-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_mask.py
198 lines (157 loc) · 6.45 KB
/
check_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import cv2
import imutils
import os
import time
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model, model_from_json
import numpy as np
def re_init():
global Hrisk,Mrisk,Lrisk
Hrisk = 0
Mrisk = 0
Lrisk = 0
def mask_count():
global Hrisk,Mrisk,Lrisk
return Hrisk,Mrisk,Lrisk
##--------------------------------------------------------------------------------------------------------
## Mask Detection functions
##--------------------------------------------------------------------------------------------------------
def detect_and_predict_mask(frame, faceNet, maskNet):
# grab the dimensions of the frame and then construct a blob from it
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
faceNet.setInput(blob)
detections = faceNet.forward()
# initialize our list of faces, their corresponding locations, and the list of predictions
faces = []
locs = []
preds = []
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the detection
confidence = detections[0, 0, i, 2]
# filter out weak detections
if confidence > 0.70:
# compute the (x, y)-coordinates of the bounding box for the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# print("box:",(startX, startY, endX, endY))
# ensure the bounding boxes fall within the dimensions of the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel ordering,
# resize it to 224x224, and preprocess it
face = frame[startY:endY, startX:endX]
# print("face:",(startX, startY, endX, endY))
try:
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
# add the face and bounding boxes to their respective lists
faces.append(face)
locs.append((startX, startY, endX, endY))
except:
return (-1,-1,-1)
# only make a predictions if at least one face was detected
if len(faces) > 0:
faces = np.array(faces, dtype="float32")
preds = maskNet.predict(faces, batch_size=32)
# return a 2-tuple of the face locations and their corresponding locations
return (locs, preds, len(faces))
def init_face_mask():
# load our serialized face detector model from disk
mypath = os.getcwd()
facenet_dir = os.path.join(mypath,"face_detector")
prototxtPath = os.path.join(facenet_dir,"deploy.prototxt")
weightsPath = os.path.join(facenet_dir,"res10_300x300_ssd_iter_140000.caffemodel")
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
print("Loaded faceNet model")
# load the face mask detector model from disk
mask_dir = os.path.join(mypath,"mask_model")
json_file = open(os.path.join(mask_dir,"detection_model.json"),"r")
loaded_model_json = json_file.read()
json_file.close()
maskNet = model_from_json(loaded_model_json)
# load weights into new model
maskNet.load_weights(os.path.join(mask_dir,"detection_model.h5"))
print("Loaded maskNet model")
return faceNet,maskNet
faceNet,maskNet = init_face_mask()
Hrisk = 0
Mrisk = 0
Lrisk = 0
class Check_Mask(object):
def __init__(self):
pass
def check_mask(self, label,lprob, imgpath):
global Hrisk,Mrisk,Lrisk
hrisk = 0
mrisk = 0
lrisk = 0
# print("Makeup: ",label)
iname = int((imgpath.split(os.sep)[-1]).split('.')[0])
if label == "dry cough" and lprob >= 0.50:
is_cough = True
elif label == "wet cough":
is_cough = True
else:
is_cough = False
# print("is_cough:",label,lprob,is_cough)
frame = cv2.imread(imgpath)
try:
frame = imutils.resize(frame, width=400)
# print("resized frame shape:",frame.shape)
(locs, preds, faces) = detect_and_predict_mask(frame, faceNet, maskNet)
if (locs == -1) and (preds == -1):
return False
for (box, pred) in zip(locs, preds):
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
mask_label = "Mask" if mask > withoutMask else "No Mask"
if mask>0.70 or withoutMask>0.70:
#sort into risk categories
if is_cough:
if mask_label == 'Mask':
label = "Moderate Risk"
color = (255, 0, 0) #Blue
mrisk += 1
else:
label = "High Risk"
color = (0, 0, 225) #Red
hrisk += 1
else:
if mask_label == 'Mask':
label = "Low Risk"
color = (0, 225, 0) #Green
lrisk += 1
else:
label = "Moderate Risk"
color = (255, 0, 0) #Blue
mrisk += 1
# include the probability in the label
# label = "{} ({:.1f}%)".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output frame
cv2.putText(frame, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
if hrisk > Hrisk:
Hrisk = hrisk
if mrisk > Mrisk:
Mrisk = mrisk
if lrisk > Lrisk:
Lrisk = lrisk
else:
continue
if faces < 5:
# show the output frame
# cv2.imshow("Frame", frame)
# key = cv2.waitKey(1) & 0xFF
cv2.imwrite(imgpath,frame)
# cv2.imshow('myframe',frame)
# return img.transpose(Image.FLIP_LEFT_RIGHT)
return imgpath
except:
time.sleep(1)
return ""