-
Notifications
You must be signed in to change notification settings - Fork 558
/
Copy pathtext_data.py
483 lines (434 loc) · 18.5 KB
/
text_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
"""Build a StreamingTextDataset dataset and dataloader for training."""
import inspect
from itertools import islice
from typing import (
Any,
Callable,
Mapping,
Optional,
Sequence,
Union,
cast,
)
import numpy as np
import torch
from composer.core.data_spec import DataSpec
from streaming import Stream, StreamingDataset
from torch.utils.data import DataLoader
from transformers import PreTrainedTokenizerBase
from llmfoundry import registry
from llmfoundry.data.data import (
SUPPORTED_MDS_ENCODING_TYPES,
stream_remote_local_validate,
)
from llmfoundry.utils.registry_utils import construct_from_registry
__all__ = [
'StreamingTextDataset',
'build_text_dataloader',
'ConcatenatedSequenceCollatorWrapper',
]
class StreamingTextDataset(StreamingDataset):
"""Generic text dataset using MosaicML's StreamingDataset.
Args:
tokenizer (Tokenizer): HuggingFace tokenizer to
tokenize samples.
max_seq_len (int): The max sequence length of each sample.
token_encoding_type (str): The encoding type of the tokenized samples. This is only used
for legacy datasets that have been written directly as 'bytes' instead of numpy
arrays. Types are auto-inferred for numpy arrays. Defaults to 'int64'.
streams (Sequence[Stream], optional): One or more Streams to stream/cache samples from,
which may be upsampled or downsampled. StreamingDataset uses either ``streams`` or
``remote``/``local``. Defaults to ``None``.
remote (str, optional): Remote path or directory to download the dataset from. If ``None``,
its data must exist locally. StreamingDataset uses either ``streams`` or
``remote``/``local``. Defaults to ``None``.
local (str, optional): Local working directory to download shards to. This is where shards
are cached while they are being used. Uses a temp directory if not set.
StreamingDataset uses either ``streams`` or ``remote``/``local``. Defaults to ``None``.
split (str, optional): Which dataset split to use, if any. If provided, we stream from/to
the ``split`` subdirs of ``remote`` and ``local``. Defaults to ``None``.
download_retry (int): Number of download re-attempts before giving up. Defaults to ``2``.
download_timeout (float): Number of seconds to wait for a shard to download before raising
an exception. Defaults to ``60``.
validate_hash (str, optional): Optional hash or checksum algorithm to use to validate
shards. Defaults to ``None``.
keep_zip (bool): Whether to keep or delete the compressed form when decompressing
downloaded shards. If ``False``, keep iff remote is local or no remote. Defaults to
`False``.
epoch_size (Union[int, str], optional): Number of samples to draw per epoch balanced across all
streams. If ``None``, takes its value from the total number of underlying samples.
Provide this field if you are weighting streams relatively to target a larger or
smaller epoch size. Defaults to ``None``.
predownload (int, optional): Target number of samples ahead to download the shards of while
iterating. If ``None``, its value is set to ``8 * batch_size``. Defaults to ``None``.
cache_limit (Union[int, str], optional) - Maximum size in bytes of this StreamingDataset's
shard cache. Before downloading a shard, the least recently used resident shard(s) may
be evicted (deleted from the local cache) in order to stay under the limit. Set to None
to disable shard eviction. Supports integer bytes as well as string human-readable
bytes (e.g., 100b, 64kb, 77mb, and so on). Defaults to None.
partition_algo (str): Which partitioning algorithm to use. Defaults to ``orig``.
num_canonical_nodes (int, optional): Canonical number of nodes for shuffling with
resumption. If ``None``, this is interpreted as 64 times the number of physical
nodes of the initial run if ``shuffle_algo`` is ``py1s`` or ``py2s``, and simply the
number of physical nodes of the initial run otherwise. Defaults to ``None``.
batch_size (int, optional): Batch size of its DataLoader, which affects how the dataset is
partitioned over the workers. Defaults to ``None``.
shuffle (bool): Whether to iterate over the samples in randomized order. Defaults to
``False``.
shuffle_algo (str): Which shuffling algorithm to use. Defaults to ``py1e``.
shuffle_seed (int): Seed for Deterministic data shuffling. Defaults to ``9176``.
shuffle_block_size (int, optional): Unit of shuffle. A canonical node's samples are split
into blocks of this size, and samples within each block are shuffled. If ``None``, its
value is calculated as ``max(4_000_000 // num_canonical_nodes), 1 << 18)``. Defaults to
``None``.
sampling_method (str): Which sampling method to use, either ``balanced`` or ``fixed``.
Defaults to ``balanced``.
sampling_granularity (int): When picking samples for a stream's final partial repeat,
how many samples to pick from the same shard at a time (``1`` for evenly balanced
across shards, ``1000`` to pick 1000 samples from the same shard at a time, etc).
Defaults to ``1``.
batching_method (str): Which batching method to use, either ``random``, ``stratified``, or
``per_stream``. Defaults to ``random``.
allow_unsafe_types (bool): If a shard contains Pickle, which allows arbitrary code
execution during deserialization, whether to keep going if ``True`` or raise an error
if ``False``. Defaults to ``False``.
replication (int, optional): Determines how many consecutive devices will receive the same
samples. Useful for training with tensor or sequence parallelism, where multiple
devices need to see the same partition of the dataset. Defaults to ``None``.
stream_name (str): The name of the Stream to use which is registered in
streaming.base.stream.streams_registry. Defaults to ``stream``.
stream_config (dict[str, Any]): Additional arguments to pass to the Stream constructor.
"""
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
max_seq_len: int,
token_encoding_type: str = 'int64',
streams: Optional[Sequence[Stream]] = None,
remote: Optional[str] = None,
local: Optional[str] = None,
split: Optional[str] = None,
download_retry: int = 2,
download_timeout: float = 60,
validate_hash: Optional[str] = None,
keep_zip: bool = False,
epoch_size: Optional[Union[int, str]] = None,
predownload: Optional[int] = None,
cache_limit: Optional[Union[int, str]] = None,
partition_algo: str = 'relaxed',
num_canonical_nodes: Optional[int] = None,
batch_size: Optional[int] = None,
shuffle: bool = False,
shuffle_algo: str = 'py1e',
shuffle_seed: int = 9176,
shuffle_block_size: Optional[int] = None,
sampling_method: str = 'balanced',
sampling_granularity: int = 1,
batching_method: str = 'random',
allow_unsafe_types: bool = False,
replication: Optional[int] = None,
stream_name: str = 'stream',
stream_config: Optional[dict[str, Any]] = None,
**kwargs: Any,
):
if token_encoding_type not in SUPPORTED_MDS_ENCODING_TYPES:
raise ValueError(
f'The token_encoding_type must be one of {SUPPORTED_MDS_ENCODING_TYPES}, but got {token_encoding_type}',
)
self.token_encoding_type = token_encoding_type
if streams is None:
stream_remote_local_validate(remote, local, split)
else:
for stream in streams:
stream_remote_local_validate(
stream.remote,
stream.local,
split,
)
# TODO: discover where yamls are being converted incorrect, but temporary workaround
if isinstance(shuffle_block_size, float):
shuffle_block_size = int(shuffle_block_size)
# Build Dataset
super().__init__(
streams=streams,
remote=remote,
local=local,
split=split,
download_retry=download_retry,
download_timeout=download_timeout,
validate_hash=validate_hash,
keep_zip=keep_zip,
epoch_size=epoch_size,
predownload=predownload,
cache_limit=cache_limit,
partition_algo=partition_algo,
num_canonical_nodes=num_canonical_nodes,
batch_size=batch_size,
shuffle=shuffle,
shuffle_algo=shuffle_algo,
shuffle_seed=shuffle_seed,
shuffle_block_size=shuffle_block_size,
sampling_method=sampling_method,
sampling_granularity=sampling_granularity,
batching_method=batching_method,
allow_unsafe_types=allow_unsafe_types,
replication=replication,
stream_name=stream_name,
stream_config=stream_config,
**kwargs,
)
self.tokenizer = tokenizer
self.max_seq_len = max_seq_len
# How to tokenize a text sample to a token sample
def _tokenize(self, text_sample: Mapping) -> dict[str, list[int]]:
if self.tokenizer.pad_token is None:
# Some tokenizers (e.g. GPT2 tokenizer) have no padding token which causes bugs
raise RuntimeError(
'If tokenizing on-the-fly, tokenizer must have a pad_token_id',
)
return self.tokenizer(
text_sample['text'],
truncation=True,
padding='max_length',
max_length=self.max_seq_len,
)
def _read_binary_tokenized_sample(
self,
sample: dict[str, Any],
) -> torch.Tensor:
# Modeling code still expects int64 tensors.
if isinstance(sample['tokens'], np.ndarray):
return torch.from_numpy(
sample['tokens'][:self.max_seq_len].copy(),
).to(torch.int64)
else:
return torch.from_numpy(
np.frombuffer(
sample['tokens'],
dtype=getattr(np, self.token_encoding_type),
)[:self.max_seq_len].copy(),
).to(torch.int64)
# How to process a sample
def __getitem__(self,
idx: int) -> Union[dict[str, list[int]], torch.Tensor]:
sample = super().__getitem__(idx)
if 'text' in sample:
token_sample = self._tokenize(sample)
elif 'tokens' in sample:
token_sample = self._read_binary_tokenized_sample(sample)
else:
raise RuntimeError(
'StreamingTextDataset needs samples to have a `text` or `tokens` column',
)
return token_sample
class ConcatenatedSequenceCollatorWrapper:
"""Collator wrapper to add sequence_id to batch."""
def __init__(
self,
base_collator: Callable,
eos_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None,
):
self.base_collator = base_collator
if (eos_token_id is None) and (bos_token_id is None):
raise ValueError(
'Must supply a value for either eos_token_id or bos_token_id, but got None for both.',
)
if (eos_token_id is not None) and (bos_token_id is not None):
raise ValueError(
'Cannot use *both* EOS and BOS tokens for detecting sequence boundaries. ' +\
'Please supply `eos_token_id` if sequences end with an EOS token, or use ' +\
'`bos_token_id` if sequences start with a BOS token.',
)
if eos_token_id is None:
self.split_token_id = cast(int, bos_token_id)
self.bos_mode = True
else:
self.split_token_id = eos_token_id
self.bos_mode = False
def __call__(self, examples: list[Any]) -> dict[str, torch.Tensor]:
batch = self.base_collator(examples)
batch['sequence_id'] = self.get_sequence_id_from_batch(batch)
return batch
def get_sequence_id_from_batch(
self,
batch: dict[str, torch.Tensor],
) -> torch.Tensor:
is_separator = torch.eq(batch['input_ids'], self.split_token_id)
cumulative_sep = torch.cumsum(is_separator,
dim=1).to(batch['input_ids'].dtype)
# If separator token is bos, we're already done
if self.bos_mode:
return cumulative_sep
# If separator token is eos, right shift 1 space
left_zeros = cumulative_sep.new_zeros((cumulative_sep.shape[0], 1))
return torch.cat([left_zeros, cumulative_sep[:, :-1]], dim=1)
def build_streams(streams: Optional[dict[str, Any]] = None,):
streams_dict = streams
# build streams
streams_ret = []
if streams_dict is not None:
streams_ret = [Stream(**stream) for stream in streams_dict.values()]
return streams_ret
def build_text_dataloader(
tokenizer: PreTrainedTokenizerBase,
device_batch_size: Union[int, float],
dataset: dict[str, Any],
drop_last: bool,
num_workers: int,
pin_memory: bool = True,
prefetch_factor: int = 2,
persistent_workers: bool = True,
timeout: int = 0,
) -> DataSpec:
dataset_cfg = dataset
# get kwargs
dataset_cfg['replication'], dataset_batch_size = construct_from_registry(
name='dataset_replication_validator',
registry=registry.dataset_replication_validators,
partial_function=False,
kwargs={
'dataset_cfg': dataset_cfg,
'tokenizer': tokenizer,
'device_batch_size': device_batch_size,
},
)
streams = build_streams(
streams=dataset_cfg.pop('streams')
if 'streams' in dataset_cfg else None,
)
valid_streaming_text_dataset_parameters = inspect.signature(
StreamingTextDataset,
).parameters
valid_base_dataset_params = inspect.signature(StreamingDataset,).parameters
dataset_config_subset_for_streaming_text_dataset = {
k: v
for k, v in dataset_cfg.items()
if k in valid_streaming_text_dataset_parameters or
k in valid_base_dataset_params
}
# build dataset potentially with streams
text_dataset = StreamingTextDataset(
tokenizer=tokenizer,
streams=streams,
batch_size=dataset_batch_size,
**dataset_config_subset_for_streaming_text_dataset,
)
dataloader_cfg = {
'name': 'text',
'dataset': dataset_cfg,
'drop_last': drop_last,
'num_workers': num_workers,
'pin_memory': pin_memory,
'prefetch_factor': prefetch_factor,
'persistent_workers': persistent_workers,
'timeout': timeout,
}
collate_fn, dataloader_batch_size = construct_from_registry(
name='text_collator',
registry=registry.collators,
partial_function=False,
kwargs={
'dataloader_cfg': dataloader_cfg,
'tokenizer': tokenizer,
'dataset_batch_size': dataset_batch_size,
},
)
dl = DataLoader(
text_dataset,
collate_fn=collate_fn,
batch_size=dataloader_batch_size,
drop_last=drop_last,
num_workers=num_workers,
pin_memory=pin_memory,
prefetch_factor=prefetch_factor,
persistent_workers=persistent_workers,
timeout=timeout,
)
return construct_from_registry(
name='data_spec',
registry=registry.data_specs,
partial_function=False,
kwargs={
'dl': dl,
'dataset_cfg': dataset_cfg,
},
)
# Helpful to test if your dataloader is working locally
# Run `python data.py --local_path [local] [--remote_path remote, optional]` and verify that batches are printed out
if __name__ == '__main__':
import argparse
from llmfoundry.utils.builders import build_tokenizer
parser = argparse.ArgumentParser()
parser.add_argument(
'--tokenizer',
type=str,
default='EleutherAI/gpt-neox-20b',
help='the name of the tokenizer to use',
)
parser.add_argument(
'--local_path',
type=str,
required=True,
help='the path to the local copy of the dataset',
)
parser.add_argument(
'--remote_path',
type=str,
default=None,
help='the path to the remote copy to stream from (optional)',
)
parser.add_argument(
'--split',
type=str,
default='val',
help='which split of the dataset to use',
)
parser.add_argument(
'--max_seq_len',
type=int,
default=32,
help='max sequence length to test',
)
args = parser.parse_args()
if args.remote_path is not None:
print(
f'Reading {args.split} split from {args.local_path} <- streamed from <- {args.remote_path}',
)
else:
print(f'Reading {args.split} split from {args.local_path}')
cfg = {
'name': 'text',
'dataset': {
'local': args.local_path,
'remote': args.remote_path,
'split': args.split,
'shuffle': False,
'max_seq_len': args.max_seq_len,
'keep_zip': True, # in case we need compressed files after testing
},
'drop_last': False,
'num_workers': 4,
}
device_batch_size = 2
tokenizer_name = args.tokenizer
tokenizer_kwargs = {'model_max_length': args.max_seq_len}
tokenizer = build_tokenizer(tokenizer_name, tokenizer_kwargs)
loader = build_text_dataloader(
**cfg,
tokenizer=tokenizer,
device_batch_size=device_batch_size,
).dataloader
assert isinstance(loader, DataLoader)
assert isinstance(loader.dataset, StreamingTextDataset)
tokenizer = loader.dataset.tokenizer
for batch_ix, batch in enumerate(islice(loader, 5)):
print('\n')
print('#' * 20, f'Batch {batch_ix}', '#' * 20)
for k, v in batch.items():
print(k, v.shape, v.dtype)
for sample_ix, token_sample in enumerate(batch['input_ids']):
print('-' * 20, f' Sample {sample_ix} ', '-' * 20)
print(tokenizer.decode(token_sample))