-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
52 lines (38 loc) · 1.54 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import tensorflow as tf
import matplotlib.pyplot as plt
import os
import numpy as np
import generator as gen
import descriminator as des
from cv2 import cv2
generator = gen.make_generator_model()
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
discriminator = des.make_discriminator_model()
decision = discriminator(generated_image)
generator_optimizer = tf.keras.optimizers.Adam(0.0002, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(0.0002, beta_1=0.5)
checkpoint_dir = './training_checkpoints_lsun'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
noise_dim = 100
seed = tf.random.normal([2, noise_dim])
seed = seed.numpy()
# interpolate in n steps
interpolated_seeds = []
steps = 9
for i in range(10):
interpolated_seeds.append((steps - i) * (1/steps) * seed[0] + i * (1/steps) * seed[1])
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
interpolated_seeds = np.asarray(interpolated_seeds)
predictions = generator(interpolated_seeds, training=False)
for i in range(10):
samplebgr = predictions[i, :, :, ].numpy() * .5 + .5
sample = cv2.cvtColor(samplebgr, cv2.COLOR_BGR2RGB)
cv2.imwrite('sample_' + str(i) + '.png', samplebgr * 255)
plt.imshow(sample)
plt.axis('off')
plt.show()