-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
71 lines (60 loc) · 3.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import numpy as np
from tensorflow.python.keras.datasets import mnist
from tensorflow.python.keras.utils import to_categorical
from cvae import CVAE
from utils import *
import os
import json
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='quickdraw_data',
help="The input data directory for the program")
parser.add_argument('--logs_dir', type=str, default='logs',
help="The logs directory for the tensorboard")
parser.add_argument('--save_model', type=str, default='models',
help="The directory to store the ml5js model")
parser.add_argument('--save_checkpoints', type=str, default='checkpoints',
help="The directory to store checkpointed models")
parser.add_argument('--n_dim', type=int, default=16,
help="The dimension of latent z")
parser.add_argument('--image_size', type=int, default=28,
help="The input image size, which should be a square image")
parser.add_argument('--num_layers', type=int, default=2,
help="The number of CNN layers in the encoder and decoder model")
parser.add_argument('--filters', type=int, default=8,
help="The number of the filters in the first CNN layer")
parser.add_argument('--learning_rate', type=int, default=0.0005,
help="The learning rate of the Adam optimizer")
parser.add_argument('--decay_rate', type=int, default=0.0,
help="The decay rate of the Adam optimizer")
parser.add_argument('--epochs', type=int, default=30,
help="The number of epochs when training")
parser.add_argument('--batch_size', type=int, default=128,
help="The number of batch_size when training")
parser.add_argument('--image_depth', type=int, default=1,
help="The number of channels in image")
args = parser.parse_args()
assert (args.image_size / (2 ** args.num_layers)).is_integer() , \
"Make sure that image_size % (2 ** num_layers) == 0 or the encoder and decoder will have different convoluted features!"
# (train_features, train_labels), (validataion_features, validataion_labels) = get_files('data')
# training, validation = get_data(train_features, train_labels, validataion_features, validataion_labels)
(X_train, Y_train), (X_test, Y_test), labels = get_files('data', args)
# (X_train, Y_train), (X_test, Y_test) = mnist.load_data()
print(X_train.shape)
X_train = np.reshape(X_train, [-1, args.image_size, args.image_size, args.image_depth])
X_test = np.reshape(X_test, [-1, args.image_size, args.image_size, args.image_depth])
X_train = X_train.astype('float32') / 255.
X_test = X_test.astype('float32') / 255.
y_train = to_categorical(Y_train)
y_test = to_categorical(Y_test)
X_shape = X_train.shape[1]
y_shape = y_train.shape[1]
cvae = CVAE(args)
cvae.forward(X_train, X_test, y_train, y_test)
os.system('tensorflowjs_converter --input_format=keras ' + args.save_model + '.h5 ' + args.save_model)
manifest = {"model": args.save_model+"/model.json", "labels": labels}
with open("manifest.json", 'w') as f:
json.dump(manifest, f)
if __name__ == "__main__":
main()