-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChatGPTwithOllama.py
55 lines (43 loc) · 1.68 KB
/
ChatGPTwithOllama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import requests
import streamlit as st
import json
st.title("ChatGPT with Local LLM with Ollama")
# URL of the local Ollama server
OLLAMA_API_URL = "http://localhost:11434/api/chat" # This is the default port
# Model to use
OLLAMA_MODEL = "phi3" # Replace with your desired model, check Ollama website for supported models
if "messages" not in st.session_state:
st.session_state.messages = []
# Display previous messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle user input
if prompt := st.chat_input("What is up?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Prepare payload for Ollama API
payload = {
"model": OLLAMA_MODEL,
"messages": [
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
}
# Make a request to Ollama API
response = requests.post(OLLAMA_API_URL, json=payload, stream=True)
assistant_reply = ""
for chunk in response.iter_lines():
if chunk:
chunk_data = chunk.decode('utf-8')
json_chunk = None
try:
json_chunk = json.loads(chunk_data)
except json.JSONDecodeError:
continue
if json_chunk and "message" in json_chunk and "content" in json_chunk["message"]:
assistant_reply += json_chunk["message"]["content"]
with st.chat_message("assistant"):
st.markdown(assistant_reply)
st.session_state.messages.append({"role": "assistant", "content": assistant_reply})