-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdescriminator.py
59 lines (42 loc) · 1.91 KB
/
descriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import tensorflow as tf
from tensorflow.keras import layers
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[64, 64, 3]))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2D(512, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
def make_discriminator_model_big():
model = tf.keras.Sequential()
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same', input_shape=[128, 128, 3]))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2D(512, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2D(1024, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
def discriminator_loss(real_output, fake_output):
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss