|
| 1 | +% -*- TeX-engine: xetex -*- |
| 2 | + |
| 3 | +\documentclass[xetex,aspectratio=169,14pt,hyperref={pdfpagelabels=true,pdflang={en-GB}}]{beamer} |
| 4 | + |
| 5 | +\input{macros} |
| 6 | + |
| 7 | +\title[CS208 - Introduction]{CS208 (Semester 1) : Introduction} |
| 8 | + |
| 9 | +\begin{document} |
| 10 | + |
| 11 | +\maketitle |
| 12 | + |
| 13 | +\section{Introduction} |
| 14 | + |
| 15 | +\begin{frame}{CS208 : Logic and Algorithms} |
| 16 | + |
| 17 | + In this semester we will study \emph{Symbolic Logic}. |
| 18 | + |
| 19 | + \bigskip |
| 20 | + |
| 21 | + \begin{enumerate} |
| 22 | + \item What is a good language for formal statements? |
| 23 | + \item What are valid rules of inference? |
| 24 | + \item How can we relate situations and statements about them? |
| 25 | + \end{enumerate} |
| 26 | +\end{frame} |
| 27 | + |
| 28 | +\begin{frame} |
| 29 | + {Very rough History of Logic} |
| 30 | + |
| 31 | + (with a Western bias) |
| 32 | + |
| 33 | + \bigskip |
| 34 | + |
| 35 | + \begin{tabular}{ll} |
| 36 | + \textcolor{black!60}{$\sim$350BCE}& Aristotle's \emph{Organon} (``\emph{logos}'' = ``the word'') \\ |
| 37 | + \textcolor{black!60}{300BCE-1847CE}& Lots of interesting but scattered stuff... \\ |
| 38 | + \textcolor{black!60}{1847} & George Boole's \emph{Mathematical Analysis of Logic} \\ |
| 39 | +% & \quad later \emph{An Investigation of the Laws of Thought...} \\ |
| 40 | + \textcolor{black!60}{1879} & Gottlob Frege's \emph{Begriffsschrift} \\ |
| 41 | + % & \quad invention of \emph{Quantifiers} \\ |
| 42 | + \textcolor{black!60}{1880s to 1930s} & Logic\textbf{s} as an object of study in their own right\\ |
| 43 | + % & \quad Kurt G{\"o}del, Alfred Tarski, Alan Turing, ...\\ |
| 44 | + \textcolor{black!60}{1940s to date} & Explosion, especially driven by CS. |
| 45 | + \end{tabular} |
| 46 | +\end{frame} |
| 47 | + |
| 48 | +\begin{frame} |
| 49 | + {Why study Logic?} |
| 50 | + |
| 51 | + Logic is \emph{extremely useful} in Computer Science. |
| 52 | + |
| 53 | + \bigskip |
| 54 | + |
| 55 | + For example... |
| 56 | + \begin{enumerate} |
| 57 | + \item Digital circuits |
| 58 | + \item Specifying systems' behaviour |
| 59 | + \item Proving that systems satisfy their specifications |
| 60 | + \item Automated Reasoning, rule-based AI |
| 61 | + \item Designing Programming Languages |
| 62 | + \item Database Query Languages |
| 63 | + \end{enumerate} |
| 64 | +\end{frame} |
| 65 | + |
| 66 | +\begin{frame} |
| 67 | + {In this course} |
| 68 | + |
| 69 | + We will cover two major sorts of Logic: |
| 70 | + |
| 71 | + \begin{enumerate} |
| 72 | + \item Propositional Logic |
| 73 | + \item Predicate Logic |
| 74 | + \end{enumerate} |
| 75 | +\end{frame} |
| 76 | + |
| 77 | +\begin{frame} |
| 78 | + {Propositional Logic} |
| 79 | + |
| 80 | + Propositional Logic talks about atomic statements: |
| 81 | + \begin{mathpar} |
| 82 | + \textit{``it is raining''} |
| 83 | + |
| 84 | + \textit{``I am in Glasgow''} |
| 85 | + \end{mathpar} |
| 86 | + and compound statements made from those: |
| 87 | + \begin{mathpar} |
| 88 | + \textit{``it is raining''} \land \textit{``I am in Glasgow''} |
| 89 | + |
| 90 | + \textit{``it is raining''} \to \textit{``I am in Glasgow''} |
| 91 | + \end{mathpar} |
| 92 | + |
| 93 | +\end{frame} |
| 94 | + |
| 95 | +\begin{frame} |
| 96 | + {Predicate Logic} |
| 97 | + |
| 98 | + Predicate Logic adds \emph{quantifiers} and \emph{predicates}: |
| 99 | + \begin{mathpar} |
| 100 | + \forall \mathit{day}.~\textrm{InGlasgow}(\mathit{day}) \to (\textrm{Raining}(\mathit{day}) \lor \textrm{Drizzle}(\mathit{day})) |
| 101 | + |
| 102 | + \forall x. \forall y.~x + y = y + x |
| 103 | + \end{mathpar} |
| 104 | +\end{frame} |
| 105 | + |
| 106 | +\begin{frame} |
| 107 | + {Semantics} |
| 108 | + |
| 109 | + The \emph{Semantics} of a logic tell you what formulas \emph{mean}. |
| 110 | + |
| 111 | + \bigskip |
| 112 | + |
| 113 | + Roughly, we will take the view that a formula's meaning is the |
| 114 | + collection of situations that make it true. |
| 115 | + \begin{mathpar} |
| 116 | + \sem{G \lor R} = \left\{ |
| 117 | + \begin{array}{@{}l} |
| 118 | + \{G \mapsto \true, R \mapsto \false\}, \\ |
| 119 | + \{G \mapsto \false, R \mapsto \true\}, \\ |
| 120 | + \{G \mapsto \true, R \mapsto \true\} |
| 121 | + \end{array} |
| 122 | + \right\} |
| 123 | + |
| 124 | + \sem{G \land R} = \left\{ [G \mapsto \true,R \mapsto \true] \right\} |
| 125 | + \end{mathpar} |
| 126 | +\end{frame} |
| 127 | + |
| 128 | +\begin{frame} |
| 129 | + {Logical Modelling} |
| 130 | + |
| 131 | + A fundamental use for logic is to create models of situations. |
| 132 | + |
| 133 | + \bigskip |
| 134 | + |
| 135 | + \begin{enumerate} |
| 136 | + \item Encode potential facts as atomic statements: |
| 137 | + \begin{itemize} |
| 138 | + \item $\mathsf{cell}((3,3), 4)$ -- cell $(3,3)$ of a sudoku board contains $4$. |
| 139 | + \item $\mathsf{assigned}(A,M)$ -- task $A$ is assigned to machine $M$. |
| 140 | + \item $\mathsf{installed}(progA, 1)$ -- version 1 of program A is installed |
| 141 | + \end{itemize} |
| 142 | + \item Encode constraints as logical statements: |
| 143 | + \begin{itemize} |
| 144 | + \item $\mathsf{installed}(progA,1) \to (\mathsf{installed}(libB,3) \land \mathsf{installed}(libC,2))$ \\ |
| 145 | + -- program A v1 requires libB v3 and libC v2. |
| 146 | + \end{itemize} |
| 147 | + \item Finding a true/false value for each atom that makes all the |
| 148 | + constraints true allows us to solve the problem. |
| 149 | + \end{enumerate} |
| 150 | +\end{frame} |
| 151 | + |
| 152 | +\begin{frame} |
| 153 | + {Deductive Systems} |
| 154 | + |
| 155 | + \emph{Deductive Systems} are collections of rules that allow you to |
| 156 | + derive valid statements from valid statements. |
| 157 | + |
| 158 | + \bigskip |
| 159 | + |
| 160 | + A rule: |
| 161 | + \begin{displaymath} |
| 162 | + \inferrule* |
| 163 | + {X\textit{ is feathery} \\ X\textit{ lays eggs}} |
| 164 | + {X\textit{ is a bird}} |
| 165 | + \end{displaymath} |
| 166 | + |
| 167 | + Above the line are \emph{premises}, below is the \emph{conclusion}. |
| 168 | + |
| 169 | + \bigskip |
| 170 | + |
| 171 | + We will study rules for Propositional and Predicate Logic. |
| 172 | +\end{frame} |
| 173 | + |
| 174 | +\begin{frame} |
| 175 | + {Course plan} |
| 176 | + |
| 177 | + \begin{tabular}{ll} |
| 178 | + Week 1 & Recap Propositional Logic \\ |
| 179 | + Week 2 & Logical modelling and SAT solvers \\ |
| 180 | + Week 3 & More examples of Logical Modelling \\ |
| 181 | + Week 4 & More examples of Logical Modelling \\ |
| 182 | + Week 5 & Deductive proof for Propositional Logic \\ |
| 183 | + Week 6 & Predicate Logic \\ |
| 184 | + Week 7 & Deductive proof for Predicate Logic \\ |
| 185 | + Week 8 & Semantics of Predicate Logic \\ |
| 186 | + Week 9 & Equality and Arithmetic in Predicate Logic \\ |
| 187 | + Week 10 & Metatheory \\ |
| 188 | + \end{tabular} |
| 189 | +\end{frame} |
| 190 | + |
| 191 | +\begin{frame} |
| 192 | + {Course Delivery} |
| 193 | + |
| 194 | + For Semester 1: |
| 195 | + \begin{itemize} |
| 196 | + \item \textbf{Lectures}: two/week \\ |
| 197 | + Mondays 12:00-13:00, GH514 \\ |
| 198 | + Fridays 12:00-13:00, RC512 |
| 199 | + \item \textbf{Video minilectures}: roughly four/week, roughly ten minutes each. |
| 200 | + \item \textbf{Notes and Tutorial Exercises}: linked from MyPlace. |
| 201 | + \item \textbf{Tutorials}: Mondays and Fridays, assignment to follow. |
| 202 | + \item \textbf{Mattermost chat}: use the Mattermost channel for this |
| 203 | + course to discuss the course and ask questions. |
| 204 | + \item \textbf{Individual questions}: contact the course lecturer. |
| 205 | + \end{itemize} |
| 206 | +\end{frame} |
| 207 | + |
| 208 | +\begin{frame} |
| 209 | + {Assessment} |
| 210 | + |
| 211 | + The whole course (Semesters 1\&2) is 30\% coursework, 70\% exam. |
| 212 | + |
| 213 | + \bigskip |
| 214 | + |
| 215 | + This semester there are two courseworks: |
| 216 | + \begin{center} |
| 217 | + \begin{tabular}{llll} |
| 218 | + Name & Release & Submission & Weighting\\ |
| 219 | + \hline |
| 220 | + 1 : Logical Modelling &Wed 4th Oct &Wed 18th Oct &7.5 \% \\ |
| 221 | + 2 : Deductive Proof &Wed 2nd Nov &Wed 30th Nov &7.5 \%\\ |
| 222 | + \end{tabular} |
| 223 | + \end{center} |
| 224 | + |
| 225 | + \bigskip |
| 226 | + |
| 227 | + Single exam for Logic and Algorithms in April/May. |
| 228 | +\end{frame} |
| 229 | + |
| 230 | +\begin{frame} |
| 231 | + \begin{center} |
| 232 | + {\Huge Hope you enjoy the course!} \\ |
| 233 | + Check MyPlace for course arrangements and updates. |
| 234 | + \end{center} |
| 235 | +\end{frame} |
| 236 | + |
| 237 | +\end{document} |
0 commit comments