@@ -25,7 +25,7 @@ def rmse(org_img: np.ndarray, pred_img: np.ndarray, data_range=4096):
25
25
_assert_image_shapes_equal (org_img , pred_img , "RMSE" )
26
26
rmse_final = []
27
27
for i in range (org_img .shape [2 ]):
28
- m = np .mean (((org_img [:, :, i ] - pred_img [:, :, i ]) / data_range ) ** 2 )
28
+ m = np .mean (np . square ((org_img [:, :, i ] - pred_img [:, :, i ]) / data_range ))
29
29
s = np .sqrt (m )
30
30
rmse_final .append (s )
31
31
return np .mean (rmse_final )
@@ -226,7 +226,7 @@ def sam(org_img: np.ndarray, pred_img: np.ndarray):
226
226
val = np .clip (np .dot (org_img [:, i ], pred_img [:, i ]) / (np .linalg .norm (org_img [:, i ]) * np .linalg .norm (pred_img [:, i ])), - 1 , 1 )
227
227
sam_angles [i ] = np .arccos (val )
228
228
229
- return np .mean (sam_angles )
229
+ return np .mean (sam_angles * 180.0 / np . pi )
230
230
231
231
232
232
def sre (org_img : np .ndarray , pred_img : np .ndarray ):
@@ -237,7 +237,7 @@ def sre(org_img: np.ndarray, pred_img: np.ndarray):
237
237
238
238
sre_final = []
239
239
for i in range (org_img .shape [2 ]):
240
- numerator = (np .mean (org_img [:, :, i ]))** 2
240
+ numerator = np . square (np .mean (org_img [:, :, i ]))
241
241
denominator = ((np .linalg .norm (org_img [:, :, i ] - pred_img [:, :, i ]))) / \
242
242
(org_img .shape [0 ] * org_img .shape [1 ])
243
243
sre_final .append (10 * np .log10 (numerator / denominator ))
0 commit comments