-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathweek4.tex
813 lines (643 loc) · 20.2 KB
/
week4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
% -*- TeX-engine: xetex -*-
\documentclass[xetex,aspectratio=169,14pt,hyperref={pdfpagelabels=true,pdflang={en-GB}}]{beamer}
\input{macros}
\weektitle{4}{Natural Deduction I}
\begin{document}
\frame{\titlepage}
\weeksection{Deductive Reasoning}
% Subtitle: \textcolor{black!60}{To Truth Through Proof!}\footnote{Apologies to Peter B. Andrews: \url{http://gtps.math.cmu.edu/tttp.html}}
\begin{frame}
\sechead{Why have logic(s)?}
One reason is to study ``arguments''.
\begin{itemize}
\item To separate valid and invalid reasoning.
\item If we assume $P_1, P_2, P_3$, then when is it valid to conclude $Q$?
\end{itemize}
\pause
\bigskip
\sechead{One answer is ``entailment''}
\begin{itemize}
\item $P_1, \dots \models Q$ ``is'' valid reasoning from assumptions to a conclusion.
\end{itemize}
\emph{Entailment} is defined in terms of the semantics of formulas
\begin{itemize}
\item $P_1, ... \models Q$ if \highlight<3->{for all valuations $v$}, $\sem{P}v = \true$ implies $\sem{Q}v \kern-3pt= \true$
\end{itemize}
\pause
\pause
\bigskip
\sechead{This doesn't match how we reason normally.}
If we are trying to convince someone, we don't (usually) say: \\
\qquad \emph{``let's go through all the combinations of truth values and test each one.''}
\end{frame}
\begin{frame}
\sechead{Chains of Inference}
Usually, we might say things like:
\begin{enumerate}
\item Let's assume that $A, B, C$ are true.
\item If we assume $A$ and $B$ imply $D$, then $D$ is true.
\item If we assume $C$ and $D$ imply $E$, then $E$ is true.
\item So, we can conclude $E$, under the assumptions.
\end{enumerate}
If our reasoning is sound, then we ought to be able to conclude
\begin{displaymath}
A, B, C, (A \land B) \to D, (C \land D) \to E \models E
\end{displaymath}
\pause
\sechead{We have a form of \emph{modularity}}
\begin{itemize}
\item We don't check the entailment for every possible truth value of $A, B, C, D, E$ \qquad \textcolor{black!60}{($2^5 = 32$ combinations!)}
\item We apply individual reasoning \emph{steps} and chain them together.
\end{itemize}
\end{frame}
\begin{frame}
{Semantic Reasoning doesn't scale}
In \emph{Propositional Logic}, it is possible (though not always
feasible) to check all cases.
\begin{itemize}
\item If there are $n$ atomic propositions, check $2^n$ combinations.
\item SAT solvers are good at only checking the ones that matter.
\item But there are still Hard Problems that take too long.
\end{itemize}
\pause
\bigskip
Also, later in the course we will study \emph{Predicate Logic}
\begin{itemize}
\item Predicate logic allows \emph{universal} statements:
\begin{displaymath}
\forall x.\forall y.~x+y = y+x
\end{displaymath}
\emph{``For all (numbers) $x$ and $y$, $x+y$ is equal to $y+x$''}
\item Simply not possible to exhaustively check all numbers.
\end{itemize}
\end{frame}
\begin{frame}
{Deductive Systems}
To overcome these problems, we use \emph{deductive systems}.
\bigskip
A \rhighlight{deductive system} is a collection of \emph{rules} for
deriving conclusions from assumptions.
\begin{itemize}
\item Typically, the rules are ``finitely describable'' \\
\sidenote{roughly: we can implement them on a computer}
\end{itemize}
\bigskip
Typically (but not always), we write
\begin{displaymath}
P_1, \cdots, P_n \vdash Q
\end{displaymath}
when we can derive conclusion $Q$ from assumptions $P_1, \cdots, P_n$.
% \bigskip There are many deductive systems. We will look at a variant
% of Natural Deduction.
\end{frame}
\begin{frame}
{Soundness and Completeness}
\textbf{Soundness} : ``Everything that is provable is valid''
\begin{displaymath}
P_1, \cdots, P_n \vdash Q \qquad \textit{implies} \qquad P_1, \cdots, P_n \models Q
\end{displaymath}
\sidenote{pretty much a requirement to be useful}
\bigskip
\textbf{Completeness} : ``Everything that is valid is provable''
\begin{displaymath}
P_1, \cdots, P_n \models Q \qquad \textit{implies} \qquad P_1, \cdots, P_n \vdash Q
\end{displaymath}
\sidenote{not \emph{essential}, but good to have}
\end{frame}
\begin{frame}
{Advantages of Deductive Systems}
\bigskip \emph{1. } We can write computer programs to check our proofs, even
when talking about infinitely many things.
\pause
\bigskip
\emph{2. }If we remove or alter rules do we get an interesting new logic?
\pause
\bigskip
\emph{3. }We can start to ask questions about the proofs:
\begin{itemize}
\item An entailment $P_1, \cdots, P_n \models Q$ is either valid or invalid. Meh.
\item but there may be many proofs (ways of applying the rules).
\item Questions:
\begin{itemize}
\item Do different proofs \emph{mean} different things?
\item Is one proof a simplification of another?
\item Is there information hidden in proofs that we can extract?
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[t]
{Inference Rules}
\begin{displaymath}
\inferrule*
{\mathit{premise}_1 \\ \cdots \\ \mathit{premise}_n}
{\mathit{conclusion}}
\end{displaymath}
The idea:
\begin{itemize}
\item If we can prove all of $\mathit{premise}_1$ and ... and $\mathit{premise}_n$; then
\item we have a proof of $\mathit{conclusion}$.
\end{itemize}
\pause
\bigskip
We might have zero premises, \\
\quad in which case the $\mathit{conclusion}$
requires no proof (``is an axiom'').
\pause
\bigskip
Rules are organised into \emph{trees} to make \emph{deductions}.
\end{frame}
\begin{frame}[t]
{Example}
\begin{mathpar}
\inferrule* [right=Rule1] { } {\textrm{bears}~\textit{are furry}}
\inferrule* [right=Rule2] { } {\textrm{bears}~\textit{make milk}}
\inferrule* [right=Rule3]
{X~\textit{are furry} \\ X~\textit{make milk}}
{X~\textit{are mammals}}
\end{mathpar}
\pause
\bigskip
A deduction:
\begin{displaymath}
\inferrule* [right=Rule3]
{\inferrule* [right=Rule1] { } {\textrm{bears}~\textit{are furry}} \\
\inferrule* [Right=Rule2] { } {\textrm{bears}~\textit{make milk}}}
{\textrm{bears}~\textit{are mammals}}
\end{displaymath}
\end{frame}
\begin{frame}
{Example (cont.)}
\begin{mathpar}
\inferrule* [right=Rule4]
{X~\textit{are covered in fibres}}
{X~\textit{are furry}}
\inferrule* [right=Rule5]
{ }
{\textrm{coconuts}~\textit{are covered in fibres}}
\inferrule* [right=Rule6]
{ }
{\textrm{coconuts}~\textit{make milk}}
\end{mathpar}
\end{frame}
\begin{frame}
{Example (cont.)}
Another deduction:
\begin{displaymath}
\inferrule* [right=R3]
{\inferrule* [right=R4]
{\inferrule* [Right=R5] { } {\textrm{coconuts}~\textit{are covered in fibres}}}
{\textrm{coconuts}~\textit{are furry}}
\\
\inferrule* [Right=R6]
{ } {\textrm{coconuts}~\textit{make milk}}}
{\textrm{coconuts}~\textit{are mammals}}
\end{displaymath}
\end{frame}
\begin{frame}[t]
{Example (cont.)}
When \emph{building} deductions, we work bottom up:
\begin{minipage}[t][2cm][b]{\textwidth}
\begin{displaymath}
\only<2>{\textrm{coconuts}~\textit{are mammals}}%
\only<3>{\inferrule* [right=R3]
{\textrm{coconuts}~\textit{are furry} \\ \textrm{coconuts}~\textit{make milk}}
{\textrm{coconuts}~\textit{are mammals}}}%
\only<4>{\inferrule* [right=R3]
{\inferrule* [right=R4] {\textrm{coconuts}~\textit{are covered in fibres}} {\textrm{coconuts}~\textit{are furry}}
\\
\textrm{coconuts}~\textit{make milk}}
{\textrm{coconuts}~\textit{are mammals}}}%
\only<5>{\inferrule* [right=R3]
{\inferrule* [right=R4]
{\inferrule* [Right=R5] { } {\textrm{coconuts}~\textit{are covered in fibres}}}
{\textrm{coconuts}~\textit{are furry}}
\\
\textrm{coconuts}~\textit{make milk}}
{\textrm{coconuts}~\textit{are mammals}}}%
\only<6-7>{\inferrule* [right=R3]
{\inferrule* [right=R4]
{\inferrule* [Right=R5] { } {\textrm{coconuts}~\textit{are covered in fibres}}}
{\textrm{coconuts}~\textit{are furry}}
\\
\inferrule* [Right=R6]
{ } {\textrm{coconuts}~\textit{make milk}}}
{\textrm{coconuts}~\textit{are mammals}}}
\end{displaymath}
\end{minipage}
\bigskip
\begin{enumerate}
\item<2-> Write down the conclusion
\item<3-> Apply rule \TirName{Rule3} ($X$ \emph{are mammals} if $X$ \emph{are furry and make milk})
\item<4-> Apply rule \TirName{Rule4} ($X$ \emph{are furry} if they \emph{are covered in fibres})
\item<5-> Apply rule \TirName{Rule5} (an axiom)
\item<6-> Apply rule \TirName{Rule6} (an axiom)
\end{enumerate}
% \bigskip
% \pause\pause\pause\pause\pause\pause
% \begin{itemize}
% \item A statement with no line above it is an \emph{open goal}
% \item A branch of the tree that ends with an axiom is called \emph{closed}
% \end{itemize}
\end{frame}
\begin{frame}
{Summary}
\begin{itemize}
\item The \emph{why?} of deductive systems.
\item Inference rules.
\item How to make chains of inference.
\end{itemize}
\end{frame}
\weeksection{Natural Deduction}
\begin{frame}[t]
{Judgements}
We want to deduce \emph{judgements} of the form:
\begin{displaymath}
P_1, \dots, P_n \vdash Q
\end{displaymath}
meaning:
\begin{center}
From assumptions $P_1, \dots, P_n$, we can prove $Q$.
\end{center}
\bigskip
{\bf Soundness}
The system will be \emph{sound}, meaning:
\begin{displaymath}
P_1,\dots,P_n \vdash Q~\textrm{provable}~~\Rightarrow~~P_1, \dots, P_n \models Q
\end{displaymath}
We will make sure it is sound by checking each rule as we go. \\
\quad \textcolor{black!60}{If all the premises are valid entailments, then so is the conclusion}
\end{frame}
\begin{frame}[t]
{Judgements}
The main judgement form is
\begin{displaymath}
P_1, \dots, P_n \vdash Q
\end{displaymath}
\qquad \textcolor{black!60}{With assumptions $P_1,\dots,P_n$, can prove $Q$}
\pause
\bigskip
We will also use an auxiliary judgement:
\begin{displaymath}
P_1, \dots, P_n~[P] \vdash Q
\end{displaymath}
\quad \textcolor{black!60}{$\cdot$ With assumptions $P_1,\dots,P_n$, \emph{focusing on} $P$, can prove $Q$}\\
\quad \textcolor{black!60}{$\cdot$ Also ``means'' $P_1,\dots,P_n,P \models Q$}\\
\quad \textcolor{black!60}{$\cdot$ Having a focus is useful for organising proofs}
\end{frame}
\begin{frame}[t]
{Judgements}
The main judgement form is
\begin{displaymath}
P_1, \dots, P_n \vdash Q
\end{displaymath}
\medskip
We will also use an auxiliary judgement:
\begin{displaymath}
P_1, \dots, P_n~[P] \vdash Q
\end{displaymath}
\pause
\bigskip
\textbf{Assumption lists}~The list of assumptions
$P_1, \dots, P_n$ will appear often. So we
will shorten it to $\Gamma$
\textcolor{black!60}{$ = P_1, \dots, P_n$}.
\end{frame}
\newcommand{\pUse}[1]{\texttt{use}~#1\texttt{,}~}
\newcommand{\pDone}{\texttt{done}}
\newcommand{\pSplit}[2]{\texttt{split(}#1~\texttt{|}~#2\texttt{)}}
\newcommand{\pFst}{\texttt{first,}~}
\newcommand{\pSnd}{\texttt{second,}~}
\newcommand{\pTrue}{\texttt{true}}
%\titlecard{Basic Rules}
\begin{frame}
{Basic Rules}
\begin{displaymath}
\inferrule* [right=Done]
{ }
{\Gamma~[P] \vdash P}
\end{displaymath}
\bigskip
\bigskip
\pause
\begin{itemize}
\item If we have a focused assumption $P$, then we can prove $P$
\item (Remember $\Gamma$ stands for a list of other assumptions)
\end{itemize}
\end{frame}
\begin{frame}
{Basic Rules}
\begin{displaymath}
\inferrule* [right=Use]
{P \in \Gamma \\ \Gamma~[P] \vdash Q}
{\Gamma \vdash Q}
\end{displaymath}
\bigskip
\bigskip
\pause
\begin{itemize}
\item $P \in \Gamma$ means ``$P$ is in $\Gamma$''.
\item If we have a $P$ in our current assumptions, we can focus on it.
\item $P \in \Gamma$ is a \emph{side condition}: it is something we
check when we apply the rule, not another judgement to be proved.
\end{itemize}
\end{frame}
\begin{frame}[t]
{A first proof}
\bigskip
\begin{minipage}[t][2cm][b]{\textwidth}
\begin{displaymath}
\only<1>{A \vdash A\quad\quad}%
\only<2>{\inferrule* [right=Use] {A~[A] \vdash A} {A \vdash A}}%
\only<3>{\inferrule* [right=Use] {\inferrule* [Right=Done] { } {A~[A] \vdash A}} {A \vdash A}}
\end{displaymath}
\end{minipage}
\bigskip
\begin{itemize}
\item<2-> First \TirName{Use} the $A$ assumption.
\item<3-> Then we are \TirName{Done}.
\end{itemize}
\end{frame}
\begin{frame}
{Soundness}
\begin{mathpar}
\inferrule* [right=Done]
{ }
{\Gamma~[P] \vdash P}
\inferrule* [right=Use]
{P \in \Gamma \\ \Gamma~[P] \vdash Q}
{\Gamma \vdash Q}
\end{mathpar}
\pause
\bigskip
\TirName{Done} is sound because assuming $P$ entails $P$, and extra
assumptions make no difference.
\pause
\bigskip
\TirName{Use} is sound because if we assuming $P$ twice entails $Q$,
then it is okay to assume it once.
\end{frame}
\begin{frame}
{Rules for connectives}
\bigskip
The rule \TirName{Done} and \TirName{Use} do not mention the connectives.
\bigskip
In Natural Deduction, rules for connectives come in two kinds:
\bigskip
\begin{enumerate}
\item {\bf Introduction} rules\\
\textcolor{black!60}{How to \emph{construct} a proof with the connective}
\item {\bf Elimination} rules \\
\textcolor{black!60}{How to \emph{use} an assumption with this connective}
\end{enumerate}
\bigskip
\pause
Very rough analogy:\quad \textcolor{black!60}{but can be made very precise}
\begin{enumerate}
\item Introduction rules are like \emph{constructors} for building objects
\item Elimination rules are like \emph{methods} for taking apart objects
\end{enumerate}
\end{frame}
%\titlecard{Rules for Conjunction}
\begin{frame}
{``And'' Introduction}
\begin{displaymath}
\inferrule* [right=Split]
{\Gamma \vdash Q_1 \\ \Gamma \vdash Q_2}
{\Gamma \vdash Q_1 \land Q_2}
\end{displaymath}
\bigskip
\pause
\begin{itemize}
\item To prove $P_1 \land P_2$ we have to prove $P_1$ and $P_2$
\item This rule is often called \TirName{$\land$-Introduction}
\end{itemize}
\end{frame}
\begin{frame}
\sechead{An example proof}
\bigskip
\begin{displaymath}
\inferrule* [Right=Split]
{ \inferrule* [right=Use]
{\inferrule* [Right=Done]
{ } {A, B~[A] \vdash A}}
{A, B \vdash A}
\\
\inferrule* [Right=Use]
{\inferrule* [Right=Done]
{ } {A, B~[B] \vdash B}
}
{A, B \vdash B}
}
{A, B \vdash A \land B}
\end{displaymath}
\pause
\bigskip
To prove $A \land B$, we \TirName{Split} into proofs of $A$ and
$B$. \\
In each case, we \TirName{Use} the corresponding assumption.
\end{frame}
\begin{frame}
{``And'' Elimination}
\begin{mathpar}
\inferrule* [right=First]
{\Gamma~[P_1] \vdash Q}
{\Gamma~[P_1 \land P_2] \vdash Q}
\inferrule* [right=Second]
{\Gamma~[P_2] \vdash Q}
{\Gamma~[P_1 \land P_2] \vdash Q}
\end{mathpar}
\bigskip
\pause
If we are focused on an formula $P_1 \land P_2$, we can select
either the \TirName{First} or \TirName{Second} component to focus
on.
\end{frame}
\begin{frame}
\sechead{Example proof}
\begin{displaymath}
\inferrule* [Right=Use]
{\inferrule* [Right=Second]
{\inferrule* [Right=Done]
{ }
{A \land B~[B] \vdash B}
}
{A \land B~[A \land B] \vdash B}
}
{A \land B \vdash B}
\end{displaymath}
\end{frame}
%\titlecard{Rules for Truth}
\begin{frame}
{``True'' Introduction}
\bigskip
\begin{displaymath}
\inferrule* [right=True]
{ }
{\Gamma \vdash \true}
\end{displaymath}
\bigskip
\pause
\begin{itemize}
\item $\true$ is always provable.
\end{itemize}
\end{frame}
\begin{frame}
{``True'' Elimination}
\pause
\bigskip
\begin{center}
\emph{No elimination rule!}
\end{center}
\end{frame}
\begin{frame}
{Summary}
\begin{itemize}
\item The judgement forms for (focused) Natural Deduction:
\begin{mathpar}
P_1, \dots, P_n \vdash Q
P_1, \dots, P_n~[P] \vdash Q
\end{mathpar}
\item Rules for \TirName{Use} and \TirName{Done}
\item Rules for introducing and eliminating $\land$.
\end{itemize}
\end{frame}
\weeksection{Rules for ``Implies''}
\begin{frame}
{``Implies'' Introduction}
\begin{displaymath}
\inferrule* [right=Introduce]
{\Gamma, P \vdash Q}
{\Gamma \vdash P \to Q}
\end{displaymath}
\pause
\bigskip
To prove $P \to Q$, we prove $Q$ under the assumption $P$.
\end{frame}
\begin{frame}
{Example: $A \to A$}
\begin{displaymath}
\inferrule* [right=Introduce]
{\inferrule* [Right=Use]
{\inferrule* [Right=Done] { } {A~[A] \vdash A}}
{A \vdash A}
}
{\vdash A \to A}
\end{displaymath}
\end{frame}
\begin{frame}
{Example : $(A \land B) \to A$}
\begin{displaymath}
\inferrule* [right=Introduce]
{\inferrule* [Right=Use]
{\inferrule* [Right=First]
{\inferrule* [Right=Done]
{ }
{\mathrm{A} \land \mathrm{B}~[\mathrm{A}] \vdash \mathrm{A}}
}
{\mathrm{A} \land \mathrm{B}~[\mathrm{A} \land \mathrm{B}] \vdash \mathrm{A}}
}
{\mathrm{A} \land \mathrm{B} \vdash \mathrm{A}}
}
{ \vdash (\mathrm{A} \land \mathrm{B}) \to \mathrm{A}}
\end{displaymath}
\end{frame}
\begin{frame}
{``Implies'' Elimination}
\begin{displaymath}
\inferrule* [right=Apply]
{\Gamma \vdash P_1 \\ \Gamma~[P_2] \vdash Q}
{\Gamma~[P_1 \to P_2] \vdash Q}
\end{displaymath}
\bigskip
\pause
If we have $P_1 \to P_2$ and we can prove $P_1$, then we have $P_2$.
\end{frame}
\begin{frame}
{Example: $A \to (A \to B) \to B$}
\begin{displaymath}
\inferrule* [right=Introduce]
{\inferrule* [Right=Introduce]
{\inferrule* [Right=Use]
{\inferrule* [Right=Apply]
{\inferrule* [right=Use]
{\inferrule* [Right=Done]
{ }
{\mathrm{A}, \mathrm{A} \to \mathrm{B}~[\mathrm{A}] \vdash \mathrm{A}}
}
{\mathrm{A}, \mathrm{A} \to \mathrm{B} \vdash \mathrm{A}}
\\
\inferrule* [Right=Done]
{ }
{\mathrm{A}, \mathrm{A} \to \mathrm{B}~[\mathrm{B}] \vdash \mathrm{B}}
}
{\mathrm{A}, \mathrm{A} \to \mathrm{B}~[\mathrm{A} \to \mathrm{B}] \vdash \mathrm{B}}
}
{\mathrm{A}, \mathrm{A} \to \mathrm{B} \vdash \mathrm{B}}
}
{\mathrm{A} \vdash (\mathrm{A} \to \mathrm{B}) \to \mathrm{B}}
}
{ \vdash \mathrm{A} \to (\mathrm{A} \to \mathrm{B}) \to \mathrm{B}}
\end{displaymath}
\end{frame}
% \begin{frame}
% Examples (see scans):
% \begin{enumerate}
% \item $\vdash A \to (A \lor B)$
% \item $\vdash A \to B \to (A \land B)$
% \end{enumerate}
% \end{frame}
% \begin{frame}
% Examples (see scans):
% \begin{enumerate}
% \item $A \to B, A \vdash B$
% \item $A \lor B, B \to C \vdash A \lor C$
% \item $A \to B \to C \vdash (A \land B) \to C$
% \end{enumerate}
% \end{frame}
\begin{frame}
{The Rules so far}
\begin{mathpar}
\inferrule* [right=Done]
{ }
{\Gamma~[P] \vdash P}
\inferrule* [right=Use]
{P \in \Gamma \\ \Gamma~[P] \vdash Q}
{\Gamma \vdash Q}
\inferrule* [right=Split]
{\Gamma \vdash Q_1 ~~~~~~ \Gamma \vdash Q_2}
{\Gamma \vdash Q_1 \land Q_2}
\quad
\inferrule* [right=First]
{\Gamma~[P_1] \vdash Q}
{\Gamma~[P_1 \land P_2] \vdash Q}
~
\inferrule* [right=Second]
{\Gamma~[P_2] \vdash Q}
{\Gamma~[P_1 \land P_2] \vdash Q}
\inferrule* [right=Introduce]
{\Gamma, P \vdash Q}
{\Gamma \vdash P \to Q}
\inferrule* [right=Apply]
{\Gamma \vdash P_1 \\ \Gamma~[P_2] \vdash Q}
{\Gamma~[P_1 \to P_2] \vdash Q}
\end{mathpar}
\end{frame}
\begin{frame}
{Summary}
\begin{itemize}
\item The rules for Implication
\begin{mathpar}
\inferrule* [right=Introduce]
{\Gamma, P \vdash Q}
{\Gamma \vdash P \to Q}
\inferrule* [right=Apply]
{\Gamma \vdash P_1 \\ \Gamma~[P_2] \vdash Q}
{\Gamma~[P_1 \to P_2] \vdash Q}
\end{mathpar}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\weeksection{Using the Interactive Editor}
\end{document}