forked from abhijat/ProgrammingCollectiveIntelligence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcn.py
91 lines (65 loc) · 2.39 KB
/
pcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from numpy import *
class pcn:
""" A basic Perceptron"""
def __init__(self,inputs,targets):
""" Constructor """
# Set up network size
if ndim(inputs)>1:
self.nIn = shape(inputs)[1]
else:
self.nIn = 1
if ndim(targets)>1:
self.nOut = shape(targets)[1]
else:
self.nOut = 1
self.nData = shape(inputs)[0]
# Initialise network
self.weights = random.rand(self.nIn+1,self.nOut)*0.1-0.05
def pcntrain(self,inputs,targets,eta,nIterations):
""" Train the thing """
# Add the inputs that match the bias node
inputs = concatenate((inputs,-ones((self.nData,1))),axis=1)
# Training
change = range(self.nData)
for n in range(nIterations):
self.outputs = self.pcnfwd(inputs);
self.weights += eta*dot(transpose(inputs),targets-self.outputs)
# Randomise order of inputs
random.shuffle(change)
inputs = inputs[change,:]
targets = targets[change,:]
return self.weights
def pcnfwd(self,inputs):
""" Run the network forward """
outputs = dot(inputs,self.weights)
# Threshold the outputs
return where(outputs>0,1,0)
def confmat(self,inputs,targets):
"""Confusion matrix"""
# Add the inputs that match the bias node
inputs = concatenate((inputs,-ones((self.nData,1))),axis=1)
outputs = dot(inputs,self.weights)
nClasses = shape(targets)[1]
if nClasses==1:
nClasses = 2
outputs = where(outputs>0,1,0)
else:
# 1-of-N encoding
outputs = argmax(outputs,1)
targets = argmax(targets,1)
cm = zeros((nClasses,nClasses))
for i in range(nClasses):
for j in range(nClasses):
cm[i,j] = sum(where(outputs==i,1,0)*where(targets==j,1,0))
print cm
print trace(cm)/sum(cm)
def logic(self):
""" Run AND and XOR logic functions"""
a = array([[0,0,0],[0,1,0],[1,0,0],[1,1,1]])
b = array([[0,0,0],[0,1,1],[1,0,1],[1,1,0]])
p = self.pcn(a[:,0:2],a[:,2:])
p.pcntrain(a[:,0:2],a[:,2:],0.25,10)
p.confmat(a[:,0:2],a[:,2:])
q = self.pcn(a[:,0:2],b[:,2:])
q.pcntrain(a[:,0:2],b[:,2:],0.25,10)
q.confmat(a[:,0:2],b[:,2:])