-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
223 lines (183 loc) · 6.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import json
import math
import os
import time
from collections import Counter
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
from typing import Callable, Literal
import serde.json as sjson
import tyro
from beartype import beartype
from serde import serde
@serde
@dataclass
class TrainConfig:
model: Literal[
'PPLCNet_x0_25', 'PPLCNet_x0_35', 'PPLCNet_x0_5', 'PPLCNet_x0_75',
'PPLCNet_x1_0', 'PPLCNet_x1_5', 'PPLCNet_x2_0', 'PPLCNet_x2_5',
'resnet18'
] = 'PPLCNet_x1_5'
optimizer: Literal['SGD', 'Adam', 'AdamW'] = 'Adam'
lr: float = 0.001
min_lr: float = 0.0001
batch_size: int = 256
num_epochs: int = 200
min_lr_epoch: int = 100
load_model: Path | None = None
log_dir: Path = Path(f'runs/{datetime.now():%Y%m%d-%H%M%S}')
last_epoch: int = 0
random_seed: int = 42
test_size: float = 0.2
def save(self):
self.log_dir.joinpath('config.json').write_text(sjson.to_json(self))
args = tyro.cli(TrainConfig)
if args.log_dir.exists():
raise FileExistsError(f'{args.log_dir} already exists')
if args.load_model and not args.load_model.exists():
raise FileNotFoundError(f'{args.load_model} does not exist')
args.log_dir.mkdir(parents=True, exist_ok=True)
args.save()
os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'
import albumentations as A
import cv2
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from albumentations.pytorch import ToTensorV2
from PIL import Image
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, Dataset, WeightedRandomSampler
from torch.utils.tensorboard import SummaryWriter
from torchvision import models, transforms
from tqdm import tqdm
import pplcnet
from dataset import ImageDataset
# 定义数据增强和归一化
train_transform = A.Compose([
A.ChannelShuffle(p=0.5),
A.ColorJitter(p=0.5),
A.Rotate(limit=90, p=1.0),
A.CoarseDropout(
max_holes=8, max_height=8, max_width=8,
min_holes=1, min_height=8, min_width=8,
fill_value=0, p=0.2
),
A.Normalize(mean=0, std=1),
ToTensorV2(),
])
test_transform = A.Compose([
A.Normalize(mean=0, std=1),
ToTensorV2(),
])
total_dataset = ImageDataset(
[Path('./data/2024-07-25-21-36-48/')],
)
train_dataset, test_dataset = total_dataset.split(test_size=args.test_size, train_transform=train_transform, test_transform=test_transform)
weight_add = np.array([0, 0.25, 0, 0])
train_loader = DataLoader(
train_dataset, batch_size=256, sampler=train_dataset.get_weighted_sampler(weight_add=weight_add),
num_workers=4, pin_memory=True
)
test_loader = DataLoader(test_dataset, batch_size=256)
# 定义模型
if args.model == 'resnet18':
model = models.resnet18()
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 4) # 4 classes
else:
model = getattr(pplcnet, args.model)(num_classes=4)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
if args.load_model:
model.load_state_dict(torch.load(args.load_model))
# 定义损失函数和优化器
criterion_weight = torch.Tensor(train_dataset.get_class_weights(
weight_add=weight_add
)).to(device)
print(f'{criterion_weight=}')
criterion = nn.CrossEntropyLoss(weight=criterion_weight)
optimizer = getattr(optim, args.optimizer)(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=1,
gamma=math.pow(args.min_lr / args.lr, 1 / args.min_lr_epoch)
)
writer = SummaryWriter(log_dir=args.log_dir)
# 训练函数
def train(model, loader, criterion, optimizer, epoch):
model.train()
running_loss = 0.0
all_preds = []
all_labels = []
for i, (inputs, labels) in enumerate(loader):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
writer.add_scalar('loss/training loss', running_loss, epoch * len(loader) + i)
running_loss = 0.0
# print(all_labels, all_preds)
cm = confusion_matrix(all_labels, all_preds)
fig, ax = plt.subplots(figsize=(10, 10))
sns.heatmap(cm, annot=True, fmt='d', ax=ax)
writer.add_figure('cfmtx/training confusion matrix', fig, epoch)
# 在这里添加调度器的步进
scheduler.step()
# 可选:记录当前的学习率
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalar('lr', current_lr, epoch)
# 测试函数
def test(model, loader, criterion, epoch):
model.eval()
test_loss = 0
correct = 0
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in loader:
inputs, labels = inputs.to(device), labels.to(device)
# print(inputs.dtype, labels.dtype)
outputs = model(inputs)
test_loss += criterion(outputs, labels).item()
_, preds = torch.max(outputs, 1)
correct += (preds == labels).sum().item()
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
test_loss /= len(loader.dataset)
accuracy = 100. * correct / len(loader.dataset)
writer.add_scalar('loss/test loss', test_loss, epoch)
writer.add_scalar('test accuracy', accuracy, epoch)
cm = confusion_matrix(all_labels, all_preds)
fig, ax = plt.subplots(figsize=(10, 10))
sns.heatmap(cm, annot=True, fmt='d', ax=ax)
writer.add_figure('cfmtx/test confusion matrix', fig, epoch)
return test_loss, accuracy
# 训练循环
num_epochs = args.num_epochs
t0 = time.time()
for epoch in (bar := tqdm(range(num_epochs))):
train(model, train_loader, criterion, optimizer, epoch)
if epoch % 2 == 0:
test_loss, accuracy = test(model, test_loader, criterion, epoch)
eps = (len(train_loader.dataset) + len(test_loader.dataset)) / (time.time() - t0)
writer.add_scalar('eps', eps, epoch)
# print(f'[{epoch+1}/{num_epochs}] Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%, EPS: {eps:.2f}')
bar.set_description(f'Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%, EPS: {eps:.2f}')
torch.save(model.state_dict(), args.log_dir / f"{args.model}.pth")
args.last_epoch = epoch
t0 = time.time()
writer.close()
args.save()