-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathweek2.tex
1232 lines (992 loc) · 42.3 KB
/
week2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% -*- TeX-engine: xetex -*-
\documentclass[xetex,aspectratio=169,14pt,hyperref={pdfpagelabels=true,pdflang={en-GB}}]{beamer}
\input{macros}
\weektitle{2}{Logical Modelling I}
\begin{document}
\frame{\titlepage}
\weeksection{Package Installations}
% FIXME: subtitle?
% \begin{frame}
% \begin{center}
% {\Huge \textcolor{black!60}{Part 2 : }Package Installations} \\
% \textcolor{black!60}{Propositions-as-Packages}
% \end{center}
% \end{frame}
\begin{frame}
{The Problem}
\begin{enumerate}
\item We have a collection of packages
\begin{mathpar}
\mathit{progA}
\mathit{progB}
\mathit{libC}
\mathit{libD}
\cdots
\end{mathpar}
\item<2-> Each package has several versions: $\mathit{progA}_1, \mathit{progA}_2, ...$
\item<3-> Only \emph{one} version of a package may be installed at a time\\
\qquad {\footnotesize \textcolor{black!60}{installing two copies
would overwrite each others's files}}
\item<4-> Packages have dependencies: $\mathit{progA}_1~\textsf{depends:}~\mathit{libC}_1, \mathit{libD}_2$
\item<5-> The user wants some packages installed.
\end{enumerate}
\end{frame}
% \begin{frame}
% \sechead{Translating Packages to Propositional Logic}
% \begin{enumerate}
% \item Each package-version pair will be an atomic proposition
% \item Incompatibility of packages
% \end{enumerate}
% FIXME: summarise the process
% \begin{enumerate}
% \item Work out what our atomic propositions are
% \item Work out what our assumptions are
% \end{enumerate}
% FIXME: do the detailed summary afterwards
% \begin{enumerate}
% \item Define what we are talking about (packages and versions).
% \item Use variables to model this.
% \item Work out what a valuation is in this setting.
% \item Describe our assumptions that describe features of our model.
% \item Work out what some entailments mean.
% \end{enumerate}
% \end{frame}
\begin{frame}
{Key Idea}
\begin{enumerate}
\item Each package/version pair is an atomic proposition
\begin{displaymath}
\mathit{progA}_1, \mathit{progA}_2, \mathit{progA}_3, \mathit{libC}_1, \mathit{libC}_2, \cdots
\end{displaymath}
\item A valuation $v$ represents a set of installed
packages:
\begin{itemize}
\item $v(\mathit{progA}_1) = \true$ means $\mathit{progA}_1$ is installed;
\item $v(\mathit{progA}_1) = \false$ means $\mathit{progA}_1$ is not installed.
\end{itemize}
{\footnotesize \textcolor{black!60}{Remember: a valuation is an assignment of
$\true$ or $\false$ to every atomic proposition.}}
\end{enumerate}
\end{frame}
\begin{frame}
{Example Valuations / Installations}
\begin{displaymath}
v = \{ \mathit{progA}_1 \assigned \false, \mathit{progB}_1 \assigned \false, \cdots \assigned \false \}
\end{displaymath}
\raggedleft
{\footnotesize Nothing is installed.}
\raggedright
\pause
\begin{displaymath}
v = \{ \mathit{progA}_1 \assigned \true, \mathit{progB}_1 \assigned \true, \cdots \assigned \false \}
\end{displaymath}
\raggedleft
{\footnotesize $\mathit{progA}_1$ and $\mathit{progB}_1$ are
installed, and nothing else is.}
\raggedright
\end{frame}
\begin{frame}
{Example Valuations / Installations}
\begin{displaymath}
v = \{ \mathit{progA}_1 \assigned \true, \mathit{libC}_1 \assigned \true, \cdots \assigned \false \}
\end{displaymath}
\raggedleft
{\footnotesize $\mathit{progA}_1$ and $\mathit{libC}_1$ are
installed, and nothing else is.}
\raggedright
\pause
\begin{displaymath}
v = \{ \mathit{progA}_1 \assigned \true, \mathit{progA}_2 \assigned \true, \cdots \assigned \false \}
\end{displaymath}
\raggedleft
{\footnotesize $\mathit{progA}_1$ and $\mathit{progA}_2$ are
installed, and nothing else is.}
\raggedright
\end{frame}
\begin{frame}
{Adding Constraints}
This valuation:
\begin{displaymath}
v = \{ \mathit{progA}_1 \assigned \true, \mathit{progA}_2 \assigned \true, \cdots \assigned \false \}
\end{displaymath}
says we should install two versions of $\mathit{progA}$, which is
impossible.
\pause
\bigskip
So not all valuations are sensible! We must \emph{constrain} to the
sensible valuations by writing down some formulas.
\pause
\bigskip
The formulas we write down to do this are called \emph{constraints}.
\end{frame}
\begin{frame}
{Encoding incompatibility}
\rhighlight{Requirement: } one only version of each package may be installed.
\pause
\medskip
For each package $p$ and versions $i, j$, where $i < j$, we assume:
\begin{displaymath}
\lnot \mathit{p}_i \lor \lnot \mathit{p}_j
\end{displaymath}
\textcolor{black!60}{Exercise: why does this cover all the cases?}
\pause
\medskip
\sechead{Example}
Constraint: never install two versions of $\mathit{progA}$.
\begin{displaymath}
\lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_2,
\lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_3,
\lnot \mathit{progA}_2 \lor \lnot \mathit{progA}_3
% \textrm{In formulas:}\qquad\begin{array}{l}
% \lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_2, \\
% \lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_3, \\
% \lnot \mathit{progA}_2 \lor \lnot \mathit{progA}_3
% \end{array}
\end{displaymath}
\end{frame}
\begin{frame}[t]
{Understanding the Constraint}
Why does $\lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_2$ work?
\medskip
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
$\mathit{progA}_1$&$\mathit{progA}_2$&$\lnot \mathit{progA}_1$&$\lnot \mathit{progA}_2$&$\lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_2$ \\
\hline
$\false$&$\false$&$\true$ &$\true$ &$\true$ \\
$\true$ &$\false$&$\false$&$\true$ &$\true$ \\
$\false$&$\true$ &$\true$ &$\false$&$\true$ \\
$\true$ &$\true$ &$\false$&$\false$&$\false$ \\
\hline
\end{tabular}
\end{center}
The last line, where both are installed, is the case we want to
disallow, and it is the only one assigned $\false$.
% \pause
% \medskip
% \sechead{2. By translation}
% \begin{displaymath}
% \begin{array}{cll}
% &\lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_2\\
% \equiv&\lnot (\mathit{progA}_1 \land \mathit{progA}_2) & \textrm{\it not both of them} \\
% \equiv&\mathit{progA}_1 \to \lnot \mathit{progA}_2&\textrm{\it one implies not the other} \\
% \equiv&\mathit{progA}_2 \to \lnot \mathit{progA}_1&\textrm{\it one implies not the other}
% \end{array}
% \end{displaymath}
\end{frame}
\begin{frame}
{Incompatibility Constraints}
We have a collection of constraints:
\begin{center}
For each package $p$ and versions $i, j$, where $i < j$: $\lnot \mathit{p}_i \lor \lnot \mathit{p}_j$
\end{center}
\bigskip
Take all these constraints, $\land$ them together, and call it \textsc{Incompat}.
\begin{displaymath}
\textsc{Incompat} = (\lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_2) \land (\lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_3) \land \cdots
\end{displaymath}
\end{frame}
\begin{frame}
{Filtering Valuations}
\rhighlight{Before: } all valuations (installations) $v$ \\
\rhighlight{Now: } only valuations such that $\sem{\textsc{Incompat}}v = \true$
\bigskip
\rhighlight{Pay-off: } We have a way of removing the nonsense
valuations that allow multiple versions of the same package to be
installed.
\end{frame}
% \begin{frame}
% \rhighlight{Assumption: } only one version of each package may be
% installed.
% \bigskip
% Encode this as a collection of assumptions (with pseudocode?)
% \end{frame}
\begin{frame}[t]
{Encoding Dependencies}
\rhighlight{Requirement: } Packages depend on other packages:
\begin{displaymath}
\begin{array}{lcl}
\mathit{progA}_1&\mathsf{depends:}&\mathit{libC}_1, \mathit{libD}_2 \\
\mathit{progA}_2&\mathsf{depends:}&\mathit{libC}_2, \mathit{libD}_2
\end{array}
\end{displaymath}
\pause
\bigskip
\sechead{As Formulas}
\begin{displaymath}
\begin{array}{l}
\mathit{progA}_1 \to (\mathit{libC}_1 \land \mathit{libD}_2) \\
\mathit{progA}_2 \to (\mathit{libC}_2 \land \mathit{libD}_2)
\end{array}
\end{displaymath}
\end{frame}
\begin{frame}
{Dependency Constraints}
\pause
\bigskip
For each package-version $p_i$ with dependency $q_j$: $p_i \to q_j$. \\
\qquad \textcolor{black!60}{Exercise: why is this the correct thing?}
\pause
\bigskip
Gather these up as \textsc{Dep}:
\begin{displaymath}
\textsc{Dep} = (\mathit{progA}_1 \to \mathit{libC}_1) \land (\mathit{progA}_1 \to \mathit{libD}_1) \land \cdots
\end{displaymath}
\end{frame}
\begin{frame}
{Understanding the Constraint}
How to understand \quad
$\mathit{progA}_1 \to \mathit{libC}_1$ \qquad ?
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
$\mathit{progA}_1$&$\mathit{libC}_1$&$\mathit{progA}_1 \to \mathit{libC}_1$ \\
\hline
$\false$&$\false$&$\true$ \\
$\true$ &$\false$&$\false$ \\
$\false$&$\true$ &$\true$ \\
$\true$ &$\true$ &$\true$ \\
\hline
\end{tabular}
\end{center}
The second last line, where $\mathit{progA}_1$ is installed, but its
dependency $\mathit{libC}_1$ is not, is the case we want to
disallow, and it is the only one assigned $\false$.
% \pause
% \medskip
% \sechead{2. Equivalences}
% \begin{displaymath}
% \begin{array}{cl@{\hspace{2em}}l}
% &\mathit{progA}_1 \to \mathit{libC}_1\\
% \equiv&\lnot \mathit{progA}_1 \lor \mathit{libC}_1 & \textrm{\it either no $\mathit{progA}_1$ or yes to its dependency} \\
% \end{array}
% \end{displaymath}
\end{frame}
\begin{frame}
{Putting together the constraints}
\rhighlight{Original idea: } valuations represent installations. \\
\pause
\medskip
\rhighlight{Problem: } Mutually incompatible packages can be installed. \\
\pause
\rhighlight{Solution: } Impose the constraints \textsc{Incompat}.
\pause
\medskip
\rhighlight{Problem: } Packages could be installed without their dependencies. \\
\pause
\rhighlight{Solution: } Impose the constraints \textsc{Dep}.
\pause
\bigskip
\sechead{In summary}
Now we have,
\begin{displaymath}
\sem{\textsc{Incompat} \land \textsc{Dep}}v = \true
\end{displaymath}
exactly when the valuation $v$ is a sensible selection of packages.
\end{frame}
\begin{frame}
{Relating to Satisfiability}
\textcolor{black!60}{$P$ is \emph{satisfiable} if there exists a
valuation $v$ with $\sem{P}v = \true$.}
\pause
\bigskip
\sechead{For the package installation problem:}
\begin{enumerate}
\item If the formula \qquad $\textsc{Incompat} \land \textsc{Dep}$ \\
is satisfiable, then there is least one possible
installation.\\
% {\footnotesize \textcolor{black!60}{every valuation that makes
% $\textsc{Incompat} \land \textsc{Dep}$ true is sensible,
% satisfiability asks that there is at least such valuation.}}
\item If the formula \qquad $\textsc{Incompat} \land \textsc{Dep} \land \mathit{progA}_1$ \\
is satisfiable then $\mathit{progA}_1$ is installable (with its dependencies)
\item if \qquad $\textsc{Incompat} \land \textsc{Dep} \land (\mathit{progA}_1 \lor \mathit{progA}_2 \lor \mathit{progA}_3)$ \\
is satisfiable then some version of $\mathit{progA}$ is installable.
\end{enumerate}
% \pause
% \bigskip
% \rhighlight{Next lecture: } Satisfiability solvers are programs that
% find satisfying valuations $\Rightarrow$ that discover sensible
% plans for installing packages.
\end{frame}
\begin{frame}
{Example 1}
Assume one version of each package: $\textsc{Incompat}$ is empty.
\begin{displaymath}
\begin{array}{lcl}
\textsc{Dep}&=&(\mathit{progA}_1 \to \mathit{libC}_1) \land (\mathit{libC}_1 \to \mathit{libD}_1) \land (\mathit{libC}_1 \to \mathit{libE}_1)
\end{array}
\end{displaymath}
\pause
\bigskip
We would like to install $\mathit{progA}_1$.
\pause
\bigskip
As a formula: Is this formula satisfiable?
\begin{displaymath}
\textsc{Incompat} \land \textsc{Dep} \land \mathit{progA}_1
\end{displaymath}
\pause
\bigskip
Yes:
\begin{displaymath}
\{ \mathit{progA}_1 \assigned \true, \mathit{libC}_1 \assigned \true, \mathit{libD}_1 \assigned \true, \mathit{libE}_1 \assigned \true \}
\end{displaymath}
\textcolor{black!60}{(Install everything)}
\end{frame}
\begin{frame}
{Example 2}
Assume two versions of $\mathit{libE}$:
\begin{displaymath}
\textsc{Incompat} = \lnot \mathit{libE}_1 \lor \lnot \mathit{libE}_2
\end{displaymath}
Add a dependency:
\begin{displaymath}
\begin{array}{lcl}
\textsc{Dep}&=&(\mathit{progA}_1 \to \mathit{libC}_1) \land (\mathit{libC}_1 \to \mathit{libD}_1) \land (\mathit{libC}_1 \to \mathit{libE}_1) \\
&\land&(\mathit{libD}_1 \to \mathit{libE}_2)
\end{array}
\end{displaymath}
% \pause
% \bigskip
% We would like to install $\mathit{progA}_1$.
\pause
As a formula: Is this formula satisfiable? $\textsc{Incompat} \land \textsc{Dep} \land \mathit{progA}_1$
\pause
\smallskip
No! $\textsc{Incompat} \land \mathit{progA}_1$ force both
$\mathit{libE}_1$ and $\mathit{libE}_2$ to be $\true$, but this is
disallowed by the $\textsc{Incompat}$
constraint.\emph{\textcolor{black!60}{``diamond dependency''}}
\end{frame}
\begin{frame}
{Summary}
\begin{itemize}
\item Package installations solved via Logical Modelling
\item Valuations are installations
\item Impose constraints to match requirments
\item Satisfying valuations $=$ viable installations
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\weeksection{SAT Solving}
% \begin{frame}
% \begin{center}
% {\Huge SAT Solvers} \\
% \textcolor{black!60}{I can't get no SATisfaction}
% \end{center}
% \end{frame}
\begin{frame}
{SAT solvers}
SATisfiability solvers.
\bigskip
The problem they solve:
\begin{itemize}
\item Given a formula $P$ (in \emph{conjunctive normal form}), find
a valuation $v$ that makes it $\true$ and return
$\mathsf{SAT}(v)$, or if there is no such valuation, return
$\mathsf{UNSAT}$.
\end{itemize}
\end{frame}
\begin{frame}
{Solving SAT}
\begin{itemize}
\item In the worst case, there are $2^n$ cases to check, where $n$
is the number of atomic propositions.
\begin{itemize}
\item Checking each case is quick ... but there are a lot of cases.
\end{itemize}
\item This is the archetypal NP problem:
\begin{itemize}
\item If we knew the answer, it would be easy to check \\
\qquad (\textbf{P}olynomial time)
\item But there are exponentially many to check \\
\qquad (\textbf{N}ondeterminism)
\end{itemize}
\item It is unknown if there is a better way. Does P = NP?
\end{itemize}
\end{frame}
\begin{frame}
{But SAT is useful: Solving Problems}
\begin{enumerate}
\item Package installations (last lecture) \\
\sidenote{satisfying valuation = good package installation}
\item Solving Sudoku \\
\sidenote{satisfying valuation = correct solution}
\item Solving Resource allocations \\
\sidenote{satisfying valuation = feasible resource allocation}
\end{enumerate}
\end{frame}
\begin{frame}
{SAT is Useful: Finding Bugs}
\sidenote{Recall: $P_1 \to P_2 \to Q$ is valid if $\lnot(P_1 \to P_2 \to Q)$ is not satisfiable}
\begin{enumerate}
\item Finding faults in systems \\
\sidenote{satisfying valuation = path to a bad state}
\item Finding flaws in Access Control rules \\
\sidenote{satisfying valuation = unexpectedly permitted request}
\item Verifying hardware \\
\sidenote{satisfying valuation = counterexample to correctness}
\end{enumerate}
\end{frame}
\begin{frame}
{An alluring proposition}
Instead of writing custom solvers for all these problems, we:
\begin{enumerate}
\item translate into propositional logic; and
\item use an off the shelf SAT solver.
\end{enumerate}
\end{frame}
\begin{frame}
{Solving the problem in practice}
Despite the $2^n$ worst case time, practical SAT solvers are possible:
\begin{enumerate}
\item Solvers don't blindly check all cases:
\begin{itemize}
\item Use the formula to guide the search;
\item Analyse dead ends to avoid finding them more than once;
\item Very efficient data structures.
\end{itemize}
\item Human-made problems tend to be quite regular.
\item Modern SAT solvers can handle
\begin{itemize}
\item 10s of thousands of variables
\item millions of clauses
\end{itemize}
\item Practical tools for solving real-world problems.
\end{enumerate}
\end{frame}
\begin{frame}
{Input for SAT solvers}
SAT solvers take input in \emph{Conjunctive Normal Form} (CNF):
\begin{displaymath}
\begin{array}{cl}
&(\lnot a \lor \lnot b \lor \lnot c) \\
\land&(\lnot b \lor \lnot c \lor \lnot d) \\
\land&(\lnot a \lor \lnot b \lor c) \\
\land&b
\end{array}
\end{displaymath}
\begin{enumerate}
\item Entire formula is a conjunction $C_1 \land C_2 \land \cdots \land C_n$
\item where each \emph{clause} $C_i = L_{i,1} \lor L_{i,2} \lor \cdots \lor L_{i,k}$
\item where each \emph{literal} $L_{i,j} = x_{i,j}$ or $L_{i,j} = \lnot x_{i,j}$
\end{enumerate}
\raggedleft
{\footnotesize \textcolor{black!60}{Every formula can be put into CNF (later)}}
\raggedright
\end{frame}
\begin{frame}
{Conjunctive Normal Form}
For the package installation problems, we already have CNF:
\begin{displaymath}
\begin{array}{ll}
\left.
\begin{array}{cl}
&(\lnot \mathit{libD}_1 \lor \lnot \mathit{libD}_2) \\
\land&(\lnot \mathit{libC}_1 \lor \lnot \mathit{libC}_2) \\
\land&(\lnot \mathit{progA}_1 \lor \lnot \mathit{progA}_2)
\end{array}
\right\}
&
\textsc{Incompat}
\\
\left.
\begin{array}{cl}
\land&(\lnot \mathit{progA}_1 \lor \mathit{libC}_1) \\
\land&(\lnot \mathit{progA}_2 \lor \mathit{libC}_2) \\
\land&(\lnot \mathit{libC}_1 \lor \mathit{libD}_2) \\
\land&(\lnot \mathit{libC}_2 \lor \mathit{libD}_2)
\end{array}
\right\} & \textsc{Dep}
\\
\left.\begin{array}{cl}
\land &(\mathit{progA}_1 \lor \mathit{progA}_2)
\end{array}\right.
\end{array}
\end{displaymath}
\end{frame}
\begin{frame}
{A SAT Solver's job}
Given clauses that look like:
\begin{displaymath}
\begin{array}{cl}
&(\lnot a \lor \lnot b \lor \lnot c) \\
\land&(\lnot b \lor \lnot c \lor \lnot d) \\
\land&(\lnot a \lor \lnot b \lor c) \\
\land&b
\end{array}
\end{displaymath}
To find a valuation $v$ for the $a, ...$ such that at least one
literal in every clause is true.
\begin{displaymath}
\textrm{Returns either:} \quad \mathsf{SAT}(v) \qquad \textrm{or} \qquad \mathsf{UNSAT}.
\end{displaymath}
\end{frame}
\begin{frame}
{Basic idea of the algorithm}
\begin{enumerate}
\item The clauses $C_1, \dots, C_n$ to be satisfied are fixed;
\item The state is a partial valuation \textcolor{black!60}{(next slide)};
\item At each step we pick a way to modify the current partial
valuation by choosing from a collection of rules;
\item Algorithm terminates when either a satisfying valuation is
constructed, or it is clear that this is not possible.
\end{enumerate}
\bigskip
This is known as the \emph{DPLL Algorithm}.
\end{frame}
\begin{frame}
{Partial Valuations}
To describe what a SAT solver does, we need \emph{partial valuations}.
\bigskip
A \rhighlight{partial valuation} $v^?$ is a:
\begin{itemize}
\item \emph{sequence} of assignments to atoms; with each one marked
\begin{enumerate}
\item $d$ecision point, if we guessed this value.
\item $f$orced, if we were forced to have this value.
\end{enumerate}
\end{itemize}
\medskip
Examples:
$\begin{array}[t]{l}
v_1^? = [ a \decideto \true, b \decideto \false, c \forcedto \true ] \\
v_2^? = [ a \forcedto \false, b \decideto \false ] \\
\end{array}$
\end{frame}
\begin{frame}
{Differences with Valuations}
\begin{enumerate}
\item The order matters\\
\sidenote{we keep track of what decisions we make during the search}
\item Not all atoms need an assignment\\
\sidenote{we want to represent partial solutions during the search}
\item We mark decision points and forced decisions.
\end{enumerate}
\end{frame}
\begin{frame}
{Notation}
We write
\begin{displaymath}
v_1^?, a \decideto x, v_2^?
\end{displaymath}
for a partial valuation with $a \decideto x$ somewhere in
the middle.
\bigskip
We write
\begin{displaymath}
\mathit{decisionfree}(v^?)
\end{displaymath}
if none of the assignments in $v^?$ are marked $d$ \\
\sidenote{i.e., all decisions in $v^?$ are $f$orced}
\end{frame}
\begin{frame}
{1. Initialisation}
We start with the \emph{empty partial valuation} $v^? = []$.\\
\sidenote{We make no commitments}
\medskip
We must extend this guess to a valuation that satisfies all the clauses.
\end{frame}
\begin{frame}
{2. Guessing}
If there is an atom $a$ in the clauses that is not in the current
partial valuation $v^?$, then we can make a guess. We pick one of:
\begin{displaymath}
v^?, a \decideto \true \qquad \textrm{or} \qquad v^?, a \decideto \false
\end{displaymath}
\sidenote{Note: we have marked this as a $d$ecision point}
\end{frame}
\begin{frame}
{3. Success}
If the current $v^?$ makes all the clauses true (for all $i$,
$\sem{C_i}v^? = \true$), then stop with $\mathsf{SAT}(v^?)$.
\end{frame}
\def\doneafter<#1>#2{%
\temporal<#1>%
{\colorbox{white}{\color{black}$\displaystyle#2$}}%
{\colorbox{green!50}{\color{black}$\displaystyle#2$}}%
{\colorbox{green!50}{\color{black}$\displaystyle#2$}}}
\def\stuck<#1>#2{%
\temporal<#1>%
{\colorbox{white}{\color{black}$\displaystyle#2$}}%
{\colorbox{red!50}{\color{black}$\displaystyle#2$}}%
{\colorbox{white}{\color{black}$\displaystyle#2$}}}
\def\done<#1>#2{%
\temporal<#1>%
{\colorbox{white}{\color{black}$\displaystyle#2$}}%
{\colorbox{green!50}{\color{black}$\displaystyle#2$}}%
{\colorbox{white}{\color{black}$\displaystyle#2$}}}
\newcommand{\undet}[1]{\stackrel{\textcolor{white}{\checkmark}}{\colorbox{white}{$#1$}}}
\newcommand{\failed}[1]{\stackrel{\times}{\colorbox{red!90}{\textcolor{white}{$#1$}}}}
\newcommand{\satd}[1]{\stackrel{\checkmark}{\colorbox{green!50}{{$#1$}}}}
\begin{frame}
{Example}
\begin{displaymath}
\only<1>{(\undet{\lnot a} \lor \undet{\lnot b} \lor \undet{\lnot c}) \land (\undet{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\undet{\lnot a} \lor \undet{\lnot b} \lor \undet{c}) \land \undet{b}}%
\only<2>{(\satd{\lnot a} \lor \undet{\lnot b} \lor \undet{\lnot c}) \land (\undet{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\satd{\lnot a} \lor \undet{\lnot b} \lor \undet{c}) \land \undet{b}}%
\only<3>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \undet{\lnot c}) \land (\failed{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \undet{c}) \land \satd{b}}%
\only<4>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \satd{\lnot c}) \land (\failed{\lnot b} \lor \satd{\lnot c} \lor \undet{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \failed{c}) \land \satd{b}}%
\only<5->{(\satd{\lnot a} \lor \failed{\lnot b} \lor \satd{\lnot c}) \land (\failed{\lnot b} \lor \satd{\lnot c} \lor \satd{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \failed{c}) \land \satd{b}}%
\end{displaymath}
\sidenote{Need at least one green in every clause}
\sechead{Sequence of (lucky) guesses}
\begin{enumerate}
\item $[]$
\item<2-> $[a \decideto \false]$
\item<3-> $[a \decideto \false, b \decideto \true]$
\item<4-> $[a \decideto \false, b \decideto \true, c \decideto \false]$
\item<5-> $[a \decideto \false, b \decideto \true, c \decideto \false, d \decideto \false]$, a satisfying valuation.
\end{enumerate}
% \pause\pause\pause\pause\pause
% Line 5 is a satisfying valuation.
% \pause
% \bigskip
% But we can't program ``luck''!
\end{frame}
\begin{frame}
But we can't program ``luck''!
\end{frame}
\begin{frame}
{4. Backtracking}
If we have a partial valuation:
\begin{displaymath}
v_1^?, a \decideto x, v_2^?
\end{displaymath}
and $\mathit{decisionfree}(v_2^?)$ (so $a \assigned x$ was our most recent guess).
\medskip
Then we backtrack (throw away $v_2^?$) and change our mind:
\begin{displaymath}
v_1^?, a \forcedto \lnot x
\end{displaymath}
marking the assignment as $f$orced.
\end{frame}
\begin{frame}
{5. Failure}
If all decisions are forced ($\mathit{decisionfree}(v^?)$), and
there is at least one clause $C_i$ such that $\sem{C}v^? = \false$,
then return $\mathsf{UNSAT}$.
\end{frame}
\begin{frame}[t]
{\footnotesize
$\only<1>{(\undet{\lnot a} \lor \undet{\lnot b} \lor \undet{\lnot c}) \land (\undet{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\undet{\lnot a} \lor \undet{\lnot b} \lor \undet{c}) \land \undet{b}}%
\only<2>{(\failed{\lnot a} \lor \undet{\lnot b} \lor \undet{\lnot c}) \land (\undet{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\failed{\lnot a} \lor \undet{\lnot b} \lor \undet{c}) \land \undet{b}}%
\only<3>{(\failed{\lnot a} \lor \failed{\lnot b} \lor \undet{\lnot c}) \land (\failed{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\failed{\lnot a} \lor \failed{\lnot b} \lor \undet{c}) \land \satd{b}}%
\only<4>{(\failed{\lnot a} \lor \failed{\lnot b} \lor \failed{\lnot c}) \land (\failed{\lnot b} \lor \failed{\lnot c} \lor \undet{\lnot d}) \land (\failed{\lnot a} \lor \failed{\lnot b} \lor \satd{c}) \land \satd{b}}%
\only<5>{(\failed{\lnot a} \lor \failed{\lnot b} \lor \satd{\lnot c}) \land (\failed{\lnot b} \lor \satd{\lnot c} \lor \undet{\lnot d}) \land (\failed{\lnot a} \lor \failed{\lnot b} \lor \failed{c}) \land \satd{b}}%
\only<6>{(\failed{\lnot a} \lor \satd{\lnot b} \lor \undet{\lnot c}) \land (\satd{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\failed{\lnot a} \lor \satd{\lnot b} \lor \undet{c}) \land \failed{b}}%
\only<7>{(\satd{\lnot a} \lor \undet{\lnot b} \lor \undet{\lnot c}) \land (\undet{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\satd{\lnot a} \lor \undet{\lnot b} \lor \undet{c}) \land \undet{b}}%
\only<8>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \undet{\lnot c}) \land (\failed{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \undet{c}) \land \satd{b}}%
\only<9>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \failed{\lnot c}) \land (\failed{\lnot b} \lor \failed{\lnot c} \lor \undet{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \satd{c}) \land \satd{b}}%
\only<10>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \failed{\lnot c}) \land (\failed{\lnot b} \lor \failed{\lnot c} \lor \failed{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \satd{c}) \land \satd{b}}%
\only<11>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \failed{\lnot c}) \land (\failed{\lnot b} \lor \failed{\lnot c} \lor \satd{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \satd{c}) \land \satd{b}}%
$}
{\footnotesize
\begin{enumerate}
\item $[]$
\vspace{-0.5em}
\item<2-> $[a \decideto \true]$
\vspace{-0.5em}
\item<3-> $[a \decideto \true, b \decideto \true]$
\vspace{-0.5em}
\item<4-> $[a \decideto \true, b \decideto \true, c \decideto \true]$ \qquad \emph{clause 1 failed, backtrack...}
\vspace{-0.5em}
\item<5-> $[a \decideto \true, b \decideto \true, c \forcedto \false]$ \qquad \emph{clause 3 failed, backtrack...}
\vspace{-0.5em}
\item<6-> $[a \decideto \true, b \forcedto \false]$ \qquad \emph{clause 4 failed, backtrack...}
\vspace{-0.5em}
\item<7-> $[a \forcedto \false]$
\vspace{-0.5em}
\item<8-> $[a \forcedto \false, b \decideto \true]$
\vspace{-0.5em}
\item<9-> $[a \forcedto \false, b \decideto \true, c \decideto \true]$
\vspace{-0.5em}
\item<10-> $[a \forcedto \false, b \decideto \true, c \decideto \true, d \decideto \true]$ \qquad \emph{clause 2 failed, backtrack}
\vspace{-0.5em}
\item<11-> $[a \forcedto \false, b \decideto \true, c \decideto \true, d \decideto \false]$ \qquad $\mathsf{SAT}$
\end{enumerate}
~}
\end{frame}
\begin{frame}
{Summary}
\begin{enumerate}
\item SAT solvers are tools that find satisfying valuations for formulas in CNF.
\item Having a SAT solver enables solving of problems modelled using logic.
\item The core algorithm is a backtracking search.
\end{enumerate}
\end{frame}
\weeksection{Faster SAT by Unit Propagation}
% \begin{frame}
% \begin{center}
% {\Huge \textcolor{black!60}{Part 4 : }Faster SAT with Unit Propagation}
% \end{center}
% \end{frame}
\begin{frame}
{Backtracking is Oblivious}
The example:
\begin{displaymath}
({\lnot a} \lor {\lnot b} \lor {\lnot c}) \land ({\lnot b} \lor {\lnot c} \lor {\lnot d}) \land ({\lnot a} \lor {\lnot b} \lor {c}) \land {b}
\end{displaymath}
Backtracking tries the atoms in some order.
\bigskip
But we can see immediately that $b$ must be true.
\bigskip
Other forced assignments occur during the search.
\end{frame}
\begin{frame}
{Making the Search less naive}
If we are in a situation like:
\begin{displaymath}
(\failed{\lnot b} \lor \failed{\lnot c} \lor \undet{\lnot d})
\end{displaymath}
then if the current valuation is to succeed in any way, it must be
the case that $d \assigned \false$.\\
\sidenote{because we need at least one literal in every clause to be true.}
% \bigskip
% Similarly, in a situation like:
% \begin{displaymath}
% (\failed{\lnot b} \lor \failed{\lnot c} \lor \undet{d})
% \end{displaymath}
% then if the current valuation is to succeed in any way, it must be
% the case that $d \assigned \true$.\\
\bigskip
Using this, we can make the search a little less naive.
\end{frame}
\begin{frame}
{6. Unit Propagation Step}
(a) If there is a clause $C \lor a$and $\sem{C}v^? = \false$, then we
extend $v^?$ to:
\begin{displaymath}
v^?, a \forcedto \true
\end{displaymath}
\medskip
(b) If there is a clause $C \lor \lnot a$ and $\sem{C}v^? = \false$,
then we extend $v^?$ to:
\begin{displaymath}
v^?, a \forcedto \false
\end{displaymath}
\sidenote{Note: the $a$ needn't necessarily appear at the end of the clause}
\end{frame}
\begin{frame}
{\footnotesize
\begin{displaymath}
\only<1>{(\undet{\lnot a} \lor \undet{\lnot b} \lor \undet{\lnot c}) \land (\undet{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\undet{\lnot a} \lor \undet{\lnot b} \lor \undet{c}) \land \undet{b}}%
\only<2>{(\undet{\lnot a} \lor \failed{\lnot b} \lor \undet{\lnot c}) \land (\failed{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\undet{\lnot a} \lor \failed{\lnot b} \lor \undet{c}) \land \satd{b}}%
\only<3>{(\failed{\lnot a} \lor \failed{\lnot b} \lor \undet{\lnot c}) \land (\failed{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\failed{\lnot a} \lor \failed{\lnot b} \lor \undet{c}) \land \satd{b}}%
\only<4>{(\failed{\lnot a} \lor \failed{\lnot b} \lor \satd{\lnot c}) \land (\failed{\lnot b} \lor \satd{\lnot c} \lor \undet{\lnot d}) \land (\failed{\lnot a} \lor \failed{\lnot b} \lor \failed{c}) \land \satd{b}}%
\only<5>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \undet{\lnot c}) \land (\failed{\lnot b} \lor \undet{\lnot c} \lor \undet{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \undet{c}) \land \satd{b}}%
\only<6>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \failed{\lnot c}) \land (\failed{\lnot b} \lor \failed{\lnot c} \lor \undet{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \satd{c}) \land \satd{b}}%
\only<7-8>{(\satd{\lnot a} \lor \failed{\lnot b} \lor \failed{\lnot c}) \land (\failed{\lnot b} \lor \failed{\lnot c} \lor \satd{\lnot d}) \land (\satd{\lnot a} \lor \failed{\lnot b} \lor \satd{c}) \land \satd{b}}%
\end{displaymath}}
\begin{enumerate}
\item $[]$ \qquad \emph{do unit propagation...}
\item<2-> $[b \forcedto \true]$
\item<3-> $[b \forcedto \true, a \decideto \true]$ \qquad \emph{do unit propagation...}
\item<4-> $[b \forcedto \true, a \decideto \true, c \forcedto \false]$ \qquad \emph{clause 3 failed, backtrack...}
\item<5-> $[b \forcedto \true, a \forcedto \false]$
\item<6-> $[b \forcedto \true, a \forcedto \false, c \decideto \true]$ \qquad \emph{do unit propagation...}
\item<7-> $[b \forcedto \true, a \forcedto \false, c \decideto \true, d \forcedto \false]$ \qquad $\mathsf{SAT}$