@@ -181,12 +181,12 @@ def fit(self, X, y, trials=None, **fit_params):
181
181
fn = lambda p : self ._fit (
182
182
params = p , X = X , y = y , fit_params = fit_params
183
183
),
184
- space = self .param_grid , algo = tpe .suggest ,
184
+ space = self ._param_combi , algo = tpe .suggest ,
185
185
max_evals = self .n_iter , trials = trials ,
186
186
rstate = np .random .RandomState (self .sampling_seed ),
187
187
show_progressbar = False , verbose = 0
188
188
)
189
- all_results = sorted ( trials .results , key = lambda x : x [ 'loss' ])
189
+ all_results = trials .results
190
190
191
191
else :
192
192
all_results = Parallel (
@@ -200,10 +200,10 @@ def fit(self, X, y, trials=None, **fit_params):
200
200
self .trials_ .append (job_res ['params' ])
201
201
self .iterations_ .append (job_res ['iterations' ])
202
202
self .scores_ .append (self ._score_sign * job_res ['loss' ])
203
- if job_res ['model' ] is None :
204
- models .append (job_res ['booster' ])
205
- else :
203
+ if isinstance (job_res ['model' ], _BoostSelector ):
206
204
models .append (job_res ['model' ])
205
+ else :
206
+ models .append (job_res ['booster' ])
207
207
208
208
# get the best
209
209
id_best = self ._eval_score (self .scores_ )
@@ -401,12 +401,12 @@ def _check_fit_params(self, fit_params, feat_id_real=None):
401
401
self .support_ , self ._cat_support , _fit_params , duplicate = True )
402
402
403
403
if feat_id_real is None : # final model fit
404
- if 'eval_set' in fit_params :
404
+ if 'eval_set' in _fit_params :
405
405
_fit_params ['eval_set' ] = list (map (lambda x : (
406
406
self .transform (x [0 ]), x [1 ]
407
407
), _fit_params ['eval_set' ]))
408
408
else :
409
- if 'eval_set' in fit_params : # iterative model fit
409
+ if 'eval_set' in _fit_params : # iterative model fit
410
410
_fit_params ['eval_set' ] = list (map (lambda x : (
411
411
self ._create_X (x [0 ], feat_id_real ), x [1 ]
412
412
), _fit_params ['eval_set' ]))
@@ -627,7 +627,7 @@ def _check_fit_params(self, fit_params):
627
627
_fit_params = _set_categorical_indexes (
628
628
self .support_ , self ._cat_support , _fit_params )
629
629
630
- if 'eval_set' in fit_params :
630
+ if 'eval_set' in _fit_params :
631
631
_fit_params ['eval_set' ] = list (map (lambda x : (
632
632
self .transform (x [0 ]), x [1 ]
633
633
), _fit_params ['eval_set' ]))
@@ -809,7 +809,7 @@ def _check_fit_params(self, fit_params, inverse=False):
809
809
_fit_params = _set_categorical_indexes (
810
810
self .support_ , self ._cat_support , _fit_params )
811
811
812
- if 'eval_set' in fit_params :
812
+ if 'eval_set' in _fit_params :
813
813
_fit_params ['eval_set' ] = list (map (lambda x : (
814
814
self ._transform (x [0 ], inverse ), x [1 ]
815
815
), _fit_params ['eval_set' ]))
@@ -956,7 +956,7 @@ def fit(self, X, y, **fit_params):
956
956
with contextlib .redirect_stdout (io .StringIO ()):
957
957
self .estimator_ .fit (self ._transform (X , inverse = False ), y , ** _fit_params )
958
958
959
- # compute step score when only min_features_to_select features left
959
+ # compute step score when only min_features_to_select features left
960
960
if scoring :
961
961
score = self ._step_score (self .estimator_ )
962
962
self .score_history_ .append (score )
0 commit comments