-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchatwithGroq.py
49 lines (40 loc) · 1.7 KB
/
chatwithGroq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Groq is an inference engine that supports multiple LLMs including LLaMA and Mixtral
# Install necessary packages
# pip install streamlit groq dotenv
import os
import streamlit as st
from groq import Groq
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Set up Streamlit app with any title you like
st.title("Chat with Groq")
# Initialize Groq client with API key from environment variable
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# Manage session state using Streamlit's st.session_state
if "groq_model" not in st.session_state:
st.session_state["groq_model"] = "llama3-70b-8192" # Use the modelid from https://console.groq.com/docs/models
if "messages" not in st.session_state:
st.session_state.messages = []
# Display existing chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Prompt user for input, you can type any placeholder text
if prompt := st.chat_input("What is up?"):
# Add user input to messages list
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate response using Groq model
with st.chat_message("assistant"):
chat_completion = client.chat.completions.create(
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
model=st.session_state["groq_model"],
)
response = chat_completion.choices[0].message.content
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})