-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1-Circuits.agda
609 lines (512 loc) · 19.8 KB
/
1-Circuits.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
------------------------------------------------------------------------
-- Coursework 1: Circuits (100 marks)
--
-- The goal of this coursework is to write a Domain Specific Language
-- to define small circuits. We will use dependent types to keep track
-- of properties of the circuits such as their number of inputs and
-- outputs and prove that they compute specific boolean functions.
--
------------------------------------------------------------------------
------------------------------------------------------------------------
-- Submission
--
-- Remember that this is submitted by creating a *private* repository
-- on either github or the departmental gitlab and inviting me so that
-- I can mark your work.
--
-- Deadline: Thursday 15 February at 5pm
------------------------------------------------------------------------
------------------------------------------------------------------------
-- Life advice
--
-- 0. Workflow
--
-- If you find below some concepts or syntax we have not yet seen, don't
-- hesitate to skip the questions and complete other problems further
-- down the file.
-- You can come back to the questions you skipped once we have covered
-- the related material in the lectures.
--
-- 1. Difficulty
--
-- It is not the case that the hard marks are all at the end of the
-- file, and the easy marks are at the beginning. Consequently, it
-- might be strategic to skip ahead if you get stuck.
--
-- 2. Compositionality
--
-- It is also often the case that prior definitions are useful.
-- If you get stuck, do look back up to see whether something
-- is exactly what you are missing.
--
-- 3. Hints
--
-- We are being very explicit in the import lists of the modules
-- included at the top of this file. This should give you an idea
-- of the lemmas you will need to deploy.
------------------------------------------------------------------------
open import Agda.Builtin.FromNat
open import Data.Bool.Base using (Bool; true; false; not; _∧_; _∨_; _xor_; if_then_else_)
open import Data.Fin.Base using (Fin; zero; suc; fromℕ; _↑ˡ_; _↑ʳ_)
import Data.Fin.Literals; instance finLiterals = λ {n} → Data.Fin.Literals.number n
open import Data.Nat.Base as Nat using (ℕ; zero; suc; _+_; _⊔_; _*_; _≤_; z≤n; s≤s; NonZero)
import Data.Nat.Literals; instance natLiterals = Data.Nat.Literals.number
open import Data.Nat.Properties
using ( +-comm; +-assoc; +-identityʳ
; *-identityˡ; *-identityʳ
; module ≤-Reasoning
; ≤-reflexive; +-monoˡ-≤
; ⊔-idem)
open import Data.Product.Base using (_,_)
open import Data.Unit.Base using (tt)
open import Data.Vec.Base using (Vec; []; _∷_; replicate; head; _++_; lookup)
open import Function.Base using (_∘_; _$_)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; cong; cong₂; module ≡-Reasoning)
variable i j o m n : ℕ
------------------------------------------------------------------------
-- Marks
--
-- Boolean logic 6 MARKS
-- Vector functions 11 MARKS
-- Syntax of circuits 5 MARKS
-- Semantics of circuits 10 MARKS
-- Logic gates 18 MARKS
-- Complex circuits 30 MARKS
-- Extension 20 MARKS
--
-- TOTAL 100 MARKS
------------------------------------------------------------------------
-- Boolean logic (6 MARKS)
------------------------------------------------------------------------
-- (1 MARK)
-- Define nand
nand : Bool → Bool → Bool
nand = {!!}
-- (1 MARK)
-- Prove that not is involutive
not-involutive : ∀ b → not (not b) ≡ b
not-involutive = {!!}
-- (1 MARK)
-- Prove that the conjunction is idempotent
∧-diag : ∀ b → b ∧ b ≡ b
∧-diag = {!!}
-- (3 MARK)
-- Prove the 2 de Morgan laws
-- (Bonus mark for making the proofs as short as possible)
not-∧ : ∀ x y → not (x ∧ y) ≡ not x ∨ not y
not-∧ = {!!}
not-∨ : ∀ x y → not (x ∨ y) ≡ not x ∧ not y
not-∨ = {!!}
------------------------------------------------------------------------
-- Vector functions and their properties (11 MARKS)
------------------------------------------------------------------------
variable A B C : Set
-- (1 MARK)
-- Implement map, the function applying a function to all of
-- values stored in a vector
map : (A → B) → Vec A n → Vec B n
map = {!!}
-- (1 MARK)
-- Flatten a vector of vectors.
-- Hint: look at the definition of _*_ in terms of _+_ and
-- consider using _++_
concat : Vec (Vec A n) m → Vec A (m * n)
concat = {!!}
_ : concat ((Nat.zero ∷ 1 ∷ []) ∷ (2 ∷ 3 ∷ []) ∷ []) ≡ 0 ∷ 1 ∷ 2 ∷ 3 ∷ []
_ = {!!}
-- (1 MARK)
-- Given a natural number n, enumerate all the (Fin n)
-- values from smallest (0) to largest (n-1).
allFin : (n : ℕ) → Vec (Fin n) n
allFin = {!!}
_ : lookup (allFin 4) 2 ≡ 2
_ = {!!}
-- SplitAt is a record type describing how a vector of size
-- (m + n) can be taken into
-- * a record named left of size m
-- * a record named right of size n
-- such that (left ++ right) is the original vector
record SplitAt (m : ℕ) {n : ℕ} (xs : Vec A (m + n)) : Set where
constructor mkSplitAt
field left : Vec A m
right : Vec A n
correct : left ++ right ≡ xs
-- (1 MARK)
-- Prove that if we know how to split (xs) according to m
-- then we know how to split (x ∷ xs) according to (suc m)
cons : ∀ (x : A) {xs} → SplitAt m {n} xs → SplitAt (suc m) (x ∷ xs)
cons = {!!}
-- (1 MARK)
-- Prove that we can always split a vector
splitAt : (m : ℕ) (xs : Vec A (m + n)) → SplitAt m xs
splitAt = {!!}
-- (1 MARK)
-- Prove that map distributes over replicate:
map-replicate : (f : A → B) (n : ℕ) (x : A) →
map f (replicate n x) ≡ replicate n (f x)
map-replicate = {!!}
-- (1 MARK)
-- Prove that map distributes over append
map-++ : (f : A → B) (xs : Vec A m) (ys : Vec A n) →
map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++ = {!!}
-- (1 MARK)
-- Prove that map distributes over concat
map-concat : (f : A → B) (xss : Vec (Vec A n) m) →
map f (concat xss) ≡ concat (map (map f) xss)
map-concat = {!!}
-- (1 MARK)
-- Prove that we can fuse two consecutive maps into a single one
map-map : (g : B → C) (f : A → B) (xs : Vec A m) →
map g (map f xs) ≡ map (g ∘ f) xs
map-map = {!!}
-- (2 MARKS)
-- Prove that mapping lookup on allFin yields the identity
map-lookup-allFin : (xs : Vec A m) → map (lookup xs) (allFin m) ≡ xs
map-lookup-allFin = {!!}
------------------------------------------------------------------------
-- Syntax of circuits (5 MARKS)
------------------------------------------------------------------------
-- First we introduce a type of circuits. It is indexed by
-- two natural numbers:
-- i represents the number of inputs to the circuit
-- o represents the number of outputs to the circuit
data Circuit : (i o : ℕ) → Set where
-- `false is the constructor representing the constant bit 0
-- Viewed as a circuit it takes 0 input and has exactly 1 output
-- that is constantly false. It corresponds to the diagram
--
-- ⌈‾‾‾‾‾‾‾⌉
-- | false |---- 0
-- ⌊_______⌋
`false : Circuit 0 1
-- `nand is the constructor representing the universal nand gate
-- It takes two inputs and returns a single output and corresponds
-- to the diagram:
--
-- x₁ ----⌈‾‾‾‾‾‾⌉
-- | nand |---- y₁ = nand x₁ x₂
-- x₂ ----⌊______⌋
`nand : Circuit 2 1
-- `seq sequentially composes two circuits: if the first one has
-- i inputs and m outputs and the second one m inputs and o outputs
-- we can plug the first's outputs into the second's inputs and
-- obtain a bigger circuit with i inputs and o outputs.
-- It corresponds to the following diagram
--
-- x₁ ----⌈‾‾‾‾‾‾⌉---- y₁ ----⌈‾‾‾‾‾‾⌉---- z₁
-- ⋮ | c₁ | ⋮ | c₂ |
-- xᵢ ----⌊______⌋---- yₘ ----⌊______⌋---- zₒ
`seq : (c₁ : Circuit i m) (c₂ : Circuit m o) → Circuit i o
-- `par composes two circuits in parallel: if the first one
-- has i inputs and o outputs and the second one has m inputs
-- and n outputs, we obtain a bigger circuit with (i + m) inputs
-- and (o + n) outputs.
-- It corresponds to the following diagram:
--
-- x₁ ------ u₁ ----⌈‾‾‾‾‾‾⌉---- y₁ ---- z₁
-- ⋮ | c₁ | ⋮
-- uᵢ ----⌊______⌋---- yₘ
-- ⋮ ⋮
-- l₁ ----⌈‾‾‾‾‾‾⌉---- t₁
-- ⋮ | c₂ | ⋮
-- x₍ᵢ₊ₘ)--- sₘ ----⌊______⌋---- tₙ ---- z₍ₒ₊ₙ₎
`par : (c₁ : Circuit i o) (c₂ : Circuit m n) → Circuit (i + m) (o + n)
-- Last but not least, `mix allows you to produce arbitrary wiring
-- patterns mapping (possibly duplicating, throwing away, permutting,
-- etc.) i inputs into o outputs. It takes a vector of length o
-- containing (Fin i) values. Each (Fin i), a finite number up to i,
-- describes the input the specific output is linked to.
-- For instance, `mix (1 ∷ 0 ∷ 3 ∷ []) would correspond to the
-- following diagram linking
-- 1 ∷ 0 ∷ 3 ∷ []
-- | | ⌊ the third output to the 4th input (Fins start indexing at 0)
-- | ⌊ the second output to the 1st input
-- ⌊ the first output to the 2nd input
--
-- x₁ -----, ,---- y₁ = x₂
-- ><
-- x₂ -----' '---- y₂ = x₁
-- x₃ ---⊣
-- x₄ ------------ y₃ = x₄
`mix : Vec (Fin i) o → Circuit i o
-- (1 MARK)
-- Implement the empty circuit with 0 inputs and 0 outputs.
-- Build it using `mix.
`empty : Circuit 0 0
`empty = {!!}
-- (1 MARK)
-- The identity wire has 1 input and 1 output.
-- Build it using `mix. It should correspond to the circuit
--
-- x --------- x
--
`id : Circuit 1 1
`id = {!!}
-- (1 MARK)
-- The identity circuit for n wires can be defined generically.
-- Do so below.
`idₙ : (n : ℕ) → Circuit n n
`idₙ = {!!}
-- (1 MARK)
-- Build `dup, the circuit taking one input and duplicating it
-- to produce two outputs. It should correspond to the circuit
--
-- ,---- x
-- x ---<
-- '---- x
--
`dup : Circuit 1 2
`dup = {!!}
-- (1 MARK)
-- Sometimes expressions do not quite line up and
-- we can only *prove* that the input/output arities
-- we get are equal to the ones we want.
-- Implement a combinator allowing you to adapt the
-- arities in that case.
_[_]_ : m ≡ i → Circuit i o → o ≡ n → Circuit m n
_[_]_ = {!!}
------------------------------------------------------------------------
-- Semantics of circuits (10 MARKS)
------------------------------------------------------------------------
-- (5 MARKS)
-- Define the 'depth' of a circuit as the maximum number of
-- nand logic gates separating its inputs from its outputs.
-- It is an important measure as it gives a sense of the
-- circuit's latency (the time it takes for the input to be
-- turned into the outputs).
depth : Circuit i o → ℕ
depth = {!!}
-- (5 MARKS)
-- Define the meaning of a circuit as a function from
-- vectors of boolean inputs to vectors of boolean outputs
-- Hint: some of the functions over vectors we defined above
-- may be useful
meaning : Circuit i o → (Vec Bool i → Vec Bool o)
meaning = {!!}
------------------------------------------------------------------------
-- Building logic gates and proving their properties (18 MARKS)
------------------------------------------------------------------------
-- Channelling your CS106 memories, we are going to build
-- basic logic gates in terms of the universal gate `nand,
-- the constant wire `false and wiring components.
-- (1 MARK)
-- Build `not. Remember that (x ∧ x ≡ x) and so that
-- (¬ (x ∧ x) ≡ ¬ x) i.e. not can be obtained by plugging
-- the same input into both of nand's input ports like so:
--
-- ,----⌈‾‾‾‾‾‾⌉
-- x ---< | nand |--- not x
-- '----⌊______⌋
`not : Circuit 1 1
`not = {!!}
-- Test: not's depth is 1
_ : depth `not ≡ 1
_ = {!!}
-- (1 MARK)
-- Prove that the meaning of `not is exactly the boolean
-- function not
not-correct : ∀ x → meaning `not (x ∷ []) ≡ not x ∷ []
not-correct = {!!}
-- (1 MARK)
-- Build the function turning a boolean into a constant
-- signal corresponding to it
`bit : Bool → Circuit 0 1
`bit = {!!}
-- (1 MARK)
-- Prove that bit's meaning is indeed the appropriate constant bit
bit-correct : ∀ b → meaning (`bit b) [] ≡ b ∷ []
bit-correct = {!!}
-- (2 MARK)
-- Now implement `and, the circuit taking the conjunction
-- of its two inputs
`and : Circuit 2 1
`and = {!!}
-- Test: and's depth is 2
_ : depth `and ≡ 2
_ = {!!}
-- (2 MARK)
-- Prove that your implementation is correct: the meaning of
-- `and is the conjunction of its inputs.
and-correct : ∀ x y → meaning `and (x ∷ y ∷ []) ≡ (x ∧ y) ∷ []
and-correct = {!!}
-- (1 MARK)
-- Implement `or, the circuit taking the disjunction
-- of its two inputs
`or : Circuit 2 1
`or = {!!}
-- Test: `or's depth is 2
_ : depth `or ≡ 2
_ = {!!}
-- (3 MARK)
-- Prove that your implementation is correct: the meaning of
-- `or is the disjunction of its inputs.
or-correct : ∀ x y → meaning `or (x ∷ y ∷ []) ≡ (x ∨ y) ∷ []
or-correct = {!!}
-- (1 MARK)
-- Implement `xor
`xor : Circuit 2 1
`xor = {!!}
-- (2 MARK)
-- Prove `xor correct
xor-correct : ∀ x y → meaning `xor (x ∷ y ∷ []) ≡ (x xor y) ∷ []
xor-correct = {!!}
-- (1 MARK)
-- Implement `eq, the circuit whose output is 1 if
-- its inputs are equal, and 0 otherwise
`eq : Circuit 2 1
`eq = {!!}
_≡ᵇ_ : Bool → Bool → Bool
true ≡ᵇ true = true
false ≡ᵇ false = true
_ ≡ᵇ _ = false
-- (2 MARK)
-- Prove `eq correct: it behaves the same as the equality
-- test defined above
eq-correct : ∀ x y → meaning `eq (x ∷ y ∷ []) ≡ x ≡ᵇ y ∷ []
eq-correct = {!!}
------------------------------------------------------------------------
-- Building more complex circuits (30 MARKS)
------------------------------------------------------------------------
-- (1 MARK)
-- Implement bits, the constant circuit returning exactly
-- the outputs passed as an argument
`bits : Vec Bool o → Circuit 0 o
`bits = {!!}
-- (1 MARK)
-- Prove bits correct: its meaning is exactly its input
bits-correct : (ρ : Vec Bool o) → meaning (`bits ρ) [] ≡ ρ
bits-correct = {!!}
-- (1 MARK)
-- Write fan, the circuit copying its input n times.
-- It should look something like
-- x ----⌈‾‾‾‾‾‾⌉---- y₁ = x
-- | fan | ⋮
-- ⌊______⌋---- yₙ = x
-- Hint: use functions imported from Data.Vec.Base
`fanₙ : (n : ℕ) → Circuit 1 n
`fanₙ = {!!}
-- (1 MARK)
-- Prove fan correct
fan-correct : ∀ n x → meaning (`fanₙ n) (x ∷ []) ≡ replicate n x
fan-correct = {!!}
-- (3 MARKS)
-- Implement the circuit copying its group of inputs n times
-- It should look something like:
--
-- x₁ ----⌈‾‾‾‾‾‾⌉---- y₁ = x₁ ‵|
-- ⋮ | | ⋮ > 1st copy of the inputs
-- xᵢ ----| |---- yᵢ = xᵢ ,|
-- | |
-- | copy | ⋮
-- | |
-- | |---- y₍ₙ₋₁₎ᵢ = x₁ `|
-- | | ⋮ > nth copy of the inputs
-- ⌊______⌋---- yₙᵢ = xᵢ ,|
-- Hint: use functions imported from Data.Vec.Base
`copyₙ : (n : ℕ) → Circuit i (n * i)
`copyₙ = {!!}
-- (5 MARKS)
-- Prove `copyₙ correct: its outputs are literally just its
-- inputs replicated n times.
-- Hint: use the properties of the functions imported from
-- Data.Vec.Properties!
-- It may be useful to additionally prove:
-- map-concat : {A B : Set} (f : A → B) (xss : Vec (Vec A m) n) →
-- map f (concat xss) ≡ concat (map (map f) xss)
copy-correct : ∀ n ρ → meaning (`copyₙ {i} n) ρ ≡ concat (replicate n ρ)
copy-correct = {!!}
-- Defining double-unfold, a useful lemma for the next
-- question, and later down the file too
double-unfold : ∀ n → 2 * n ≡ n + n
double-unfold n = cong (n +_) (+-identityʳ n)
-- (1 MARK)
-- Implement dup as a special case of copy:
-- it takes its inputs and duplicates them.
`dupₙ : (n : ℕ) → Circuit n (n + n)
`dupₙ = {!!}
-- (4 MARKS)
-- Implement shuffle, the circuit taking 4 blocks of inputs
-- and interleaving them. See the test case below to see how
-- it is meant to work.
-- Hint: use some of the functions imported from Data.Fin.Base
`shuffle : (i j m n : ℕ) → Circuit ((i + m) + (j + n)) ((i + j) + (m + n))
`shuffle = {!!}
-- 0,1,2,3,4,5,6,7,8,9,10,11 viewed as:
-- a first block 0,1,2,3,4
-- split into A = 0,1 and B = 2,3,4
-- a second block 5,6,7,8,9,10,11
-- split into C = 5,6,7 and D = 8,9,10,11
-- Using shuffle to act on ABCD, we reorganise it into ACBD
_ : `shuffle 2 3 3 4
≡ `mix ( 0 ∷ 1 -- first 2 bits of the first half
∷ 5 ∷ 6 ∷ 7 -- first 3 bits of the second half
∷ 2 ∷ 3 ∷ 4 -- remainder of the first half
∷ 8 ∷ 9 ∷ 10 ∷ 11 -- remainder of the second block
∷ [])
_ = {!!}
-- (5 MARKS)
-- HARD
-- Implement the function taking a circuit C expecting i+j inputs
-- and returning the circuit taking two sequence of n blocks of
-- i (respectively j) inputs and applying C in parallel to these
-- n blocks.
-- It should look something like
--
-- x₁₁ ----⌈‾‾‾‾‾‾⌉ ---- z₁₁
-- ⋮ | b | ⋮ = C(x₁₁,⋯,x₁ᵢ,y₁₁,⋯,y₁ⱼ)
-- x₁ᵢ ----| l | ---- z₁ₒ
-- ⋮ | o |
-- xₙᵢ ----| c |
-- | k | ⋮
-- y₁₁ ----| w |
-- ⋮ | i |
-- y₁ⱼ ----| s | ---- zₙ₁
-- ⋮ | e | ⋮ = C(xₙ₁,⋯,xₙᵢ,yₙ₁,⋯,yₙⱼ)
-- yₙⱼ ----⌊______⌋ ---- zₙₒ
--
`blockwiseₙ : Circuit (i + j) o → (n : ℕ) → Circuit (n * i + n * j) (n * o)
`blockwiseₙ = {!!}
-- (1 MARK)
-- As a corollary of `blockwise, define pairwise the function
-- doing the same with a binary circuit
`pairwiseₙ : Circuit 2 1 → (n : ℕ) → Circuit (n + n) n
`pairwiseₙ = {!!}
-- (5 MARK)
-- HARD
-- Combine previous definitions to implement `branch,
-- the circuit that uses its first input to decide
-- between two circuits with the same input/output
-- arities (here passed as a function from Bool to Circuit i o)
`branch : (Bool → Circuit i o) → Circuit (suc i) o
`branch = {!!}
-- Test: we can define `swap by branching twice to collect two
-- inputs x & y and outputing constant bits in y & x order.
`swap : Circuit 2 2
`swap = `branch $ λ x → `branch $ λ y → `par (`bit y) (`bit x)
-- Test: swap should indeed swap its input.
_ : ∀ x y → meaning `swap (x ∷ y ∷ []) ≡ y ∷ x ∷ []
_ = λ { true true → {!!}
; true false → {!!}
; false true → {!!}
; false false → {!!} }
-- (2 MARKS)
-- Reusing previous definitions, define `tabulate the
-- function turning a function operating on booleans
-- into a circuit with the same meaning.
`tabulate : (Vec Bool i → Vec Bool o) → Circuit i o
`tabulate = {!!}
------------------------------------------------------------------------
-- Extend the project (20 MARKS)
------------------------------------------------------------------------
-- You are free to implement whatever you want. Try to put an emphasis
-- on elegant type & code. Here are some ideas:
-- * A collection of CS106-type circuits (proven correct? maximising parallelism?)
-- * A renderer displaying a circuit as a string (or a dot graph?)
-- * A compiler from a small language to circuits
-- * Recursive definitions of complex circuits
-- * Compilation to an actual hardware description language
-- You will be marked on how idiomatic your types and definitions are,
-- on the complexity of the extension, and on how well you made use of
-- Agda's features compared to e.g. Haskell.