-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
304 lines (295 loc) · 12.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import cmat
import argparse
import random
import numpy as np
import math
import src.config
import src.datasets
import src.utils
import src.models
import src.samplers
import torch
import pytorch_lightning as pl
import wandb
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
def train(config, ds_path=None, loso=False):
"""Starts model training with the given config and dataset path
Parameters
----------
config (src.config.Config)
ds_path (str)
loso (bool): Whether a leave-one-out CV is performed
Returns
-------
(pytorch_lightning.LightningModule): (best) trained model
(cmat.ConfusionMatrix): (best) test results as confusion matrix object
(dict): (best) all recorded metrics during training in a dict
"""
# Set all seeds:
torch.manual_seed(config.SEED)
torch.cuda.manual_seed(config.SEED)
torch.cuda.manual_seed_all(config.SEED)
np.random.seed(config.SEED)
random.seed(config.SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
ds_path = config.TRAIN_DATA if ds_path is None else ds_path
cmat_path = f'{config.CONFIG_PATH}/cmats/'
if config.VALID_SPLIT=='test':
valid_subjects = config.TEST_SUBJECTS.copy()
valid_split = 0.0
elif type(config.VALID_SPLIT) == list:
valid_subjects = config.VALID_SPLIT
valid_split = 0.0
else:
valid_subjects = None
valid_split = config.VALID_SPLIT
current_iter = 0
best_model = None
best_cmat = None
best_score = None
best_args = None
best_logs = None
# Iterate over all dataset configs if given
for ds_args in src.utils.grid_search(config.DATASET_ARGS):
print(f'Dataset arguments: {ds_args}', flush=True)
# Iterate over all model configs if given
for args in src.utils.grid_search(config.ALGORITHM_ARGS):
######### Train with given args ##########
print(f'Evaluating arguments: {args}', flush=True)
if config.SKIP_FINISHED_ARGS and \
src.utils.args_exist(args, ds_args, cmat_path):
print(f'Skipping existing args {current_iter}...')
current_iter += 1
continue
# Create the dataset
skip_files = config.TEST_SUBJECTS.copy()
if valid_subjects:
skip_files += valid_subjects
skip_files = list(set(skip_files))
dataset = src.datasets.get_dataset(
dataset_name=config.DATASET,
dataset_args=ds_args,
root_dir=ds_path,
num_classes=config.num_classes,
label_map=config.label_index,
replace_classes=config.replace_classes,
config_path=config.CONFIG_PATH,
skip_files=skip_files,
name_label_map=config.class_name_label_map
)
# Split into train and validation
valid_amount = int(np.floor(len(dataset)*valid_split))
train_amount = len(dataset) - valid_amount
train_ds, valid_ds = torch.utils.data.random_split(
dataset,
lengths=[train_amount, valid_amount],
generator=torch.Generator().manual_seed(config.SEED)
)
if loso or valid_subjects is not None:
skip_files = [x for x in os.listdir(ds_path) \
if x not in valid_subjects]
valid_ds = src.datasets.get_dataset(
dataset_name=config.DATASET,
dataset_args=ds_args,
root_dir=ds_path,
config_path=config.CONFIG_PATH,
num_classes=config.num_classes,
label_map=config.label_index,
replace_classes=config.replace_classes,
skip_files=skip_files,
valid_mode=True,
name_label_map=config.class_name_label_map
)
if valid_subjects is not None: print(f'Valid subjects: {valid_subjects}')
# Create the dataloaders
collate_fn = dataset.collate_fn if hasattr(dataset, 'collate_fn') else None
# Subsample train if needed:
subsample_perc = ds_args['subsample_perc'] \
if 'subsample_perc' in ds_args else 1.0
if subsample_perc == 1.0 and type(subsample_perc)==float:
sampler = torch.utils.data.RandomSampler(
data_source=train_ds,
num_samples=len(train_ds)
)
else:
sampler = src.samplers.ActivitySubsetRandomSampler(
data_source=train_ds,
samples_per_activity=subsample_perc,
num_acts=config.num_classes
)
train_dl = torch.utils.data.DataLoader(
dataset=train_ds,
batch_size=args['batch_size'],
sampler=sampler,
num_workers=config.NUM_WORKERS,
collate_fn=collate_fn
)
valid_dl = torch.utils.data.DataLoader(
dataset=valid_ds,
batch_size=args['batch_size'],
shuffle=False,
num_workers=config.NUM_WORKERS,
collate_fn=collate_fn
)
_epochs = args['epochs']
total_step_count = len(train_dl)*_epochs
val_after_nth_step = args['val_after_nth_step'] if 'val_after_nth_step' in args else 100
val_check_interval = val_after_nth_step/len(train_dl)
if val_check_interval <= 1:
check_val_every_n_epoch = 1
else:
check_val_every_n_epoch = int(val_check_interval)
val_check_interval = 1.0
args.update({'input_dim': dataset.feature_dim,
'output_dim': dataset.output_shapes,
'total_step_count': total_step_count,
'sequence_length': ds_args['sequence_length']})
print('Create the model')
model = src.models.get_model(
algorithm_name=config.ALGORITHM,
algorithm_args=args
)
# Init a trainer and fit
# Stores all metrics in a dict
history_logger = src.models.MetricsHistoryLogger()
loggers = [history_logger]
if config.WANDB and not loso:
ds_name = os.path.realpath(ds_path).split('/')[-1]
proj_name = 'harth_plus_dl_TRAIN_'+config.PROJ_NAME+ds_name
wandb_logger = WandbLogger(project=proj_name)
wandb_logger.watch(model, log_graph=False)
wandb.config.update(ds_args)
wandb.config.update(args)
wandb.config.update({'Algorithm': config.ALGORITHM,
'Dataset': config.DATASET,
'Train_DS_size': len(dataset)})
loggers.append(wandb_logger)
callbacks = []
if config.EARLY_STOPPING:
callbacks.append(EarlyStopping(
monitor="val_loss",
mode="min",
min_delta=0.00,
patience=10,
verbose=True
)
)
trainer = pl.Trainer(
gpus=config.NUM_GPUS,
logger=loggers,
checkpoint_callback=False,
max_epochs=args['epochs'],
log_every_n_steps=5,
check_val_every_n_epoch=check_val_every_n_epoch,
val_check_interval=val_check_interval,
callbacks=callbacks
)
trainer.fit(model, train_dl, valid_dl)
######### Final Test of given args #########
if len(config.TEST_SUBJECTS) != 0:
# Skip the train subjects
skip_files = [x for x in os.listdir(ds_path) \
if x not in config.TEST_SUBJECTS]
if valid_subjects:
for vs in valid_subjects:
if vs not in config.TEST_SUBJECTS:
skip_files.append(vs)
test_dataset = src.datasets.get_dataset(
dataset_name=config.DATASET,
dataset_args=ds_args,
root_dir=ds_path,
config_path=config.CONFIG_PATH,
num_classes=config.num_classes,
label_map=config.label_index,
replace_classes=config.replace_classes,
skip_files=skip_files,
test_mode=True, inference_mode=True,
name_label_map=config.class_name_label_map
)
test_dl = torch.utils.data.DataLoader(
dataset=test_dataset,
#batch_size=args['batch_size'],
batch_size=1,
shuffle=False,
num_workers=config.NUM_WORKERS
)
y_hat = trainer.predict(model, test_dl)
try:
y_hat = torch.cat(y_hat) # Stack batches
except RuntimeError as e:
print(e)
# post-process preds
y_hat_probs, y_true_probs = None, None
if config.METRIC_AGGR_WINDOW_LEN:
y_hat_probs = test_dataset.post_proc_y(
t=y_hat,
return_probs=True,
probs_aggr_window_len=config.METRIC_AGGR_WINDOW_LEN
)
y_true_probs = test_dataset.y(
return_probs=True,
probs_aggr_window_len=config.METRIC_AGGR_WINDOW_LEN
)
y_hat = test_dataset.post_proc_y(y_hat)
y_true = test_dataset.y() # True label
# Compute test cmat
cm = src.utils.compute_cmat(
y_true = y_true,
y_pred = y_hat,
labels = config.possible_indices,
names = config.class_names,
y_true_probs = y_true_probs,
y_pred_probs = y_hat_probs,
additional_metrics = config.ADDITIONAL_EVAL_METRICS
)
# Save cmat object and args in pickle file:
cmat_args = args.copy()
cmat_args.update(ds_args.copy())
cmat_args.update({'algorithm': config.ALGORITHM,
'dataset': config.DATASET})
if config.STORE_CMATS:
cm_cp = src.utils.compute_cmat(
y_true = y_true,
y_pred = y_hat,
labels = config.possible_indices,
names = config.class_names,
y_true_probs = y_true_probs,
y_pred_probs = y_hat_probs,
additional_metrics = config.ADDITIONAL_EVAL_METRICS
)
src.utils.save_intermediate_cmat(
path=cmat_path,
filename='args_'+str(current_iter).zfill(6)+'.pkl',
args=cmat_args,
cmats=cm_cp,
valid_subjects=config.TEST_SUBJECTS
)
score = src.utils.get_score(cm, config.EVAL_METRIC)
if config.WANDB and not loso:
wandb.log({f'Test_{config.EVAL_METRIC}': score})
wandb.finish()
if best_score is None or score > best_score:
best_model = model
best_cmat = cm
best_score = score
best_logs = history_logger.history
best_args = cmat_args
current_iter += 1
print(f'Best score: {best_score}, with best args: {best_args}')
return best_model, best_cmat, best_logs, best_args
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Start ML training.')
parser.add_argument('-p', '--params_path', required=False, type=str,
help='params path with config.yml file',
default='/param/config.yml')
parser.add_argument('-d', '--dataset_path', required=False, type=str,
help='path to dataset.', default=None)
args = parser.parse_args()
config_path = args.params_path
# Read config
config = src.config.Config(config_path)
ds_path = args.dataset_path
train(config, ds_path)