-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcplex.cpp
180 lines (150 loc) · 5.31 KB
/
cplex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#include <ilcplex/ilocplex.h>
#include "cplex.h"
#include "heu.h"
#include "helpers.h"
// For CPLEX to work
ILOSTLBEGIN
///////////////////////////////
// CPLEX STUFF //
///////////////////////////////
//ILOBARRIERCALLBACK1(MyCallback, IloInt, num) {
//~ cout << "Iteration " << getNiterations() << ": ";
//~ if ( isFeasible() ) {
//~ cout << "Objective = " << getObjValue() << endl;
//~ } else {
//~ cout << "Infeasibility measure = " << getInfeasibility() << endl;
//~ }
//~ cout << "obj val in callback " << getObjValue() << endl;
//~ cout << "supposed to stop when reaching obj(s) <= " << num << endl;
// if (num != 0 && isFeasible() && getObjValue() >= num)
//abort();
//}
u16 find_cplex(u8 *pi, u16 lower_bound, u16 best_wt) {
return find_cplex(pi, lower_bound, best_wt, NULL);
}
/**
* Interacts with CPLEX by writing a mathematical model
* using the API and asks it to solve it, returning the objective value
*/
u16 find_cplex(u8 *pi, u16 lower_bound, u16 best_wt, std::vector<trail> *pictureTrails) {
u16 result = 0;
size_t t,r,c;
IloEnv env;
try {
IloModel model(env);
char varName[100];
/* init state matrix x[T+1][ROWS][COLS] */
BoolVar3DMatrix x(env, ROUNDS + 1);
for (t = 0; t <= ROUNDS; ++t) {
x[t] = BoolVar2DMatrix(env, ROWS);
for (r = 0; r < ROWS; ++r) {
x[t][r] = IloBoolVarArray(env, COLS);
for (c = 0; c < COLS; ++c) {
sprintf(varName, "x%lu,%lu,%lu", r, c, t);
x[t][r][c].setName(varName);
}
}
}
/* init matrix a[T][COLS] */
BoolVar2DMatrix a(env, ROUNDS + 1);
for (t = 0; t <= ROUNDS; ++t) {
a[t] = IloBoolVarArray(env, COLS);
for (c = 0; c < COLS; ++c) {
sprintf(varName, "a%lu,%lu", c, t);
a[t][c].setName(varName);
}
}
// (1) \sum_{t,r,c} x^t_{r,c} >= 1
// This means an active input
IloIntExpr y(env, 0);
for (r = 0; r < ROWS; ++r)
y += IloSum(x[0][r]);
model.add(y >= 1);
y.end();
// (2) \sum_{t,r,c} x^t_{r,c} + x^{t+1}_{r,c} >= (ROWS+1)*a^t_c
// This models the MixColumns step
for (t = 0; t < ROUNDS; ++t) {
for (c = 0; c < COLS; ++c) {
IloIntExpr z(env, 0);
for (r = 0; r < ROWS; ++r)
z += x[t][r][c] + x[t+1][r][ (c + pi[ROWS*(t % RHO) + r]) % COLS ];
model.add(z >= (ROWS+1)*a[t][c]);
model.add(2*ROWS*a[t][c] >= z); // do we need this?
z.end();
}
}
// (3) a^t_c >= x^t_{r,c}
// This ascertains that the auxiliary variable is 1 iff input colimn c
// in round t is active
for (t = 0; t < ROUNDS; ++t) {
for (r = 0; r < ROWS; ++r) {
for (c = 0; c < COLS; ++c)
model.add(a[t][c] >= x[t][r][c]);
}
}
// Initialize minimisation problem
IloIntExpr weight(env, 0);
for (t = 0; t < ROUNDS; ++t) {
for (r = 0; r < ROWS; ++r) {
for (c = 0; c < COLS; ++c)
weight += x[t][r][c];
}
}
model.add(IloMinimize(env, weight));
// Add lower bound on objective value if applicable
if (lower_bound > 0)
model.add(weight >= lower_bound);
//~ weight.end();
// Initiate model to Cplex
IloCplex cplex(model);
////////////////////////
// CPLEX SETTINGS //
////////////////////////
// Set Simplex optimality tolerance
//~ cplex.setParam(IloCplex::EpOpt, 0.1); // doesn't seem to do anything
//~ cplex.setParam(IloCplex::RootAlg, IloCplex::Dual);
//~ cplex.setParam(IloCplex::EpGap, 0.3); // this controls the gap to optimality. dangerous.
// this controls the optimality proof
// will skip any potentially new solution which is not at least ARG*100 % better
//~ cplex.setParam(IloCplex::RelObjDif, 0.1);
//~ cplex.exportModel("model.lp"); // print model to file
// Control number of threads
#if CPLEX_NUM_THREADS > 0
cplex.setParam(IloCplex::Threads, CPLEX_NUM_THREADS);
#endif
// Set stopping condition if applicable, i.e. if best solution is far is non-zero
if (best_wt > 0)
cplex.setParam(IloCplex::ObjLLim, best_wt);
// Silence CPLEX
cplex.setOut(env.getNullStream());
cplex.setWarning(env.getNullStream());
//~ IloCplex::Callback mycallback = cplex.use(MyCallback(env, wt_best));
if (cplex.solve()) {
result = (u16)cplex.getValue(weight);
#if COLLECT_TRAILS
if (result > wt_best)
pictureTrails.clear();
if (result >= wt_best) {
// Add trail to pictureTrails
trail alpha;
for (t = 0; t < ROUNDS+1; ++t) {
for (r = 0; r < ROWS; ++r) {
for (c = 0; c < COLS; ++c) {
alpha.pattern[t][r][c] = (int)cplex.getValue(x[t][r][c]);
}
}
}
pictureTrails.push_back(alpha);
}
#endif
}
}
catch (IloException& ex) {
cerr << "Error: " << ex << endl;
}
catch (...) {
cerr << "Error" << endl;
}
env.end();
return result; /* 0 if no solution was found */
}