-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgfkg_notes.tex
6775 lines (5937 loc) · 310 KB
/
gfkg_notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[10pt]{article}
\usepackage{templateNV}
\begin{document}
% ----------------------------------------------------------------------
% Start
% ----------------------------------------------------------------------
\nocite{*}
\title{{Gauge Fields, Knots and Gravity}\\{\normalsize{\itshape Solutions and Miscellaneous Notes}}\\{\normalsize{{\href{https://github.com/nirajvenkat/gfkg-nv}{v0.0.2}} - \today}}}
\author{By Niraj Venkat\\Authors of Main Text: John Baez and Javier P. Muniain}
\maketitle
\newpage
\pagestyle{fancynotes}
% ----------------------------------------------------------------------
% Book 1
% ----------------------------------------------------------------------
\part{Electromagnetism}
\section{Maxwell's Equations}\label{b1c1}
\begin{example}
Let $\vec{k}$ be a vector in $\R^3$ and let $\omega = \norm{\vec{k}}$.
Fix $\vec{\bf E} \in \C^3$ with $\vec{k} \cdot \vec{\bf E} = 0$ and
$\di \vec{k} \cross \vec{\bf E} = \omega\vec{\bf E}$.
Show that
$$
\vec{\cal E}(t, \vec{x}) = \vec{\bf E} \, e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}}
$$
satisfies the vacuum Maxwell equations.\mn{
Recall the vacuum Maxwell equations for complex-valued vector fields:
$$\begin{aligned}
\grad \cdot \vec{\cal E} &= 0 \\
\grad \times \vec{\cal E} &= \di \pd{\vec{\cal E}}{t}
\end{aligned}
$$}
\end{example}
\sol First take the divergence:
$$
\begin{aligned}
\grad \cdot \vec{\cal E} &=
\begin{pmatrix}
\pd{}{x_1} \\ \pd{}{x_2} \\ \pd{}{x_3}
\end{pmatrix} \cdot
\begin{pmatrix}
E_1 \\ E_2 \\ E_3
\end{pmatrix} e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}} \\
&= \di \ub{(k_1 E_1 + k_2 E_2 + k_3 E_3)}{= \: \vec{k} \cdot \vec{\bf E} \:= \: 0} e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}} \\
&= 0
\end{aligned}
$$
Then the curl (in Einstein notation):\marginnote{Cross product in Einstein notation:$$\vec u \times \vec v = \epsilon_{ijk}u_jv_k$$}
$$
\begin{aligned}
(\grad \times \vec{\cal E})_i &= \epsilon_{ijk}\partial_j{\mc E}_k({\vec t},x)\\
&= \epsilon_{ijk}\partial_j(E_k \, e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}})\\
&= \epsilon_{ijk}E_k\partial_j(e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}})\\
&= \epsilon_{ijk}E_k\,\di k_j e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}}\\\
&= \di\epsilon_{ijk}k_j E_k e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}}\marginnote{Rearranging, scalars commute}\\
&= \p{\ub{\di {\vec k}\times \vec{\bf E}}{= \omega\vec{\bf E}} e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}}}_i\\
&= \omega\mc{E}_i(t,{\vec x})\\
\Rightarrow \grad \times \vec{\cal E} &= \omega\mc{E}(t,{\vec x})
\end{aligned}
$$
Now
$$
\pd{\mc{\vec E}}{t} = -\di\omega \vec{\bf E} \, e^{-\di\p{\omega t - \vec{k}\cdot \vec{x}}} = -\di\ub{\mc{\omega\vec E}}{\grad \times \vec{\cal E}}
$$
Therefore
$$
\grad \times \vec{\cal E} = \di\pd{\mc{\vec E}}{t}
$$
\newpage
\section{Manifolds}\label{b1c2}
\begin{example}
Show that a function $f : \R^n \to \R^m$ is continuous according to the above\mn{
A function $f: X \to Y$ from one topological space to another
is defined to be \tb{continuous} if, given any open set $U \subseteq Y$,
the inverse image $f^{-1}U \subseteq X$ is open.
}
definition if and only if it is according to the epsilon-delta definition:
for all $x \in \R^n$ and all $\epsilon > 0$, there exists $\delta > 0$
such that $\norm{y-x} < \delta$ implies $\norm{f(y) - f(x)} < \epsilon$.
\end{example}
\sol Label the two types of continuity C1 (for the inverse image definition)
and C2 (for the epsilon-delta definition). To start we show that C1 $\iff$ C2
for the simpler version in one dimension, i.e., $f:\R\to\R$.\\\\
Assume $f$ is C1, and let $p \in \R$.
The interval $I := (f(p)-\epsilon, f(p)+\epsilon)$ is an open subset of $\R$, so
$f^{-1}(I)$ is open as well.
But $f^{-1}(I)$ contains $p$, so it must contain an open interval $(a, b)$ containing $p$
(because every open set in $\R$ is a union of open intervals). Now let $\delta = \min\br{p - a,b - p}$.
Then the condition $\abs{x - p} < \delta$ guarantees that $x \in (a,b)$, and hence that $f(x)\in I$, which means that $\abs{f(x)- f(p)}<\epsilon$.
Hence $f$ is C2.\\\\
To prove \begin{marginfigure}
\begin{center}
\includegraphics[width=1.2\textwidth]{figs/stereo.png}
\end{center}
\caption{Stereographic projection}
\end{marginfigure}the converse it suffices to show that the inverse image of a single open interval is open,
because the inverse image of a union of sets is the union of the inverse images. So let $I = (c,d)$,
and let $p\in f^{-1}(I)$ so that $f(p)\in I$. Choose $\epsilon=\min\br{f(p)-c,d- f(p)}$. As $f$ is C2, there
exists a $\delta$ such that the open interval $(p - \delta, p + \delta)$ is in $f^{-1}(I)$. Therefore $f^{-1}(I)$
is the union of open sets, which shows that $f$ is C1.\\\\
To extend into multiple dimensions just use an appropriate chart $\varphi$, compose
$f \circ \varphi^{-1}: \R^n \to \R$ to follow the proof above. Also $\epsilon$ and $\delta$
become vectors, and change $\abs{\cdot}$ to $\norm{\cdot}$.
\begin{example}\label{b1e3}
Given a topological space $X$ and a subset $S \subseteq X$, define the
\tb{induced topology} on $S$ to be the topology in which the open sets are
of the form $U \cap S$, where $U$ is open in $X$. Let $S^n$, the
\tb{n-sphere}, be the unit sphere in $\R^{n+1}$:
$$
S^n = \br{\vec{x} \in \R^{n+1} | \sum_{i=1}^{n+1}\p{x^i}^2=1}
\marginnote{Here superscript shows contravariant
vector components, not exponentiation.}
$$
Show that $S^n \subset \R^{n+1}$ with its induced topology is a manifold.
\end{example}
\sol Let $N = (0,\dots,0,1)$ denote the north pole in $S^n$, and define the
\tb{stereographic projection} to be the map $\sigma:S^n\setminus\br{N}\to\R^n$
that sends a point $x \in S^n\setminus\br{N}$ to the point $u\in\R^n$ chosen so that
$U=\p{u, 0}$ is the point in $\R^{n+1}$ where the line through $N$ and $x$ meets the
subspace where $x^{n+1}=0.$
To find a formula for $\sigma$, we note that $u=\sigma(x)$
is characterized by the vector equation $U-N=\lambda(x-N)$ for some real number $\lambda$.
This leads to the system of equations:
$$
\begin{aligned}
u^i &= \lambda x^i, \qquad i=1,\dots,n\\
-1 &= \lambda(x^{n+1} - 1) \marginnote{(1)}
\end{aligned}
$$
Solve the last equation for $\lambda$ and substitute into the other equations to obtain:
$$
\sigma(x^1,\dots,x^{n+1}) = \frac{(x^1,\dots,x^{n+1})}{1-x^{n+1}}
$$
Its inverse can be found by solving (1) to get:
$$
x^i = \frac{u^i}{\lambda}, \qquad x^{n+1} = \frac{\lambda-1}{\lambda}
\marginnote{(2)}
$$
The point $x=\sigma^{-1}(u)$ is characterized by these equations together with the
fact that $x$ is on the unit sphere. Substituting (2) into $\norm{x}^2=1$ and solving
for $\lambda$ gives:
$$
\lambda=\frac{\norm{u}^2+1}{2}
$$
and inserting this back into (2) yields:
$$
\sigma^{-1}(u^1,\dots,u^n)=\frac{(2u^1,\dots,2u^n,\norm{u}^2-1)}{\norm{u}^2+1}
$$
Because this is a continuous inverse for $\sigma$, it follows that $S^n\setminus\br{N}$ is homeomorphic to $\R^n$, making $S^n$ an $n$-manifold. This procedure provides a Euclidean neighborhood of
every point of $S^n$ except $N$, and the analogous projection from the south pole
works in a neighborhood of $N$.
\begin{example}\label{b1e4}
Show that if $M$ is a manifold and $U$ is an open subset of $M$, then $U$ with
its induced topology is a manifold.
\end{example}
\sol Say $U$ is a disjoint union of open sets $U_i$.
If $A=\br{(U_i,\varphi_i)}$ is an atlas for $M$,
then $A^\prime=\br{(U_i \cap U,\varphi_i^\prime)}$ is an atlas for $U$, where
$\varphi_i^\prime = \varphi|_{U_i \cap U}$.\\\\
Since intersection of open sets is open, $U_i \cap U$ is open, and the transition functions
$\varphi_i^\prime \circ (\varphi_j^\prime)^{-1}$ will be smooth as well for any charts
$(U_i \cap U,\varphi_i^\prime)$ and $(U_j \cap U,\varphi_j^\prime)$ in $A^\prime$.
Hence $U$ is a manifold. This is not much of a reach because by definition if $U$ is an open \emph{cover}
of $M$ with an atlas $A$ then $M$ is a manifold.
\begin{definition}
\tb{Paracompactness:}
A topological space $X$ is said to be compact if every open cover of $X$ has a finite subcover. A space $X$ is said to be paracompact if every open cover of $X$ admits a locally finite open refinement.\mn{A collection $\cal{A}$ of subsets of $X$ is said
to be locally finite if each point of $X$ has a neighborhood that intersects
at most finitely many of the sets in $\cal{A}$. Given a cover $\cal{A}$ of $X$, another
cover $\cal{B}$ is called a refinement of $\cal{A}$ if for each $B \in\cal{B}$ there exists some
$A \in\cal{A}$ such that $B \subseteq A$. It is an open refinement if each $B \in\cal{B}$ is an open subset
of $X$. (Note that every subcover of $\cal{A}$ is a refinement of $\cal{A}$; but a refinement
is not in general a subcover, because a refinement does not need to be
composed of sets that are elements of $\cal{A}$.)}
\end{definition}
\begin{definition}
\tb{Hausdorff spaces:} Consider a set $\br{p_0}$ containing only one point.
Given $p \ne p_0$, the Hausdorff property says that there exist disjoint
neighborhoods $U$ of $p$ and $V$ of $p_0$.
\end{definition}
\begin{definition}
\tb{Second countable spaces:} We say that $X$ is first countable
if there exists a countable neighborhood basis at each point $p$, i.e, a countable collection
of nested neighborhoods around $p$. If $X$ is second countable:
\begin{itemize}
\item $X$ is first countable.
\item $X$ contains a countable dense subset.
\item Every open cover of $X$ has a countable subcover.
\end{itemize}
\end{definition}
\begin{example}\label{b1e5}
Given topological spaces $X$ and $Y$, we give $X \cross Y$ the \tb{product topology}
in which a set is open if and only if it is a union of sets of the form $U \cross V$,
where $U$ is open in $X$ and $V$ is open in $Y$. Show that if $M$ is an $m$-dimensional
manifold and $N$ is an $N$-dimensional
manifold, $M \cross N$ is an $(m+n)$-dimensional manifold.
\end{example}
\sol To make it simpler let's assume that the product space is Hausdorff and second
countable, so only the locally Euclidean property needs to be checked. Given any point
$p = (p_M, p_N) \in M \cross N$, there exist open sets $U, V$ within neighborhoods of $p_M, p_N$
that get sent by homeomorphisms $\varphi_M, \varphi_N$ to an open subset of $\R^m$ and $\R^n$ respectively.
Why? Because $M \cross N$ is a manifold.\\\\
Now, we propose that a product of continuous
maps is continuous, and a product of homeomorphisms is a homeomorphism. So the product map
$\varphi_M \times \varphi_N$ is a homeomorphism from a neighborhood of $p$ to an open subset
of $\R^m \cross \R^n \cong \R^{m+n}$. In general, $M_1 \cross \dots \cross M_k$ is a $(d_1 + \dots + d_k)$-dimensional manifold.
\begin{example}
Given topological spaces $X$ and $Y$, we give $X \cup Y$ the \tb{disjoint union topology}
in which a set is open if and only if it is the union of an open subset of $X$
and an open subset of $Y$. Show that if $M$ and $N$ are $n$-dimensional manifolds
the disjoint union $M \cup N$ is an $n$-dimensional manifold.
\end{example}
\sol Let $A = \br{(U_i, \varphi_i)}$ be an atlas of $M$ and $B = \br{(V_j, \psi_i)}$ be an atlas for $N$.
Then $A \cup B$ is trivially an atlas for $X \cup Y$ since $U_i \cap V_j = \emptyset$
for all charts, the transition functions only exist on $M$ or $N$ seperately, and are smooth by definition.
Thus $M \cup N$ is an $n$-dimensional manifold.
\newpage
\section{Vector Fields}\label{b1c3}
\begin{example}
Show that $v+w$ and $gw \in \text{Vect}(M)$.
\end{example}
\sol We first show $v+w$ satisfies the properties of a vector field:\mn{
A \tb{vector field} $v$ on $M$ is defined to be a function from $C^\infty(M)$ to $C^\infty(M)$ satisfying the following three properties:
\begin{enumerate}
\item $v(f+g)=v(f)+v(g)$
\item $v(\alpha f)=\alpha v(f)$
\item $v(fg)=v(f)g+fv(g)$
\end{enumerate}}
$$
\begin{aligned}
(v+w)(f+g)&=v(f+g)+w(f+g)\\
&=v(f)+v(g)+w(f)+w(g)\\
&=(v+w)(f)+(v+w)(g)\\\\
(v+w)(\alpha f)&=v(\alpha f)+w(\alpha f)\\
&=\alpha v(f)+\alpha w(f)\\
&=\alpha (v+w)(f)\\\\
(v+w)(fg)&=v(fg)+w(fg)\\
&=v(f)g+fv(g)+w(f)g+fw(g)\\
&=(v+w)(f)g+f(v+w)(g)
\end{aligned}
$$
Similarly we can show that:
$$
\begin{aligned}
(gw)(f+g)&=(gw)(f)+(gw)(g)\\
(gw)(\alpha f)&=\alpha (gw)(f)\\
(gw)(fg)&=(gw)(f)g+(gw)v(g)
\end{aligned}
$$
\begin{example}\label{b1e8}
Show that the following rules for all $v,w \in \text{Vect}(M)$ and
$f, g \in C^\infty(M)$:
$$
\begin{aligned}
f(v+w) &= fv + fw\\
(f+g)v &= fv+gv\\
(fg)v &= f(gv)\\
1v &= v
\end{aligned}
$$
(Here `$1$' denotes the constant function equal to $1$ on all of $M$.).
Mathematically, we summarize these rules by saying that $\text{Vect}(M)$ is
a \tb{module} over $C^\infty(M)$.
\end{example}
\sol Applying above rules:
$$
\begin{aligned}
[f(v+w)](g) &= fv(g) + fw(g) = [fv + fw](g)\\
[(f+g)v](h) &= (f+g)v(h)=[fv+gv](h)\marginnote{$\forall h \in C^\infty(M)$}\\
[(fg)v](h) &= (fg)v(h)=[f(gv)](h)\marginnote{$\forall h \in C^\infty(M)$}\\
[1v](f) &= 1\cdot v(f)=v(f)
\end{aligned}
$$
\begin{example}\label{b1e9}
Show that if $v^\mu\partial_\mu = 0$, that is, \marginnote{In general, we have $$v=v^\mu\partial_\mu = v^1\partial_1 + \cdots + v^n\partial_n$$}
$v^\mu\partial_\mu f = 0$ for all $f \in C^\infty(\R^n)$, we must have $v^\mu = 0$ for all $\mu$.
\end{example}
\sol Without loss of generality choose $f = x^i$.
$$
\begin{aligned}
v^\mu \partial_\mu f &= v^\mu \partial_\mu x^i\\
&= v^\mu \delta_\mu^i\marginnote{Kronecker delta}\\
&= v^i = v^\mu = 0\marginnote{Just changing labels $i \to \mu$}
\end{aligned}
$$
\begin{example}\label{b1e10}
Let $v,w \in \text{Vect}(M)$. Show that $v = w$ if and only if $v_p = w_p$
for all $p \in M$.
\end{example}
\sol Proving the implication $\Rightarrow$. Let $v=w$:
$$
\begin{aligned}
(v-w) &= 0\\
(v-w)(f) &= 0 \marginnote{$\forall f \in C^\infty(M)$}\\
(v-w)(f)(p) &= 0 \marginnote{$\forall p \in M$}\\
v_p &= w_p
\end{aligned}
$$
Proving the converse $\Leftarrow$, amounts to letting $v_p = w_p$ and following the above steps in reverse.
\begin{definition}
\tb{Vector space axioms:}\\\\
A \tb{vector space} over a field $\F$ is the triple $(V, +, \cdot)$ where:
\begin{itemize}
\item $V$ is a set
\item $+$ is the addition map, $+:V \cross V \to V$
\item $\cdot$ is the s-multiplication map, $\cdot:\F \cross V \to V$
\end{itemize}
satisfying these properties for all $u,v,w \in V$ and $a,b \in \F$:
\begin{enumerate}
\item Commutative w.r.t $+$; $u+v = v+u$
\item Associative w.r.t $+$; $(u+v)+w = u+(v+w)$
\item $\exists$ neutral element w.r.t $+$; $e+u = u$
\item $\exists$ inverse element w.r.t $+$; $u+u^{-1}=u^{-1}+u=e$
\item Commutative w.r.t $\cdot$; $a\cdot b = b\cdot a$
\item Associative w.r.t $\cdot$: $(a\cdot b)\cdot u = a\cdot (b\cdot u)$
\item Distributive over $\F$; $a \cdot(u+v) = a \cdot u+a \cdot v$
\item Distributive over $V$; $u \cdot(a+b) = a \cdot u+a \cdot v$
\item Unitary w.r.t $\cdot$; $1\cdot u = u$
\end{enumerate}
An \tb{algebra} over a field is a vector space equipped with a bilinear product.
\end{definition}
\begin{example}
Show that $T_pM$ is a vector space over the real numbers.
\end{example}
\sol While it is true that around a point $p$ on an $n$-manifold $M$ it looks like $\R^n$ (locally Euclidean property), that is not enough to show that $T_pM$ is a vector space over the reals. Formally, we should show that the tangent vectors $v_p$ satisfy the axioms of a vector space, where $V = T_pM$ and $\F = \R^n$ which we skip here.
\begin{example}\label{b1e12}
Check that $\gamma^\prime(t) \in T_{\gamma(t)}M$ using the definitions.
\end{example}
\sol We have that
$$
\gamma^\prime(t): f \mapsto \frac{d}{dt}f(\gamma(t))
$$
We check that the usual three properties of a vector space apply:
$$
\begin{aligned}
\gamma^\prime(t)(f+g) &= \frac{d}{dt}(f+g)(\gamma(t)) = \frac{d}{dt}(f(\gamma(t))) + \frac{d}{dt}(g(\gamma(t))) = \gamma^\prime(t)(f) + \gamma^\prime(t)(g)\\
\gamma^\prime(t)(\alpha f) &= \frac{d}{dt}(\alpha f)(\gamma(t)) = \alpha \gamma^\prime(t)(f)\\
\gamma^\prime(t)(fg) &= \frac{d}{dt}(fg)(\gamma(t))\\
&= \frac{d}{dt}\sparen*{f(\gamma(t)) \cdot g(\gamma(t))}\\
&= \gamma^\prime(t)(f)g(\gamma(t)) + f(\gamma(t))\gamma^\prime(t)(g)
\end{aligned}
$$
The tangent vector $\gamma^\prime(t)$ thus belongs to the tangent space $T_{\gamma(t)}M$.
\begin{example}
Let $\phi:\R\to\R$ be given by $\phi(t)=e^t$. Let $x$ be the usual coordinate function on $\R$.
Show that $\phi^*x=e^x$.
\end{example}
\sol The map is defined as
$$
\phi: t \mapsto e^t
$$
So $\phi^*x = x \circ \phi = e^x$.
\begin{example}\label{b1e14}
Let $\phi:\R^2\to\R^2$ be rotation counterclockwise by an angle $\theta$.
Let $x, y$ be the usual coordinate functions on $\R^2$. Show that
$$
\begin{aligned}
\phi^*x &= (\cos\theta)x - (\sin\theta)y\\
\phi^*y &= (\sin\theta)x + (\cos\theta)y.
\end{aligned}
$$
\end{example}
\sol The rotation matrix is defined as
$$
\phi:\begin{pmatrix}
x\\y
\end{pmatrix}\mapsto
\begin{pmatrix}
\cos\theta&-\sin\theta\\
\sin\theta& \cos\theta\\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}
$$
$\phi^*x$ and $\phi^*y$ are just what the coordinates get mapped to by the above transformation.
\begin{example}
Show that this definition of smoothness is consistent with the previous definitions
of smooth functions $f:M\to \R$ and smooth curves $\gamma:\R \to M$.
\end{example}
\sol Recall the definition of smooth functions between manifolds:
\begin{center}
$\phi:M\to N$ is smooth if $f \in C^\infty(N)$ implies that $\phi^*f\in C^\infty(M)$.
\end{center}
Proving our other two definitions of smoothness:
\begin{enumerate}
\item A function $f:M\to\R$ is smooth if for all charts $\alpha$, $f \circ \varphi^{-1}_\alpha:\R^n\to\R$ is smooth.\\
With $N=\R$, if $f \in C^\infty(\R)$ and $\phi \in C^\infty(M)$ then a composition of smooth maps $f \circ \phi \in C^\infty(M)$ and composing that with a chart inverse $f \circ \phi \circ \varphi^{-1}_\alpha$ are also smooth.
\item A curve $\gamma:\R \to N$ is smooth if $f(\gamma(t))$ depends smoothly on $t$ for any $f \in C^\infty(N)$\\
With $M=\R$, if $f \in C^\infty(N)$, then $f \circ \gamma \in C^\infty(\R)$ is smooth means $\gamma^*f$ is smooth.
\end{enumerate}
\begin{example}
Prove that $(\phi \circ \gamma)^\prime(t) = \phi_*(\gamma^\prime(t))$.
\end{example}
\sol Applying to a smooth function $f \in C^\infty(M)$:
$$
\begin{aligned}
\marginnote{Using Ex \ref{b1e12}}(\phi \circ \gamma)^\prime(t)(f) &= \frac{d}{dt}f((\phi \circ \gamma)(t))\\
&= \frac{d}{dt}(f \circ \phi \circ \gamma)(t)\\
&= \frac{d}{dt}(f \circ \phi)(\gamma(t))\\
&= (\gamma^\prime(t))(f \circ \phi)\\
&= (\gamma^\prime(t))(\phi^* f)\\
&= \phi_*(\gamma^\prime(t))(f)\\
\Rightarrow (\phi \circ \gamma)^\prime(t) &= \phi_*(\gamma^\prime(t))
\end{aligned}
$$
\begin{example}
Show that the pushforward operation
$$
\phi_*:T_pM\to T_{\phi(p)}N
$$
is linear.
\end{example}
\sol Checking linearity can be done in one swift calculation:\mn{
Linearity basically means:
$$
f(\alpha u+\beta v) = \alpha f(u)+\beta f(v)
$$
}
$$
\begin{aligned}
(\phi_*(\alpha u+\beta v))(f) &= (\alpha u+\beta v)(\phi^*f)\\
&= \alpha u(\phi^*f)+\beta v(\phi^*f)\\
&= \alpha (\phi_*u)(f)+\beta (\phi_*v)(f)\\
&= (\alpha (\phi_*u)+\beta (\phi_*v))(f)\\
\end{aligned}
$$
\begin{example}\label{b1e18}
Show that if $\phi:M\to N$ we can push forward a vector field\mn{
Just remember that you can push \emph{vectors} forward by any smooth map but you can only push \emph{vector fields} forward by a diffeomorphism. So in this example $\phi$ must be a diffeomorphism.
} $v$ on $M$ to obtain
a vector field $\phi_*v$ on $N$ satisfying
$$
(\phi_*v)_q = \phi_*(v_p)
$$
whenever $\phi(p)=q$.
\end{example}
\sol When acting on points on the same manifold, the correct definition of pushforward is:\marginnote{Ref [1] Pg 98}
$$
\begin{aligned}
\ub{\phi^*[\ob{(\phi_*v)(f)}{\text{Acts on manifold $N$}}]}{\text{Acts on manifold $M$}} &= \ob{v(\phi^*f)}{\text{Acts on manifold $M$}}\\
(\phi_*v)(f) &= v(\phi^*f) \circ \phi^{-1}\marginnote{(1)}
\end{aligned}
$$
Applying to some $f \in C^\infty(N)$:
$$
\begin{aligned}
(\phi_*v)_q(f) &= (\phi_*v)(f)(q)\\
&= v(\phi^*f)(\phi^{-1}(q))\marginnote{Applying (1)}\\
&= v(\phi^*f)(p)\marginnote{$\phi(p)=q \Rightarrow \phi^{-1}(q)=p$}\\
&= \phi_*v(f)(p)\\
&= \phi_*v_p(f)\\
\end{aligned}
$$
\begin{example}
Let $\phi:\R^2\to\R^2$ be rotation counterclockwise by an angle $\theta$.
Let $\partial_x, \partial_y$ be the coordinate vector fields on $\R^2$.
Show that at any point of $\R^2$
$$
\begin{aligned}
\phi^*\partial_x &= (\cos\theta)\partial_x + (\sin\theta)\partial_y\\
\phi^*\partial_y &= -(\sin\theta)\partial_x + (\cos\theta)\partial_y.
\end{aligned}
$$
\end{example}
\sol Similar to Ex \ref{b1e14}, except applied to a vector of partial derivatives, i.e., the basis. The transformation $\phi$ is now called a \tb{Jacobian}.
\begin{example}
Let $v$ be the vector field $x^2\partial_x + y\partial_y$ on $\R^2$. Calculate
the integral curves $\gamma(t)$ and see which ones are defined for all $t$.
\end{example}
\sol The integral curves $\gamma(t) = (x(t),y(t))$, and velocity is $v = x^2\partial_x + y\partial_y$. This means we have $x^\prime = x^2, y^\prime = y$.\\\\
Setting initial conditions to $\gamma(0) = (x(0),y(0)) = (\alpha,\beta)$ and solving the DE for $(x(t),y(t))$ gives us:
$$
x(t) = \frac{\alpha}{\alpha t - 1}, \qquad y(t)=\beta e^t
$$
If $\alpha \ne 0$, as soon as $t = \frac{1}{\alpha}$ we get a singularity. So $x(t)$ is well defined for $\alpha = 0$. However, $\beta$ can be chosen at will, making $y(t)$ well defined for all $t$.\\\\
So the solutions are $\gamma(t) = (0,\beta e^t)$ for any $\beta \in \R$.
\begin{example}
Show that $\phi_0$ is the identity map $\id:X\to X$, and that for all $s,t\in\R$
we have $\phi_t\circ\phi_s=\phi_{t+s}$.
\end{example}
\sol For $p \in M$ and $t \in \R$ denote $\phi_t(p) = \hat{p}$. This means that $\gamma_p(t) = \hat{p}$, where $\gamma_p$ is an integral curve of $v$ such that $\gamma_p(0)=p$.\\\\
Consider the curve $\beta$ defined by $\beta(s)=\gamma(s+t)$. Then $\beta$ is an integral curve of $v$ and $\beta(0)=\hat{p}$, that is $\beta=\gamma_{\hat{p}}$. Hence,
$$
\begin{aligned}
\phi_s(\hat{p}) = \gamma_{\hat{p}}(s) = \beta(s) = \gamma_m(s+t) = \phi_{s+t}(p)\\
\Longleftrightarrow \phi_s \circ \phi_t = \phi_{s+t}
\end{aligned}
$$
Since $\phi_0 = \id_M$ holds by the very definition of $\phi_t$, we obtain:
$$
\phi_{-t} \circ \phi_t = \id_M = \phi_t \circ \phi_{-t}
$$
In particular, each $\phi_t$ is a diffeomorphism and $\phi_t^{-1} = \phi_{-t}$.
\begin{example}
Consider the normalized vector fields in the $r$ and $\theta$ directions on the
plane in polar coordinates (not defined at the origin):
$$
\begin{aligned}
v &= \frac{x\partial_x+y\partial_y}{\sqrt{x^2+y^2}}\\
w &= \frac{x\partial_y-y\partial_x}{\sqrt{x^2+y^2}}
\end{aligned}
$$
Calculate $[v,w]$.
\end{example}
\sol For some $f \in C^\infty(\R^2)$, any vector field $\vartheta$ on $\R^2$ has the form
$$
\vartheta = f(x)\partial_x + f(y)\partial_y
$$
Since $x = r\cos\theta$, $y=r\sin\theta$, differentiating w.r.t $r$ and $\theta$ gives
$$
\begin{aligned}
\partial_r\vartheta &= \cos\theta\partial_xf + \sin\theta\partial_yf\\
\partial_\theta \vartheta &= -r\sin\theta\partial_xf + r\cos\theta\partial_yf
\end{aligned}
$$
we get $v=\partial_r$ and $w=\partial_\theta/r$. Calculating Lie bracket:
$$
\begin{aligned}
[v,w] &= vw-wv\\
&= \partial_r(\frac{\partial_\theta}{r})-\partial_\theta/r(\partial_r)\\
&= -\frac{\partial_\theta}{r^2}\ub{+\frac{\partial_r\partial_\theta}{r}-\frac{\partial_\theta\partial_r}{r}}{\text{Cancel}}\\
&= -\frac{\partial_\theta}{r^2}\marginnote{Ordinary mixed partial derivatives commute}\\
&= -\frac{w}{r}
\end{aligned}
$$
\begin{example}\label{b1e23}
Check the equation above.\mn{Check errata as well!}
\end{example}
\sol The equation to check is that for any $f \in C^\infty(M)$:
$$
[v,w](f)(p) = \frac{\partial^2}{\partial t\partial s}f(\psi_s(\phi_t(p))) - f(\phi_t(\psi_s(p)))\Big|_{s=t=0}
$$
which measures how flows $\phi_t,\psi_s$ generated by vector fields $v,w$ fail to commute.\\\\
Starting at $p$, evaluating $f$ and applying $[v,w]$:
$$
\begin{aligned}
[v,w](f)(p) &= v(w(f))(p) - w(v(f))(p)\\
&= \pd{}{t} (w(f))(\phi_t(p))|_{t=0} - \pd{}{s} (v(f))(\psi_s(p))|_{s=0}\\
&= \pd{}{t} \p*{ \pd{}{s} f(\psi_s(\phi_t(p)))\Big|_{s=0}}\Big|_{t=0} - \pd{}{s} \p*{ \pd{}{t} f(\phi_t(\psi_s(p)))\Big|_{t=0}}\Big|_{s=0}\marginnote{Applying partial derivative to make sure we differentiate w.r.t the right time parameter: $v \to t, w \to s$}\\
&= \frac{\partial^2}{\partial t\partial s}f(\psi_s(\phi_t(p))) - f(\phi_t(\psi_s(p)))\Big|_{s=t=0}
\end{aligned}
$$
\begin{example}\label{b1e24}
Show that for all vector fields $u,v,w$ on a manifold, and all real numbers
$\alpha$ and $\beta$, we have:
\begin{enumerate}
\item $[v,w]=-[w,v]$
\item $[u,\alpha v+\beta w]=\alpha[u,v]+\beta[u,w]$
\item \text{The \tb{Jacobi identity}:} $[u,[v,w]] + [v,[w,u]] + [w,[u,v]] = 0$.
\end{enumerate}
\end{example}
\sol Proofs:
\begin{enumerate}
\item $[v,w] = -(wv-vw) = -[w,v]$
\item $$\begin{aligned}
[u,\alpha v+\beta w] &= u(\alpha v+\beta w)-(\alpha v+\beta w)u\\
&= \ob{\alpha uv}{}+\ub{\beta uw}{} \ob{- \alpha vu}{}\ub{-\beta wu}{}\marginnote{Grouping like terms}\\
&= \alpha[u,v]+\beta[u,w]
\end{aligned}$$
\item $$\begin{aligned}
&[u,[v,w]] + [v,[w,u]] + [w,[u,v]]\\
&= u[v,w]-[v,w]u + v[w,u]-[w,u]v + w[u,v]-[u,v]w\\
&= uvw-uwv-vwu-wvu+vwu-vuw-wuv+uwv+wuv-wvu-uvw+vuw\\
&= \cancelto{1}{uvw}-\cancelto{2}{uwv}-\cancelto{3}{vwu}-\cancelto{4}{wvu}+\cancelto{3}{vwu}-\cancelto{5}{vuw}-\cancelto{6}{wuv}+\cancelto{2}{uwv}+\cancelto{6}{wuv}-\cancelto{4}{wvu}-\cancelto{1}{uvw}+\cancelto{5}{vuw}\\
&= 0
\end{aligned}$$
\end{enumerate}
\newpage
\section{Differential Forms}\label{b1c4}
% Using word wrap (option + Z) on VS Code from here on out
\begin{example}
Show that $\omega + \mu$ and $fw$ are really 1-forms, i.e, show linearity over $C^\infty(M)$
\end{example}
\sol Here
$$
\begin{aligned}
f,g,h &\in C^\infty(M)\\
\omega, \mu &\in \Omega^1(M)\\
\text{and} \quad v, w &\in \text{Vect}(M)
\end{aligned}
$$
Proving linearity:
$$
\begin{aligned}
(\omega + \mu)(gv+hw) &= \omega gv + \omega hw + \mu gv + \mu hw\\
&= g(\omega + \mu)(v+w) + h(\omega + \mu)(v+w)\\
f\omega(gv+hw) &= f\omega(gv) + f\omega(hw)\\
&= g(f\omega)(v) + h(f\omega)(w)
\end{aligned}
$$
\begin{example}
Show that $\Omega^1(M)$ is a module over $C^\infty(M)$ (see the definition in Ex \ref{b1e8})
\end{example}
\sol Follows from Ex \ref{b1e8}, for all $\omega, \mu \in \Omega^1(M)$ and $f,g,h \in C^\infty(M)$:
$$
\begin{aligned}
[f(\omega+\mu)](g) &= f\omega(g) + f\mu(g) = [f\omega + f\mu](g)\\
[(f+g)\omega](h) &= (f+g)\omega(h)=[f\omega+g\omega](h)\\
[(fg)\omega](h) &= (fg)\omega(h)=[f(g\omega)](h)\\
[1\omega](f) &= 1\cdot \omega(f)=\omega(f)
\end{aligned}
$$
\begin{example}
Show that
$$
\begin{aligned}
d(f+g) &= df+dg\\
d(\alpha f) &= \alpha\: df\\
(f+g)dh &= f\:dh+g\:dh\\
d(fg) &= f\:dg+g\:df
\end{aligned}
$$
for any $f,g,h \in C^\infty(M)$ and any $\alpha \in \R$.
\end{example}
\sol First three properties follow from linearity. So we check the Leibniz law for $v \in \text{Vect}(M)$:
$$
\begin{aligned}
d(fg)(v) &= v(fg)\\
&= fv(g) + gv(f)\\
&= f\:dg(v) + g\:df(v)\\
\end{aligned}
$$
\begin{example}\label{b1e28}
Suppose $f(x^1,\dots,x^n)$ is a function on $\R^n$. Show that
$$
df=\partial_\mu f\: dx^\mu
$$
\end{example}
\sol Applying the differential on some $v \in \text{Vect}(\R^n)$:\marginnote{As $\br{\partial_\mu}$ form a basis:$$v = v^\mu\partial_\mu$$
}
$$
df(v) = v(f) = v^\mu\partial_\mu f
$$
On the other hand
$$
\begin{aligned}
\partial_\mu f\: dx^\mu(v) &= \partial_\mu f dx^\mu\\
&= v^\nu\partial_\mu f\partial_\nu x^\mu\\
&= v^\nu\partial_\mu f\delta_\nu^\mu\\
&= v^\mu\partial_\mu f\\
\end{aligned}
$$
This proves $df=\partial_\mu f\: dx^\mu$.
\begin{example}
Show that the 1-forms $\br{dx^\mu}$ are linearly independent, i.e., if
$$
\omega = \omega_\mu\: dx^\mu = 0
$$
then all the functions $\omega_\mu$ are zero.
\end{example}
\sol Again considering a test vector $v$:
$$
\begin{aligned}
\omega(v) &= \omega_\mu dx^\mu(v)\\
&= \omega_\mu v(x^\mu)\\
&= v^\nu \omega_\mu \delta^\mu_\nu\\
&= v^\nu \omega_\nu
\end{aligned}
$$
And just like Ex \ref{b1e9}, we can show that $\omega = 0 \Leftrightarrow \omega_\mu = 0$.
\begin{example}\label{b1e30}
For the mathematically inclined: show that the $\omega_p$ is really well-defined by the formula above. That is, show that $\omega(v)(p)$ really depends only on $v_p$, not on the values of $v$ at other points. Also, show that a 1-form is determined by its values at points. In other words, if $\omega,\nu$ are two 1-forms on $M$ with $\omega_p=\nu_p$ for every point $p \in M$, then $\omega=\nu$.
\end{example}
\sol TODO first part.\\
We know that if $\omega_p=\nu_p$ for all $p \in M$, then using Ex \ref{b1e10} $\omega_p(v_p)=\nu_p(v_p)$ for some $v_p \in T_pM$. So straightforwardly $\omega(v)(p)=\nu(v)(p) \Rightarrow \omega = \nu$.
\begin{example}\label{b1e31}
Show that the dual\mn{The dual of a linear map $f:V \to W$ is defined by $$(f^*\omega)(v)=\omega(f(v))$$ where $f^*:W^* \to V^*$.} of the identity map on a vector space $V$ is the identity map on $V^*$. Suppose that we have linear maps $F:V\to W$ and $G:W\to X$. Show that $(gf)^* = f^*g^*$.
\end{example}
\sol Let $\omega: V \to \R$ and $v \in V$. We have to prove $\id_{V^*}:V^*\to V^*$ is the identity map on $V^*$.
$$
(\id_{V^*}\omega)(v) = \omega(\id_V(v)) = \omega(v) \Rightarrow \id_{V^*}\omega = \omega
$$
Moreover,
$$
\begin{aligned}
((gf)^*\omega)(v) &= (\omega)(g(f(v)))\\
&= (g^*\omega)(f(v))\\
&= ((f^*g^*)\omega)(v)\\
& \Rightarrow (gf)^* = (f^*g^*)
\end{aligned}
$$
\begin{example}
Show that the pullback of 1-forms defined by the formula above\mn{Given a 1-form $\omega$ on $N$, we get a 1-form $\phi^*\omega$ on $M$ defined by $$(\phi^*\omega)_p=\phi^*(\omega_q)$$ where $\phi(p)=q$} really exists and is unique.
\end{example}
\sol Proof of existence is very similar to the result in Ex \ref{b1e18}.
Proof of uniqueness comes from the result in Ex \ref{b1e30}.
\begin{example}
Let $\phi:\R\to\R$ be given by $\phi(t)=\sin t$. Let $dx$ be the usual 1-form on $\R$. Show that $\phi^*\:dx = \cos t\:dt$.
\mn{My guess is that this is what the author intended to ask, instead of $\phi_*\:dx = \cos t\:dt$, because pullback and the forms they act on are contravariant.}
\end{example}
\sol Using the fact that the exterior derivative is \tb{natural}:
$$
\begin{aligned}
\phi^*(dx)_t &= d((\phi^*x)(t))\\
&= d(x(\phi(t)))\marginnote{$(\phi^*x)(p) = x(\phi(p))$}\\
&= d(x(\sin t))\marginnote{Treating $x(\cdot)$ as selecting point $t$ (?)}\\
&= d(\sin t)_t\\
&= (\cos t dt)_t\\
\end{aligned}
$$
\begin{example}
Let $\phi:\R^2\to\R^2$ denote rotation counterclockwise by the angle $\theta$. Let $dx,dy$ be the usual basis of 1-forms on $\R^2$. Show that
$$
\begin{aligned}
\phi^*dx &= \cos\theta\:dx - \sin\theta\:dy\\
\phi^*dy &= \sin\theta\:dx + \cos\theta\:dy.
\end{aligned}
$$
\end{example}
\sol Using Ex \ref{b1e14}:
$$
\begin{aligned}
\phi^*dx &= d(\phi^*x) = d(\cos\theta\:x-\sin\theta\:y) = \cos\theta\:dx - \sin\theta\:dy \:\textcolor{red}{- (\sin\theta\:x + \cos\theta\:y)d\theta}\\
\phi^*dy &= d(\phi^*y) = d(\sin\theta\:x+\cos\theta\:y) = \sin\theta\:dx + \cos\theta\:dy \:\textcolor{red}{+ (\cos\theta\:x - \sin\theta\:y)d\theta}
\end{aligned}
$$
However I do get these additional terms marked in \textcolor{red}{red}.
\begin{example}
Show that the coordinate 1-forms $dx^\mu$ really are the differentials of the local coordinates $x^\mu$ on $U$.
\end{example}
\sol Acting coordinate 1-forms on the coordinate vector fields associated to the local coordinates $x^\mu$:
$$dx^\mu(\partial_\nu) = \partial_\nu(x^\mu) = \delta^\mu_\nu\marginnote{$df(v)=vf$}$$
Now take the pullback of the coordinate 1-forms and act them on the pushforward of the coordinate vector fields:
$$(\phi^*dx^\mu)(\phi^{-1}_*\partial_\nu) = dx^\mu(\phi_*\phi^{-1}_*\partial_\nu) = dx^\mu(\partial_\nu)=\delta^\mu_\nu$$
\begin{example}
In the situation above, show that
$$
dx^{\prime\nu} = \pd{x^{\prime\nu}}{x^\mu}dx^\mu.
$$
Show that for any 1-form $\omega$ on $\R^n$, writing
$$
\omega = \omega_\mu dx^\mu = \omega_\nu^\prime dx^{\prime\nu},
$$
your components $\omega^\prime_\nu$ are related to my components $\omega_\mu$ by
$$
\omega^\prime_\nu = \pd{x^{\mu}}{x^{\prime\nu}}\omega_\mu.
$$
\end{example}
\sol Since 1-forms form a basis, $dx^{\prime\mu}=T^\nu_\mu dx^\mu$ for some linear transformation $T^\nu_\mu$. Acting on $\partial_\mu$, we get
$$
\begin{aligned}
dx^{\prime\nu}\partial_\mu &= T_\lambda^\nu dx^\lambda \partial_\mu\\
&= T_\lambda^\nu \delta_\mu^\lambda\\
&= T_\mu^\nu\marginnote{(1)}
\end{aligned}
$$
but
$$
\begin{aligned}
dx^{\prime\nu}\partial_\mu &= \partial_\mu x^{\prime\nu}\\
&= \pd{x^{\prime\lambda}}{x^\mu} \partial_\lambda^\prime x^{\prime\nu}\\
&= \pd{x^{\prime\lambda}}{x^\mu} \delta_\lambda^\nu\\
&= \pd{x^{\prime\nu}}{x^\mu}\marginnote{(2)}
\end{aligned}
$$
Plugging (1) into (2), and (2) into the original transformation rule gives us:
$$
dx^{\prime\mu}=\pd{x^{\prime\nu}}{x^\mu} dx^\mu
$$
which allows us to write a 1-form $\omega = \omega_\mu dx^\mu$ in any basis.
\begin{example}\label{b1e37}
Show this.\mn{Pulling back a coordinate 1-form looks like:$$\phi^*(dx^{\prime\nu})=\pd{x^{\prime\nu}}{x^\mu} dx^\mu$$}
\end{example}
\sol TODO
% We shall use the ``sloppy'' convention, where we treat the chart coordinate vector field with the same :
% $$
% \pd{x^{\prime\nu}}{x^\mu} := \pd{(\phi^*x^{\prime\nu})}{x^\mu}
% $$
% Acting on the coordinate vector field $\partial_\lambda$:
% $$
% \begin{aligned}
% \phi^*(dx^{\prime\nu})\partial_\lambda &= \phi^*\p*{\pd{x^{\prime\nu}}{x^\mu}dx^\mu}\partial_\lambda\\
% &= \pd{x^{\prime\nu}}{x^\mu}dx^\mu(\phi_*\partial_\lambda)\marginnote{Ex 36}\\
% &= \pd{x^{\prime\nu}}{x^\mu} dx^\mu(\partial_\lambda)\marginnote{Using convention}\\
% \Rightarrow \phi^*(dx^{\prime\nu}) &= \pd{x^{\prime\nu}}{x^\mu} dx^\mu
% \end{aligned}
% $$
\begin{example}
Let
$$
e_\mu = T_\mu^\nu \partial_\nu,
$$
where $\partial_\nu$ are the coordinate vector fields associated to local coordinates on an open set $U$, and $T_\mu^\nu$ are functions on $U$. Show that the vector fields $e_\mu$ are a basis of vector fields on $U$ if and only if for each $p \in U$ the matrix $T_\mu^\nu(p)$ is invertible.
\end{example}
\sol We check $\Leftarrow$, the implication that $\{e_\mu\}$ is a basis supposing $T$ is invertible. Let $S = T^{-1}$:
$$
\begin{aligned}
S_\mu^\lambda e_\lambda &= S_\mu^\lambda T_\lambda^\nu \partial_\nu\\
&= \delta_\mu^\nu \partial_\nu\\
&= \partial_\mu\\
\end{aligned}
$$
Any vector $u \in U$ can be expressed as
$$
u = u^\mu \partial_\mu = u^\mu S_\mu^\lambda e_\lambda = u^{\prime\mu} e_\mu
$$
so ${E_\mu}$ is a basis ($\Leftarrow$). Similarly to check $\Rightarrow$, we must have that $S_\mu^\lambda T_\lambda^\nu = \delta_\mu^\nu$ which means $T$ is invertible.
\begin{example}
Use the previous exercise to show that the dual basis exists and is unique.
\end{example}
\sol If $\{e_\mu\}$ is a basis of vector fields on $U$, we automatically get a \tb{dual basis} of 1-forms $\{f^\mu\}$ such that
$$
f^\nu(e_\mu) = \delta_\mu^\nu = S_\mu^\lambda T_\lambda^\nu.
$$
Because $T$ exists, is invertible and therefore unique, so is the dual basis.\marginnote{Ref [5] Pg 80}
\begin{example}
Let $e_\mu$ be a basis of vector fields on $U$ and let $f^\mu$ be the dual basis of 1-forms. Let
$$
e^\prime_\mu = T_\mu^\nu e_\nu
$$
be another basis of vector fields, and let $f^{\prime\mu}$ be the corresponding dual basis of 1-forms. Show that
$$
f^{\prime\mu} = (T^{-1})^\mu_\nu f^\nu.
$$
Show that if $v=v^\mu e_\mu = v^{\prime\mu} e^\prime_\mu$, then
$$
v^{\prime\mu} = (T^{-1})^\mu_\nu v^\nu,
$$
and that if $\omega=\omega_\mu f^\mu = \omega^\prime_\mu f^{\prime\mu}$ then
$$
\omega^\prime_\mu = T^\nu_\mu \omega_\nu.
$$
\end{example}
\sol $T^{-1}$ is going to be the change of basis for the dual basis of 1-forms, as we can work out from the previous exercise. This applies to other contravariant objects like local coordinates (coordinate vector fields components) as well. However the covariant objects like coordinate vector fields and coordinate 1-form components are going to be transform with $T$.
\begin{example}
Show that
$$
u \wedge v \wedge w = \det \begin{pmatrix}
u_x&u_y&u_z\\v_x&v_y&v_z\\w_x&w_y&w_z
\end{pmatrix}\:dx \wedge dy\wedge dz.
$$
Compare this to $\vec{u} \cdot (\vec{v} \times \vec{w})$.
\end{example}
\sol Simple algebra reveals
$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \det \begin{pmatrix}
u_x&u_y&u_z\\v_x&v_y&v_z\\w_x&w_y&w_z
\end{pmatrix}$$
\begin{example}
Show that if $a,b,c,d$ are four vectors in a 3-dimensional space then $a\wedge b\wedge c\wedge d = 0$.
\end{example}
\sol Let $\det(\cdot) \equiv \alpha$.
$$
\begin{aligned}
a\wedge b\wedge c\wedge d &= a \wedge \alpha (dx \wedge dy\wedge dz)\\
&= (a_xdx + a_ydy + a_zdz) \wedge \alpha (dx \wedge dy\wedge dz)\\
&= \alpha a_xdx \wedge dx \wedge dy\wedge dz\\
&+ \alpha a_ydy \wedge dx \wedge dy\wedge dz\\
&+ \alpha a_zdz \wedge dx \wedge dy\wedge dz\\
&= 0
\end{aligned}
$$
by antisymmetry: $x \wedge x = -(x \wedge x) = 0$.
\begin{example}
Describe $\Lambda V$ if $V$ is 1-dimensional, 2-dimensional, or 4-dimensional.
\end{example}
\sol If $V$ is $n$-dimensional then $\Lambda V$ is the space of linear combinations of $p$-forms
$$\omega = \omega_i (dx^{i_1} \wedge dx^{i_2} \wedge \dots \wedge dx^{i_p})$$
for all $p \le n$, and the $i_p$ are chosen from $1 \dots n$ without replacement. It has dimension $2^n$, the cardinality of the power set (set of all subsets).
\begin{example}
Let $V$ be an $n$-dimensional vector space. Show that $\Lambda^p V$ is empty for $p > n$, and that for $0 \le p \le n$ the dimension of $\Lambda^p V$ is $n!/p!(n-p)!$.
\end{example}
\sol It checks out that
$$
\dim(\Lambda^p V) = ^n\!\!C_p = {n \choose p} = \frac{n!}{p!(n-p)!}
$$
\begin{example}
Show that $\Lambda V$ is the direct sum of the subspaces $\Lambda^p V$:
$$
\Lambda V = \bigoplus \Lambda^p V,
$$
and that the dimension of $\Lambda V$ is $2^n$ if $V$ is $n$-dimensional.
\end{example}
\sol Every $v \in \Lambda V$ can be expressed as a linear combination of $v_p \in \Lambda^p V$, and by adding the dimension of each subspace
$$
\begin{aligned}
\dim(\Lambda V) &= \sum_{p=0}^{n} \dim(\Lambda^p V)\\
&= \sum_{p=0}^{n} {n \choose p}\\
&= 2^n
\end{aligned}
$$