-
Notifications
You must be signed in to change notification settings - Fork 557
/
Copy pathmcli-hf-eval.yaml
55 lines (46 loc) · 1.43 KB
/
mcli-hf-eval.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
integrations:
- integration_type: git_repo
git_repo: mosaicml/llm-foundry
git_branch: v0.16.0
# git_commit: # OR use your commit hash
pip_install: .[gpu]
ssh_clone: false # Should be true if using a private repo
command: |
cd llm-foundry/scripts
composer eval/eval.py /mnt/config/parameters.yaml
# Mosaic Cloud will use run_name (with a unique suffix) to populate the env var $RUN_NAME
run_name: mpt-eval
gpu_num: 8
# gpu_type:
# cluster: # replace with your cluster here!
image: mosaicml/llm-foundry:2.5.1_cu124-latest
# The below is injected as a YAML file: /mnt/config/parameters.yaml
parameters:
dist_timeout: 6000
seed: 1
max_seq_len: 1024
device_eval_batch_size: 4
precision: amp_fp16
models:
-
model_name: meta-llama/Llama-3.1-70B-Instruct
# Tokenizer
tokenizer:
name: meta-llama/Llama-3.1-70B-Instruct
kwargs:
model_max_length: ${max_seq_len}
model:
name: hf_causal_lm
pretrained_model_name_or_path: meta-llama/Llama-3.1-70B-Instruct
init_device: mixed
pretrained: true
# Note: you must have set the HF_TOKEN environment variable and have access to the llama2 models
use_auth_token: true
# FSDP config for model sharding
fsdp_config:
sharding_strategy: FULL_SHARD
mixed_precision: FULL
forward_prefetch: True
limit_all_gathers: True
icl_tasks: "eval/yamls/tasks_v0.3.yaml"
eval_gauntlet: "eval/yamls/eval_gauntlet_v0.3.yaml"