-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
68 lines (49 loc) · 2.65 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import tensorflow as tf
from tensorflow.keras import layers
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(4*4*1024, use_bias=False, input_shape=(100,)))
model.add(layers.Reshape((4, 4, 1024)))
assert model.output_shape == (None, 4, 4, 1024) # Note: None is the batch size
model.add(layers.Conv2DTranspose(512, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 8, 8, 512)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(256, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 16, 16, 256)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 32, 32, 128)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 64, 64, 3)
return model
def make_generator_model_big():
model = tf.keras.Sequential()
model.add(layers.Dense(4*4*1024, use_bias=False, input_shape=(100,)))
model.add(layers.Reshape((4, 4, 1024)))
assert model.output_shape == (None, 4, 4, 1024) # Note: None is the batch size
model.add(layers.Conv2DTranspose(512, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 8, 8, 512)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(256, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 16, 16, 256)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 32, 32, 128)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 64, 64, 64)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 128, 128, 3)
return model
def generator_loss(fake_output):
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
return cross_entropy(tf.ones_like(fake_output), fake_output)