few.
+ -
+ text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/zh/teams.md b/content/zh/teams.md
new file mode 100644
index 0000000000..0c24455d18
--- /dev/null
+++ b/content/zh/teams.md
@@ -0,0 +1,20 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research communities worldwide by building quality, open-source software. [Join us]({{< relref "/contribute" >}})!
+
+{{< include-html "static/gallery/maintainers.html" >}}
+
+{{< include-html "static/gallery/web-team.html" >}}
+
+{{< include-html "static/gallery/triage-team.html" >}}
+
+{{< include-html "static/gallery/survey-team.html" >}}
+
+{{< include-html "static/gallery/emeritus-maintainers.html" >}}
+
+# Governance
+
+For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/zh/terms.md b/content/zh/terms.md
new file mode 100644
index 0000000000..9a66045505
--- /dev/null
+++ b/content/zh/terms.md
@@ -0,0 +1,178 @@
+---
+title: Terms of Use
+sidebar: false
+---
+
+*Last updated January 4, 2020*
+
+
+## AGREEMENT TO TERMS
+
+These Terms of Use constitute a legally binding agreement made between you, whether personally or on behalf of an entity (“you”) and NumPy ("**Project**", “**we**”, “**us**”, or “**our**”), concerning your access to and use of the numpy.org website as well as any other media form, media channel, mobile website or mobile application related, linked, or otherwise connected thereto (collectively, the “Site”). You agree that by accessing the Site, you have read, understood, and agreed to be bound by all of these Terms of Use. IF YOU DO NOT AGREE WITH ALL OF THESE TERMS OF USE, THEN YOU ARE EXPRESSLY PROHIBITED FROM USING THE SITE AND YOU MUST DISCONTINUE USE IMMEDIATELY.
+
+
+
+Supplemental terms and conditions or documents that may be posted on the Site from time to time are hereby expressly incorporated herein by reference. We reserve the right, in our sole discretion, to make changes or modifications to these Terms of Use at any time and for any reason. We will alert you about any changes by updating the “Last updated” date of these Terms of Use, and you waive any right to receive specific notice of each such change. It is your responsibility to periodically review these Terms of Use to stay informed of updates. You will be subject to, and will be deemed to have been made aware of and to have accepted, the changes in any revised Terms of Use by your continued use of the Site after the date such revised Terms of Use are posted.
+
+
+
+The information provided on the Site is not intended for distribution to or use by any person or entity in any jurisdiction or country where such distribution or use would be contrary to law or regulation or which would subject us to any registration requirement within such jurisdiction or country. Accordingly, those persons who choose to access the Site from other locations do so on their own initiative and are solely responsible for compliance with local laws, if and to the extent local laws are applicable.
+
+
+## USER REPRESENTATIONS
+
+By using the Site, you represent and warrant that: (1) you have the legal capacity and you agree to comply with these Terms of Use; (2) you will not use the Site for any illegal or unauthorized purpose; and (3) your use of the Site will not violate any applicable law or regulation.
+
+
+If you provide any information that is untrue, inaccurate, not current, or incomplete, we have the right to refuse any and all current or future use of the Site (or any portion thereof).
+
+
+## PROHIBITED ACTIVITIES
+
+You may not access or use the Site for any purpose other than that for which we make the Site available.
+
+As a user of the Site, you agree not to:
+
+1. Systematically retrieve data or other content from the Site to create or compile, directly or indirectly, a collection, compilation, database, or directory without written permission from us.
+
+2. Make any unauthorized use of the Site, including collecting usernames and/or email addresses of users by electronic or other means for the purpose of sending unsolicited email, or creating user accounts by automated means or under false pretenses.
+
+3. Use the Site to advertise or offer to sell goods and services.
+
+4. Circumvent, disable, or otherwise interfere with security-related features of the Site.
+
+5. Engage in unauthorized framing of or linking to the Site.
+
+6. Trick, defraud, or mislead us and other users, especially in any attempt to learn sensitive account information such as user passwords.
+
+7. Make improper use of our support services or submit false reports of abuse or misconduct.
+
+8. Engage in any automated use of the system, such as using scripts to send comments or messages, or using any data mining, robots, or similar data gathering and extraction tools.
+
+9. Interfere with, disrupt, or create an undue burden on the Site or the networks or services connected to the Site.
+
+10. Attempt to impersonate another user or person or use the username of another user.
+
+11. Use any information obtained from the Site in order to harass, abuse, or harm another person.
+
+12. Disparage, tarnish, or otherwise harm, in our opinion, us and/or the Site.
+
+13. Except as may be the result of standard search engine or Internet browser usage, use, launch, develop, or distribute any automated system, including without limitation, any spider, robot, cheat utility, scraper, or offline reader that accesses the Site, or using or launching any unauthorized script or other software.
+
+14. Upload or transmit (or attempt to upload or to transmit) any material that acts as a passive or active information collection or transmission mechanism, including without limitation, clear graphics interchange formats (“gifs”), 1×1 pixels, web bugs, cookies, or other similar devices (sometimes referred to as “spyware” or “passive collection mechanisms” or “pcms”).
+
+15. Upload or transmit (or attempt to upload or to transmit) viruses, Trojan horses, or other material, including excessive use of capital letters and spamming (continuous posting of repetitive text), that interferes with any party’s uninterrupted use and enjoyment of the Site or modifies, impairs, disrupts, alters, or interferes with the use, features, functions, operation, or maintenance of the Site.
+
+16. Harass, annoy, intimidate, or threaten any of our employees or agents engaged in providing any portion of the Site to you.
+
+17. Attempt to bypass any measures of the Site designed to prevent or restrict access to the Site, or any portion of the Site.
+
+
+## SUBMISSIONS
+
+You acknowledge and agree that any questions, comments, suggestions, ideas, feedback, or other information regarding the Site ("Submissions") provided by you to us are non-confidential and shall become our sole property. We shall own exclusive rights, including all intellectual property rights, and shall be entitled to the unrestricted use and dissemination of these Submissions for any lawful purpose, commercial or otherwise, without acknowledgment or compensation to you. You hereby waive all moral rights to any such Submissions, and you hereby warrant that any such Submissions are original with you or that you have the right to submit such Submissions. You agree there shall be no recourse against us for any alleged or actual infringement or misappropriation of any proprietary right in your Submissions.
+
+## THIRD-PARTY WEBSITES AND CONTENT
+
+The Site may contain (or you may be sent via the Site) links to other websites ("Third-Party Websites") as well as articles, photographs, text, graphics, pictures, designs, music, sound, video, information, applications, software, and other content or items belonging to or originating from third parties ("Third-Party Content"). Such Third-Party Websites and Third-Party Content are not investigated, monitored, or checked for accuracy, appropriateness, or completeness by us, and we are not responsible for any Third-Party Websites accessed through the Site or any Third-Party Content posted on, available through, or installed from the Site, including the content, accuracy, offensiveness, opinions, reliability, privacy practices, or other policies of or contained in the Third-Party Websites or the Third-Party Content. Inclusion of, linking to, or permitting the use or installation of any Third-Party Websites or any Third-Party Content does not imply approval or endorsement thereof by us. If you decide to leave the Site and access the Third-Party Websites or to use or install any Third-Party Content, you do so at your own risk, and you should be aware these Terms of Use no longer govern. You should review the applicable terms and policies, including privacy and data gathering practices, of any website to which you navigate from the Site or relating to any applications you use or install from the Site. Any purchases you make through Third-Party Websites will be through other websites and from other companies, and we take no responsibility whatsoever in relation to such purchases which are exclusively between you and the applicable third party. You agree and acknowledge that we do not endorse the products or services offered on Third-Party Websites and you shall hold us harmless from any harm caused by your purchase of such products or services. Additionally, you shall hold us harmless from any losses sustained by you or harm caused to you relating to or resulting in any way from any Third-Party Content or any contact with Third-Party Websites.
+
+
+## SITE MANAGEMENT
+
+We reserve the right, but not the obligation, to: (1) monitor the Site for violations of these Terms of Use; (2) take appropriate legal action against anyone who, in our sole discretion, violates the law or these Terms of Use, including without limitation, reporting such user to law enforcement authorities; (3) in our sole discretion and without limitation, refuse, restrict access to, limit the availability of, or disable (to the extent technologically feasible) any of your Contributions or any portion thereof; (4) in our sole discretion and without limitation, notice, or liability, to remove from the Site or otherwise disable all files and content that are excessive in size or are in any way burdensome to our systems; and (5) otherwise manage the Site in a manner designed to protect our rights and property and to facilitate the proper functioning of the Site.
+
+
+## PRIVACY POLICY
+
+We care about data privacy and security. Please review our [Privacy Policy](/privacy). By using the Site, you agree to be bound by our Privacy Policy, which is incorporated into these Terms of Use. Please be advised the Site is hosted in the United States. If you access the Site from the European Union, Asia, or any other region of the world with laws or other requirements governing personal data collection, use, or disclosure that differ from applicable laws in the United States, then through your continued use of the Site, you are transferring your data to the United States, and you expressly consent to have your data transferred to and processed in the United States. Further, we do not knowingly accept, request, or solicit information from children or knowingly market to children. Therefore, in accordance with the U.S. Children’s Online Privacy Protection Act, if we receive actual knowledge that anyone under the age of 13 has provided personal information to us without the requisite and verifiable parental consent, we will delete that information from the Site as quickly as is reasonably practical.
+
+## TERM AND TERMINATION
+
+These Terms of Use shall remain in full force and effect while you use the Site. WITHOUT LIMITING ANY OTHER PROVISION OF THESE TERMS OF USE, WE RESERVE THE RIGHT TO, IN OUR SOLE DISCRETION AND WITHOUT NOTICE OR LIABILITY, DENY ACCESS TO AND USE OF THE SITE (INCLUDING BLOCKING CERTAIN IP ADDRESSES), TO ANY PERSON FOR ANY REASON OR FOR NO REASON, INCLUDING WITHOUT LIMITATION FOR BREACH OF ANY REPRESENTATION, WARRANTY, OR COVENANT CONTAINED IN THESE TERMS OF USE OR OF ANY APPLICABLE LAW OR REGULATION. WE MAY TERMINATE YOUR USE OR PARTICIPATION IN THE SITE OR DELETE ANY CONTENT OR INFORMATION THAT YOU POSTED AT ANY TIME, WITHOUT WARNING, IN OUR SOLE DISCRETION.
+
+
+## MODIFICATIONS AND INTERRUPTIONS
+
+We reserve the right to change, modify, or remove the contents of the Site at any time or for any reason at our sole discretion without notice. However, we have no obligation to update any information on our Site. We also reserve the right to modify or discontinue all or part of the Site without notice at any time. We will not be liable to you or any third party for any modification, suspension, or discontinuance of the Site.
+
+We cannot guarantee the Site will be available at all times. We may experience hardware, software, or other problems or need to perform maintenance related to the Site, resulting in interruptions, delays, or errors. We reserve the right to change, revise, update, suspend, discontinue, or otherwise modify the Site at any time or for any reason without notice to you. You agree that we have no liability whatsoever for any loss, damage, or inconvenience caused by your inability to access or use the Site during any downtime or discontinuance of the Site. Nothing in these Terms of Use will be construed to obligate us to maintain and support the Site or to supply any corrections, updates, or releases in connection therewith.
+
+
+## GOVERNING LAW
+
+These Terms of Use and your use of the Site are governed by and construed in accordance with the laws of the State of Texas applicable to agreements made and to be entirely performed within the State of Texas, without regard to its conflict of law principles.
+
+
+## DISPUTE RESOLUTION
+
+### Informal Negotiations
+
+To expedite resolution and control the cost of any dispute, controversy, or claim related to these Terms of Use (each a "Dispute" and collectively, the “Disputes”) brought by either you or us (individually, a “Party” and collectively, the “Parties”), the Parties agree to first attempt to negotiate any Dispute (except those Disputes expressly provided below) informally for at least thirty (30) days before initiating arbitration. Such informal negotiations commence upon written notice from one Party to the other Party.
+
+
+### Binding Arbitration
+
+If the Parties are unable to resolve a Dispute through informal negotiations, the Dispute (except those Disputes expressly excluded below) will be finally and exclusively resolved by binding arbitration. YOU UNDERSTAND THAT WITHOUT THIS PROVISION, YOU WOULD HAVE THE RIGHT TO SUE IN COURT AND HAVE A JURY TRIAL. The arbitration shall be commenced and conducted under the Commercial Arbitration Rules of the American Arbitration Association ("AAA") and, where appropriate, the AAA’s Supplementary Procedures for Consumer Related Disputes ("AAA Consumer Rules"), both of which are available at the AAA website www.adr.org. Your arbitration fees and your share of arbitrator compensation shall be governed by the AAA Consumer Rules and, where appropriate, limited by the AAA Consumer Rules. If such costs are determined to by the arbitrator to be excessive, we will pay all arbitration fees and expenses. The arbitration may be conducted in person, through the submission of documents, by phone, or online. The arbitrator will make a decision in writing, but need not provide a statement of reasons unless requested by either Party. The arbitrator must follow applicable law, and any award may be challenged if the arbitrator fails to do so. Except where otherwise required by the applicable AAA rules or applicable law, the arbitration will take place in Travis County, Texas. Except as otherwise provided herein, the Parties may litigate in court to compel arbitration, stay proceedings pending arbitration, or to confirm, modify, vacate, or enter judgment on the award entered by the arbitrator.
+
+If for any reason, a Dispute proceeds in court rather than arbitration, the Dispute shall be commenced or prosecuted in the state and federal courts located in Travis County, Texas, and the Parties hereby consent to, and waive all defenses of lack of personal jurisdiction, and forum non conveniens with respect to venue and jurisdiction in such state and federal courts. Application of the United Nations Convention on Contracts for the International Sale of Goods and the the Uniform Computer Information Transaction Act (UCITA) are excluded from these Terms of Use.
+
+In no event shall any Dispute brought by either Party related in any way to the Site be commenced more than one (1) years after the cause of action arose. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+### Restrictions
+
+The Parties agree that any arbitration shall be limited to the Dispute between the Parties individually. To the full extent permitted by law, (a) no arbitration shall be joined with any other proceeding; (b) there is no right or authority for any Dispute to be arbitrated on a class-action basis or to utilize class action procedures; and (c) there is no right or authority for any Dispute to be brought in a purported representative capacity on behalf of the general public or any other persons.
+
+
+### Exceptions to Informal Negotiations and Arbitration
+
+The Parties agree that the following Disputes are not subject to the above provisions concerning informal negotiations and binding arbitration: (a) any Disputes seeking to enforce or protect, or concerning the validity of, any of the intellectual property rights of a Party; (b) any Dispute related to, or arising from, allegations of theft, piracy, invasion of privacy, or unauthorized use; and (c) any claim for injunctive relief. If this provision is found to be illegal or unenforceable, then neither Party will elect to arbitrate any Dispute falling within that portion of this provision found to be illegal or unenforceable and such Dispute shall be decided by a court of competent jurisdiction within the courts listed for jurisdiction above, and the Parties agree to submit to the personal jurisdiction of that court.
+
+
+## CORRECTIONS
+
+There may be information on the Site that contains typographical errors, inaccuracies, or omissions. We reserve the right to correct any errors, inaccuracies, or omissions and to change or update the information on the Site at any time, without prior notice.
+
+
+## DISCLAIMER
+
+THE SITE IS PROVIDED ON AN AS-IS AND AS-AVAILABLE BASIS. YOU AGREE THAT YOUR USE OF THE SITE AND OUR SERVICES WILL BE AT YOUR SOLE RISK. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THE SITE AND YOUR USE THEREOF, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. WE MAKE NO WARRANTIES OR REPRESENTATIONS ABOUT THE ACCURACY OR COMPLETENESS OF THE SITE’S CONTENT OR THE CONTENT OF ANY WEBSITES LINKED TO THE SITE AND WE WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR ANY (1) ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS, (2) PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM YOUR ACCESS TO AND USE OF THE SITE, (3) ANY UNAUTHORIZED ACCESS TO OR USE OF OUR SECURE SERVERS AND/OR ANY AND ALL PERSONAL INFORMATION AND/OR FINANCIAL INFORMATION STORED THEREIN, (4) ANY INTERRUPTION OR CESSATION OF TRANSMISSION TO OR FROM THE SITE, (5) ANY BUGS, VIRUSES, TROJAN HORSES, OR THE LIKE WHICH MAY BE TRANSMITTED TO OR THROUGH THE SITE BY ANY THIRD PARTY, AND/OR (6) ANY ERRORS OR OMISSIONS IN ANY CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT POSTED, TRANSMITTED, OR OTHERWISE MADE AVAILABLE VIA THE SITE. WE DO NOT WARRANT, ENDORSE, GUARANTEE, OR ASSUME RESPONSIBILITY FOR ANY PRODUCT OR SERVICE ADVERTISED OR OFFERED BY A THIRD PARTY THROUGH THE SITE, ANY HYPERLINKED WEBSITE, OR ANY WEBSITE OR MOBILE APPLICATION FEATURED IN ANY BANNER OR OTHER ADVERTISING, AND WE WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY TRANSACTION BETWEEN YOU AND ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR SERVICES. AS WITH THE PURCHASE OF A PRODUCT OR SERVICE THROUGH ANY MEDIUM OR IN ANY ENVIRONMENT, YOU SHOULD USE YOUR BEST JUDGMENT AND EXERCISE CAUTION WHERE APPROPRIATE.
+
+
+## LIMITATIONS OF LIABILITY
+
+IN NO EVENT WILL WE OR OUR DIRECTORS, EMPLOYEES, OR AGENTS BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING LOST PROFIT, LOST REVENUE, LOSS OF DATA, OR OTHER DAMAGES ARISING FROM YOUR USE OF THE SITE, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED HEREIN, OUR LIABILITY TO YOU FOR ANY CAUSE WHATSOEVER AND REGARDLESS OF THE FORM OF THE ACTION, WILL AT ALL TIMES BE LIMITED TO THE AMOUNT PAID, IF ANY, BY YOU TO US DURING THE SIX (6) MONTH PERIOD PRIOR TO ANY CAUSE OF ACTION ARISING. CERTAIN STATE LAWS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EXCLUSION OR LIMITATION OF CERTAIN DAMAGES. IF THESE LAWS APPLY TO YOU, SOME OR ALL OF THE ABOVE DISCLAIMERS OR LIMITATIONS MAY NOT APPLY TO YOU, AND YOU MAY HAVE ADDITIONAL RIGHTS.
+
+
+## INDEMNIFICATION
+
+You agree to defend, indemnify, and hold us harmless, including our subsidiaries, affiliates, and all of our respective officers, agents, partners, and employees, from and against any loss, damage, liability, claim, or demand, including reasonable attorneys’ fees and expenses, made by any third party due to or arising out of: (1) use of the Site; (2) breach of these Terms of Use; (3) any breach of your representations and warranties set forth in these Terms of Use; (4) your violation of the rights of a third party, including but not limited to intellectual property rights; or (5) any overt harmful act toward any other user of the Site with whom you connected via the Site. Notwithstanding the foregoing, we reserve the right, at your expense, to assume the exclusive defense and control of any matter for which you are required to indemnify us, and you agree to cooperate, at your expense, with our defense of such claims. We will use reasonable efforts to notify you of any such claim, action, or proceeding which is subject to this indemnification upon becoming aware of it.
+
+
+## USER DATA
+
+We will maintain certain data that you transmit to the Site for the purpose of managing the performance of the Site, as well as data relating to your use of the Site. Although we perform regular routine backups of data, you are solely responsible for all data that you transmit or that relates to any activity you have undertaken using the Site. You agree that we shall have no liability to you for any loss or corruption of any such data, and you hereby waive any right of action against us arising from any such loss or corruption of such data.
+
+
+## ELECTRONIC COMMUNICATIONS, TRANSACTIONS, AND SIGNATURES
+
+Visiting the Site, sending us emails, and completing online forms constitute electronic communications. You consent to receive electronic communications, and you agree that all agreements, notices, disclosures, and other communications we provide to you electronically, via email and on the Site, satisfy any legal requirement that such communication be in writing. YOU HEREBY AGREE TO THE USE OF ELECTRONIC SIGNATURES, CONTRACTS, ORDERS, AND OTHER RECORDS, AND TO ELECTRONIC DELIVERY OF NOTICES, POLICIES, AND RECORDS OF TRANSACTIONS INITIATED OR COMPLETED BY US OR VIA THE SITE. You hereby waive any rights or requirements under any statutes, regulations, rules, ordinances, or other laws in any jurisdiction which require an original signature or delivery or retention of non-electronic records, or to payments or the granting of credits by any means other than electronic means.
+
+
+## CALIFORNIA USERS AND RESIDENTS
+
+If any complaint with us is not satisfactorily resolved, you can contact the Complaint Assistance Unit of the Division of Consumer Services of the California Department of Consumer Affairs in writing at 1625 North Market Blvd., Suite N 112, Sacramento, California 95834 or by telephone at (800) 952-5210 or (916) 445-1254.
+
+
+## MISCELLANEOUS
+
+These Terms of Use and any policies or operating rules posted by us on the Site or in respect to the Site constitute the entire agreement and understanding between you and us. Our failure to exercise or enforce any right or provision of these Terms of Use shall not operate as a waiver of such right or provision. These Terms of Use operate to the fullest extent permissible by law. We may assign any or all of our rights and obligations to others at any time. We shall not be responsible or liable for any loss, damage, delay, or failure to act caused by any cause beyond our reasonable control. If any provision or part of a provision of these Terms of Use is determined to be unlawful, void, or unenforceable, that provision or part of the provision is deemed severable from these Terms of Use and does not affect the validity and enforceability of any remaining provisions. There is no joint venture, partnership, employment or agency relationship created between you and us as a result of these Terms of Use or use of the Site. You agree that these Terms of Use will not be construed against us by virtue of having drafted them. You hereby waive any and all defenses you may have based on the electronic form of these Terms of Use and the lack of signing by the parties hereto to execute these Terms of Use.
+
+## CONTACT US
+
+In order to resolve a complaint regarding the Site or to receive further information regarding use of the Site, please contact us at:
+
+NumFOCUS, Inc. P.O. Box 90596 Austin, TX, USA 78709 info@numfocus.org +1 (512) 222-5449
+
+
+
diff --git a/content/zh/user-survey-2020.md b/content/zh/user-survey-2020.md
new file mode 100644
index 0000000000..82bc33417c
--- /dev/null
+++ b/content/zh/user-survey-2020.md
@@ -0,0 +1,16 @@
+---
+title: 2020年NumPy社区调研
+sidebar: false
+---
+
+2020 年,NumPy 调查团队与密歇根大学和马里兰大学联合主办的调查方法学硕士课程的师生合作,进行了第一次官方 NumPy 社区调查。 来自 75 个国家/地区的 1,200 多名用户参与其中,帮助我们勾勒出一幅 NumPy 社区的全景图,并表达了他们对项目未来的看法。
+
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="2020年Numpy用户调查报告的封面,标题是“NumPy Community Survey 2020 - results” width="250">}}
+
+**[下载报告](/surveys/NumPy_usersurvey_2020_report.pdf)** 以更仔细地查看调查结果。
+
+
+重点部分,请参阅 **[信息图](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**。
+
+准备仔细研究? 访问 **https://numpy.org/user-survey-2020-details/**。
+
diff --git a/content/zh/user-surveys.md b/content/zh/user-surveys.md
new file mode 100644
index 0000000000..89a2aa0460
--- /dev/null
+++ b/content/zh/user-surveys.md
@@ -0,0 +1,10 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020** The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).