-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_data_loader.py
77 lines (65 loc) · 2.75 KB
/
sample_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python
# coding: utf-8
# ### Authour
# Masahiro Yasuda
"""
PyTorch==1.7.0
"""
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from tqdm import tqdm
import argparse
#data
from utils.distributed_dataloader import DistributedDataLoader
from utils.datautils_office import LoadDataset, TestLoadDataset
class Train():
def __init__(self, cfg):
self.cfg = cfg
self.distributed_dataloader = DistributedDataLoader(cfg)
def cleanup(self):
dist.destroy_process_group()
def train(self, local_rank, distargs):
rank = distargs.node * distargs.ngpus + local_rank#global rank
world_size = distargs.ngpus * distargs.nodesize
dist.init_process_group(backend='nccl', init_method=distargs.disturl,
world_size = world_size, rank = rank)
trainloader, \
testloader = self.distributed_dataloader.setup_dataloader(LoadDataset(self.cfg,True),
TestLoadDataset(self.cfg),
world_size, rank)
with torch.cuda.device(local_rank):
for epoch in tqdm(range(self.cfg['MAX_EPOCH'])):
for i, sample in tqdm(enumerate(trainloader)):
vx = sample['video1']
ax = sample['audio1']
#prediction pseudo code: pred = model(vx, ax)
eventlabel = sample['elabel1']
#loss pseudo code: loss = criterion(pred, eventlabel)
dist.barrier()
for i, sample in tqdm(enumerate(testloader)): #half overlap evaluation
vx = sample['video1']
ax = sample['audio1']
eventlabel = sample['elabel1']
timelabel = sample['tlabel1']
dist.barrier()
self.cleanup()
def train(local_rank, distargs, train_cfg):
trainer = Train(train_cfg)
trainer.train(local_rank, distargs)
def main():
from config import train_cfg
parser = argparse.ArgumentParser(description='PyTorch Distributed Training')
parser.add_argument('--trainmode', default='default', type=str)
parser.add_argument('--node', default=0, type=int)
parser.add_argument('--nodesize', default=1,type=int)
parser.add_argument('--ngpus', default=4, type=int)
parser.add_argument('--disturl',default='tcp://129.60.2.58:12345', type=str)
distargs = parser.parse_args()
train_cfg['mode'] = 'office'
train_cfg['trainmode'] = distargs.trainmode
mp.spawn(train,
nprocs=distargs.ngpus,
args=(distargs, train_cfg))
if __name__=="__main__":
main()