-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsbc_variance.py
115 lines (104 loc) · 3.21 KB
/
sbc_variance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import itertools
import numpy as np
import matplotlib.pyplot as plt
from excmdstanpy import *
import logging
import public_data
import private_data
import plotting
from setup import *
logging.basicConfig(level=logging.WARNING)
cmdstan_paths = [
'/home/niko/cmdstan'
]
cmdstanpy.set_cmdstan_path(cmdstan_paths[-1])
float_formatter = "{:.4g}".format
np.set_printoptions(formatter={'float_kind':float_formatter})
model_path = f'stan/variance_monster.stan'
def estimate_work(data):
return 1
model = StanModel(
stan_file=model_path,
params=[
'unit_log_population_eM',
'unit_log_population_eS',
'unit_log_person_params',
'noise'
],
estimate_work=estimate_work
)
no_persons = 6
no_plotted_persons = min(6, no_persons)
divergence_goal = 1#0
std_trunc = 1
pop_trunc = 0#np.inf
person_trunc = 10
noise_scale = .1
param_labels = public_data.param_labels
no_latent_params = public_data.no_latent_params
base_data = dict(
no_persons=no_persons,
no_latent_params=no_latent_params,
noise_scale=noise_scale,
observed_states=np.zeros((no_persons, no_latent_params)),
no_experiments=0
)
prior_data = dict(
base_data,
likelihood=0,
**public_data.get_base_data(
public_data.prior_population_parameters, std_trunc, pop_trunc, person_trunc
),
)
posterior_data = dict(
base_data,
likelihood=0,
**public_data.get_base_data(
public_data.posterior_population_parameters, std_trunc, pop_trunc, person_trunc
),
)
prior_fit = model.sample(prior_data, **sample_kwargs)
posterior_fit = model.sample(posterior_data, **sample_kwargs)
prior_fig = plotting.plot_fit(
prior_fit, prefix='prior', no_plotted_persons=no_plotted_persons,
path=f'figs/sbc/variance/prior.png',
)
plotting.plot_fit(
posterior_fit, fig=prior_fig,
prefix='posterior', no_plotted_persons=no_plotted_persons,
path=f'figs/sbc/variance/posterior.png',
)
for idx in range(10):
fit_data = dict(
posterior_fit.sbc_data(idx),
**public_data.get_base_data(
public_data.prior_population_parameters, std_trunc, pop_trunc, person_trunc
),
)
regular_fit = model.sample(fit_data, **sample_kwargs)
best_population_parameters = np.array([
regular_fit.true_series.filter(regex=f'^population_eM'),
regular_fit.true_series.filter(regex=f'^population_eS')**np.sqrt(1/no_persons),
regular_fit.true_series.filter(regex=f'^population_eS'),
regular_fit.true_series.filter(regex=f'^population_eS')*0+no_persons+2,
public_data.prior_population_parameters[:,-1]
]).T
best_data = dict(
prior_data,
**public_data.get_base_data(
best_population_parameters, std_trunc, pop_trunc, person_trunc
)
)
best_fit = model.sample(best_data, **sample_kwargs)
regular_fig = plotting.plot_fit(
prior_fit,
prefix='prior', no_plotted_persons=no_plotted_persons
)
plotting.plot_fit(
regular_fit, fig=regular_fig,
prefix='regular warmup', no_plotted_persons=no_plotted_persons
)
plotting.plot_fit(
best_fit, fig=regular_fig, path=f'figs/sbc/variance/{idx}.png',
prefix='best prior fit', no_plotted_persons=no_plotted_persons
)