-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiment.py
1353 lines (1004 loc) · 43.3 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Software License
# Commercial reservation
#
# This License governs use of the accompanying Software, and your use of the Software constitutes acceptance of this license.
#
# You may use this Software for any non-commercial purpose, subject to the restrictions in this license. Some purposes which can be non-commercial are teaching, academic research, and personal experimentation.
#
# You may not use or distribute this Software or any derivative works in any form for any commercial purpose. Examples of commercial purposes would be running business operations, licensing, leasing, or selling the Software, or distributing the Software for use with commercial products.
#
# You may modify this Software and distribute the modified Software for non-commercial purposes; however, you may not grant rights to the Software or derivative works that are broader than those provided by this License. For example, you may not distribute modifications of the Software under terms that would permit commercial use, or under terms that purport to require the Software or derivative works to be sublicensed to others.
#
# You agree:
#
# 1. Not remove any copyright or other notices from the Software.
#
# 2. That if you distribute the Software in source or object form, you will include a verbatim copy of this license.
#
# 3. That if you distribute derivative works of the Software in source code form you do so only under a license that includes all of the provisions of this License, and if you distribute derivative works of the Software solely in object form you do so only under a license that complies with this License.
#
# 4. That if you have modified the Software or created derivative works, and distribute such modifications or derivative works, you will cause the modified files to carry prominent notices so that recipients know that they are not receiving the original Software. Such notices must state: (i) that you have changed the Software; and (ii) the date of any changes.
#
# 5. THAT THIS PRODUCT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS PRODUCT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. YOU MUST PASS THIS LIMITATION OF LIABILITY ON WHENEVER YOU DISTRIBUTE THE SOFTWARE OR DERIVATIVE WORKS.
#
# 6. That if you sue anyone over patents that you think may apply to the Software or anyone's use of the Software, your license to the Software ends automatically.
#
# 7. That your rights under the License end automatically if you breach it in any way.
#
# 8. UC Irvine and The Regents of the University of California reserves all rights not expressly granted to you in this license.
#
# To obtain a commercial license to this software, please contact:
# UCI Beall Applied Innovation
# Attn: Director, Research Translation Group
# 5270 California Ave, Suite 100
# Irvine, CA 92697
# Website: innovation.uci.edu
# Phone: 949-824-COVE (2683)
# Email: [email protected]
#
# Standard BSD License
#
# <OWNER> = The Regents of the University of California
# <ORGANIZATION> = University of California, Irvine
# <YEAR> = 2020
#
# Copyright (c) <2020>, The Regents of the University of California
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of The Regents of the University of California or the University of California, Irvine, nor the names of its contributors, may be used to endorse or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
from typing import Literal, Optional, Generator, Tuple, Dict, List, Set, Any, Union
from collections import defaultdict, deque
import io
import re
import os
import csv
import math
import time
import copy
import string
import random
from datetime import datetime
import torch
from torch.fft import fft, ifft
import numpy
import pandas as pd
from tap import Tap
from tqdm import tqdm
from kwisehash import KWiseHash
camel_to_snake_re = re.compile(r"(?<!^)(?=[A-Z])")
selection_ops_re = re.compile(r"(\>\=?|\<\=?|\<\>|\=|BETWEEN|IN|LIKE|NOT LIKE)")
attribute_re = re.compile(r"(_|[a-zA-Z])(_|\d|[a-zA-Z])*.(_|[a-zA-Z])+")
escaped_backslash_re = re.compile(r"\\\"")
NULL_VALUE = -123456
CARDEST_DIR = "End-to-End-CardEst-Benchmark-master"
IMDB_DIR = "imdb"
CACHE_DIR = ".cache"
# http://en.wikipedia.org/wiki/Mersenne_prime
MERSENNE_PRIME = (1 << 61) - 1
def text_between(input: str, start: str, end: str):
# getting index of substrings
idx_start = input.index(start)
idx_end = input.index(end)
# length of substring 1 is added to
# get string from next character
return input[idx_start + len(start) + 1 : idx_end]
def is_number(n):
try:
# Type-casting the string to `float`.
# If string is not a valid `float`,
# it'll raise `ValueError` exception
float(n)
except ValueError:
return False
return True
def random_string(len: int = 7) -> str:
chars = string.ascii_letters + string.digits
rand_chars = random.choices(chars, k=len)
rand_str = "".join(rand_chars)
return rand_str
class Timer(object):
def __init__(self):
self.start = time.perf_counter()
def stop(self):
return time.perf_counter() - self.start
class SignHash(object):
fn: KWiseHash
def __init__(self, *size, k=2) -> None:
self.fn = KWiseHash(*size, k=k)
def __call__(self, items: torch.Tensor) -> torch.Tensor:
return self.fn.sign(items)
class ComposedSigns(object):
hashes: List[SignHash]
def __init__(self, *hashes: SignHash) -> None:
self.hashes = hashes
def add(self, hash: SignHash) -> None:
self.hashes.append(hash)
def __call__(self, items: torch.Tensor) -> torch.Tensor:
result = 1
for hash in self.hashes:
result *= hash(items)
return result
class BinHash(object):
fn: KWiseHash
def __init__(self, *size, bins, k=2) -> None:
self.num_bins = bins
self.fn = KWiseHash(*size, k=k)
def __call__(self, items: torch.Tensor) -> torch.Tensor:
return self.fn.bin(items, self.num_bins)
MethodName = Literal["exact", "ams", "compass-merge", "compass-partition", "count-conv"]
class Arguments(Tap):
method: MethodName # Use count-conv for our proposed method
query: str # For the list of available queries see the README
seed: Optional[int] = None
bins: int = 1
means: int = 1
medians: int = 1
estimates: int = 1
batch_size: int = 2**16
result_dir: str = "results"
data_dir: str = ""
def process_args(self):
# Validate arguments
if self.method == "ams" and self.bins != 1:
raise ValueError("Bins must be 1 for AMS")
if self.method == "ams":
self.batch_size = max(self.batch_size // self.means, 1)
if self.method == "ams" and self.bins != 1:
raise ValueError("bins must be 1 for the ams method")
if self.method != "ams" and self.means != 1:
raise ValueError("means can only be used with the ams methods")
if self.method == "exact":
if self.bins != 1 or self.means != 1 or self.medians != 1 or self.estimates != 1:
raise ValueError("bins, means, medians, and estimates must be 1 for the exact method")
if self.bins < 1:
raise ValueError("Number of bins cannot be negative")
if self.means < 1:
raise ValueError("Number of means cannot be negative")
if self.medians < 1:
raise ValueError("Number of medians cannot be negative")
if self.estimates < 1:
raise ValueError("Number of estimates cannot be negative")
def seed(seed):
random.seed(seed)
torch.manual_seed(seed)
numpy.random.seed(seed)
def read_sql_query(root: str, benchmark: str, name: str) -> str:
if benchmark == "job_light":
path = os.path.join(
root, CARDEST_DIR, "workloads", "job-light", "job_light_queries.sql"
)
elif benchmark == "job_light_sub":
path = os.path.join(
root,
CARDEST_DIR,
"workloads",
"job-light",
"sub_plan_queries",
"job_light_sub_query.sql",
)
elif benchmark == "stats":
path = os.path.join(
root, CARDEST_DIR, "workloads", "stats_CEB", "stats_CEB.sql"
)
elif benchmark == "stats_sub":
path = os.path.join(
root,
CARDEST_DIR,
"workloads",
"stats_CEB",
"sub_plan_queries",
"stats_CEB_sub_queries.sql",
)
else:
raise ValueError(f"Query '{benchmark}-{name}' does not exist.")
with open(path, "r") as f:
if benchmark == "job":
sql = f.read()
else:
sqls = f.readlines()
idx = int(name) - 1
if idx < 0 or idx >= len(sqls):
raise ValueError(f"Query '{benchmark}-{name}' does not exist.")
sql = sqls[idx]
# stats has the true cardinality prepended to the query
if benchmark == "stats":
sql = sql.split("||", 1)[1]
# stats_sub has the corresponding full query appended to the query
elif benchmark == "stats_sub":
sql = sql.split("||", 1)[0]
return sql.strip()
class Tokenizer(object):
token2idx: dict[str, int]
idx2token: list[str]
def __init__(self):
self.token2idx = {}
self.idx2token = []
def add(self, token: str) -> int:
"""Adds a token to the dictionary and returns its index
For any input that is not a string, returns NaN.
Args:
token (str): the token to add
Returns:
int: the index of the token
"""
if type(token) != str:
return float("nan")
if token not in self.token2idx:
self.idx2token.append(token)
self.token2idx[token] = len(self.idx2token) - 1
return self.token2idx[token]
def __getitem__(self, index_or_token: Union[int, str]) -> Union[str, int]:
"""Returns the token at the given index or the index of the given token"""
if type(index_or_token) == int:
return self.idx2token[index_or_token]
else:
return self.token2idx[index_or_token]
def __len__(self) -> int:
return len(self.idx2token)
class Table(object):
name: str
attributes: List[str]
attribute2idx: Dict[str, int]
data: torch.Tensor
tokenizers: Dict[str, Tokenizer]
def __init__(
self,
df: pd.DataFrame,
name: str,
attributes: List[str],
string_attributes: List[str],
datetime_attributes: List[str],
) -> None:
self.name = name
self.attributes = attributes
self.attribute2idx = {name: i for i, name in enumerate(self.attributes)}
self.tokenizers = {}
for attr in datetime_attributes:
self._datetime_attr(df, attr)
for attr in string_attributes:
self._tokenize_attr(df, attr)
self.data = torch.as_tensor(df.values, dtype=torch.long)
def __len__(self) -> int:
return self.num_records
def __repr__(self) -> str:
attributes = ", ".join(self.attributes)
return f"{self.name}({attributes})"
@property
def num_records(self) -> int:
return self.data.size(0)
@property
def num_attributes(self) -> int:
return self.data.size(1)
@staticmethod
def datetime2int(date: str, format: Optional[str] = None) -> int:
return int(pd.to_datetime(date, format=format).timestamp())
def _datetime_attr(self, df: pd.DataFrame, attribute: str) -> None:
df[attribute] = df[attribute].astype("int64") // 10**9
def _tokenize_attr(self, df: pd.DataFrame, attribute: str) -> None:
# create dictionary mapping unique values to integers
# map over rows and replace values with integers
dictionary = Tokenizer()
df[attribute] = df[attribute].apply(lambda x: dictionary.add(x))
self.tokenizers[attribute] = dictionary
class Query(object):
sql: str
joins: List[Tuple[str, str, str]]
selects: List[Tuple[str, str, str]]
node2component: Dict[str, int]
num_components: int
id2joined_attrs: Dict[str, Set[str]]
def __init__(self, sql: str):
self.sql = sql
self.joins = []
self.selects = []
for left, op, right, is_select in self.condition_iter():
if is_select:
self.selects.append((left, op, right))
else:
self.joins.append((left, op, right))
self.node2component, self.num_components = self.component_labeling(self.joins)
self.id2joined_attrs: Dict[str, Set[str]] = defaultdict(lambda: set())
for join in self.joins:
left, _, right = join
id, attr = left.split(".")
self.id2joined_attrs[id].add(attr)
id, attr = right.split(".")
self.id2joined_attrs[id].add(attr)
def __repr__(self) -> str:
return self.sql
def table_mapping_iter(self) -> Generator[Tuple[str, str], None, None]:
table_list = text_between(self.sql, "FROM", "WHERE")
table_list = table_list.split(",")
for table in table_list:
table = table.strip()
# First try splitting on AS otherwise split on space
splits = re.split(" AS ", table, flags=re.IGNORECASE, maxsplit=1)
if len(splits) == 1:
splits = table.split(" ", maxsplit=1)
name, id = splits
name = name.strip()
id = id.strip()
yield id, name
def condition_iter(self) -> Generator[Tuple[str, str, str, bool], None, None]:
# remove closing semicolon if present
if self.sql.endswith(";"):
sql_query = self.sql[:-1]
else:
sql_query = self.sql
selections = re.split("\sWHERE\s", sql_query)[1]
if " OR " in selections:
raise NotImplementedError("OR selections are not supported yet.")
selections = re.split("\sAND\s", selections)
# print(selections)
# TODO support more complicated LIKE and OR statements
# TODO support for parentheses
for i, selection in enumerate(selections):
left, op, right = selection_ops_re.split(selection)
left = left.strip()
right = right.strip()
# With BETWEEN the next AND is part of BETWEEN
if op == "BETWEEN":
right += " AND " + selections[i + 1].strip()
selections.pop(i + 1)
is_selection = attribute_re.match(right) == None
if attribute_re.match(left) == None:
raise NotImplementedError(
"Selection values on the left are not supported"
)
if not is_selection and op != "=":
raise ValueError(f"Must be equi-join but got: {op}")
yield left, op, right, is_selection
def component_labeling(self, joins: List[Tuple[str, str, str]]) -> Dict[str, int]:
to_visit: Set[str] = set()
node2component: Dict[str, int] = {}
num_components = 0
for join in joins:
left, op, right = join
to_visit.add(left)
to_visit.add(right)
def depth_first_search(node: str, component: int):
node2component[node] = component
for join in joins:
left, op, right = join
# get the other node if this join involves the current node
# if not then continue to the next join
if left == node:
other = right
elif right == node:
other = left
else:
continue
# if the other node has already been visited then continue
if other not in to_visit:
continue
to_visit.remove(other)
depth_first_search(other, component)
while len(to_visit) > 0:
node = to_visit.pop()
depth_first_search(node, num_components)
num_components += 1
return node2component, num_components
def joins_of(self, table_id: str) -> List[Tuple[str, str, str]]:
# ensures that left always has the table id attribute
joins = []
for join in self.joins:
left, op, right = join
id, _ = left.split(".")
if id == table_id:
joins.append(join)
id, _ = right.split(".")
if id == table_id:
joins.append((right, op, left))
return joins
def joined_nodes(self, table_id: str) -> Set[str]:
nodes: Set[str] = set()
for join in self.joins:
left, _, right = join
id, _ = left.split(".")
if id == table_id:
nodes.add(left)
id, _ = right.split(".")
if id == table_id:
nodes.add(right)
return nodes
def joined_with(self, node: str) -> Set[str]:
nodes: Set[str] = set()
for join in self.joins:
left, _, right = join
if left == node:
nodes.add(right)
if right == node:
nodes.add(left)
return nodes
def random_node(self) -> str:
nodes = list(self.node2component.keys())
idx = random.randint(0, len(nodes) - 1)
return nodes[idx]
def load_tables(root: str, benchmark: str, query: Query) -> Dict[str, Table]:
id2table: Dict[str, Table] = {}
# Read the SQL definitions of the tables
if benchmark.startswith("job"):
schema_path = os.path.join(root, IMDB_DIR, "schematext.sql")
elif benchmark.startswith("stats"):
schema_path = os.path.join(
root, CARDEST_DIR, "datasets", "stats_simplified", "stats.sql"
)
else:
raise ValueError(f"Benchmark '{benchmark}' does not exist.")
with open(schema_path, "r") as f:
sql = f.read()
# Load only each table in the SQL query once
for id, name in query.table_mapping_iter():
# For each table check if it was already loaded
# because we can reference the same data table multiple times
table = None
for t in id2table.values():
if t.name == name:
table = t
break
if table != None:
id2table[id] = table
continue
# If the table was not loaded already load it,
# try loading it from a pickle cache (faster)
if benchmark.startswith("job"):
pickle_path = os.path.join(CACHE_DIR, "imdb", name + ".pkl")
elif benchmark.startswith("stats"):
pickle_path = os.path.join(CACHE_DIR, "stats", name + ".pkl")
else:
raise ValueError(f"Benchmark '{benchmark}' does not exist.")
if os.path.isfile(pickle_path):
print("Using cached table:", pickle_path)
table = torch.load(pickle_path)
id2table[id] = table
continue
# Otherwise, load it from the csv files (slower)
# Read the SQL definition of the table
idx = sql.index(f"CREATE TABLE {name}")
idx_start = sql.index("(", idx)
idx_end = sql.index(");", idx)
attributes = sql[idx_start + 1 : idx_end]
attributes = attributes.split(",")
# Creates list of (attribute_name, type)
attributes = [tuple(a.strip().split(" ", 1)) for a in attributes]
if benchmark.startswith("job"):
data_path = os.path.join(root, IMDB_DIR, name + ".csv")
elif benchmark.startswith("stats"):
data_path = os.path.join(
root, CARDEST_DIR, "datasets", "stats_simplified", name + ".csv"
)
else:
raise ValueError(f"Benchmark '{benchmark}' does not exist.")
attribute_names = [a[0] for a in attributes]
string_attributes = [
a[0] for a in attributes if a[1].upper().startswith("CHARACTER")
]
datetime_attributes = [a[0] for a in attributes if a[1] == "TIMESTAMP"]
dtype_mapping = {
"CHARACTER": str,
"TIMESTAMP": str,
"INTEGER": float,
"SERIAL": float,
"SMALLINT": float,
}
dtypes = {a[0]: dtype_mapping[a[1].upper().split(" ")[0]] for a in attributes}
if benchmark.startswith("stats"):
df = pd.read_csv(
data_path,
header=0,
parse_dates=datetime_attributes,
encoding='utf-8',
sep=",",
names=attribute_names,
dtype=dtypes,
)
elif benchmark.startswith("job"):
with open(data_path, "r") as f:
# TODO: memory usage could be improved by replacing unescaped variable
# in an iterator fashion instead of all at ones.
data = f.read()
# Replace the escaped quotes by double quotes to fix parsing errors
data = escaped_backslash_re.sub("\"\"", data)
# These lines cause trouble because they end with a backslash before the final quote
if name == "movie_info":
data = data.replace(
"'Harry Bellaver' (qv).\\\"\",",
"'Harry Bellaver' (qv).\\\\\","
)
data = data.replace(
"who must go back and find his bloodlust one last time. \\\"\",",
"who must go back and find his bloodlust one last time. \\\\\","
)
elif name == "person_info":
data = data.replace("\\\"\",", "\\\\\",")
df = pd.read_csv(
io.StringIO(data),
header=None,
parse_dates=datetime_attributes,
encoding='utf-8',
sep=",",
names=attribute_names,
dtype=dtypes,
)
null_occurences = df.isin([NULL_VALUE]).values.sum()
if null_occurences > 0:
raise RuntimeError(
f"Found the NULL value in the table {name}, consider using a different NULL value."
)
# arbitrary value used to denote NULL
df.fillna(NULL_VALUE, inplace=True)
table = Table(df, name, attribute_names, string_attributes, datetime_attributes)
id2table[id] = table
return id2table
def make_selection_filters(
id2table: Dict[str, Table], query: Query
) -> Dict[str, torch.Tensor]:
id2mask: Dict[str, torch.Tensor] = {}
for select in query.selects:
left, op, right = select
id, attr = left.split(".")
table = id2table[id]
attr_idx = table.attribute2idx[attr]
if right.endswith("::timestamp"):
timestamp = right[1 : -len("'::timestamp")]
value = table.datetime2int(timestamp)
elif is_number(right):
value = float(right) if "." in right else int(right)
elif right.startswith(("'", '"')) and right.endswith(("'", '"')):
value = table.tokenizers[attr][right[1:-1]]
else:
raise ValueError(f"Not sure how to handle right value: {right}")
if op == "=":
mask = table.data[:, attr_idx] == value
elif op == "<>":
mask = table.data[:, attr_idx] != value
elif op == ">":
mask = table.data[:, attr_idx] > value
elif op == "<":
mask = table.data[:, attr_idx] < value
elif op == "<=":
mask = table.data[:, attr_idx] <= value
elif op == ">=":
mask = table.data[:, attr_idx] >= value
# Ensure that the NULL values are removed from the column
# because any condition with NULL is false
mask &= table.data[:, attr_idx] != NULL_VALUE
if id in id2mask:
# Assumes all the selections are AND together
id2mask[id] &= mask
else:
id2mask[id] = mask
# Ensure that the NULL values are removed from the joined columns
for join in query.joins:
left, op, right = join
id, attr = left.split(".")
table = id2table[id]
attr_idx = table.attribute2idx[attr]
mask = table.data[:, attr_idx] != NULL_VALUE
if id in id2mask:
# Assumes all the selections are AND together
id2mask[id] &= mask
else:
id2mask[id] = mask
id, attr = right.split(".")
table = id2table[id]
attr_idx = table.attribute2idx[attr]
mask = table.data[:, attr_idx] != NULL_VALUE
if id in id2mask:
# Assumes all the selections are AND together
id2mask[id] &= mask
else:
id2mask[id] = mask
return id2mask
def prepare_batches(
id2table: Dict[str, Table],
id2mask: Dict[str, torch.Tensor],
batch_size: int,
query: Query,
) -> Dict[str, List[torch.Tensor]]:
node2batches: Dict[str, List[torch.Tensor]] = {}
# Capture the set of all unique nodes
nodes: Set[str] = set()
for join in query.joins:
left, _, right = join
nodes.add(left)
nodes.add(right)
# For each node load its data
for node in nodes:
id, attr = node.split(".")
table = id2table[id]
attr_idx = table.attribute2idx[attr]
attr_data = table.data[:, attr_idx]
mask = id2mask.get(id, None)
if mask != None:
attr_data = attr_data[mask]
attr_batches = attr_data.split(batch_size)
node2batches[node] = attr_batches
return node2batches
def combine_sketches(
node: str, visited: Set[str], query: Query, id2sketch: Dict[str, torch.Tensor]
) -> torch.Tensor:
id, _ = node.split(".")
sketch = id2sketch[id]
visited.add(node)
for other_node in query.joined_nodes(id):
# skip the current node
if other_node == node:
continue
visited.add(other_node)
tmp = 1
for joined_node in query.joined_with(other_node):
tmp = tmp * combine_sketches(joined_node, visited, query, id2sketch)
# efficient circular cross-correlation
sketch = ifft(fft(tmp).conj() * fft(sketch)).real
for joined_node in query.joined_with(node).difference(visited):
sketch = sketch * combine_sketches(joined_node, visited, query, id2sketch)
return sketch
def ams_estimate(id2sketch: Dict[str, torch.Tensor], means: int) -> torch.Tensor:
estimates = 1
for sketch in id2sketch.values():
estimates = estimates * sketch
if means == 1:
return estimates.float()
estimates = estimates.view(-1, means)
return torch.mean(estimates, dim=1, dtype=torch.float)
def merge_sketches(id2sketch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
id2merged_sketch = {}
for id, sep_sketches in id2sketch.items():
num_estimates, num_joins, num_bins = sep_sketches.shape
if num_joins == 1:
id2merged_sketch[id] = sep_sketches.squeeze(1)
continue
reshape_size = [num_estimates] + [1] * num_joins
expand_size = [num_estimates] + [num_bins] * num_joins
sketches = torch.empty(num_joins, *expand_size, dtype=torch.long)
for i in range(num_joins):
size = copy.deepcopy(reshape_size)
size[i + 1] = num_bins
sk = sep_sketches[:, i].reshape(size)
sk = sk.expand(expand_size)
sketches[i] = sk
# The Numpy argmin is about 10x faster than PyTorch
# index = sketches_abs.argmin(dim=0)
index = numpy.argmin(sketches.abs().numpy(), axis=0)
index = torch.from_numpy(index)
index.unsqueeze_(0)
merged_sketch = torch.gather(sketches, 0, index)
merged_sketch.squeeze_(0)
id2merged_sketch[id] = merged_sketch
return id2merged_sketch
def compass_estimate(id2sketch: Dict[str, torch.Tensor], query: Query) -> torch.Tensor:
# all einsum indices start with ellipses for the batch dimension
# that contians the medians and estimates
id2einsum_indices = defaultdict(lambda: [...])
for idx, join in enumerate(query.joins):
left, _, right = join
id = left.split(".")[0]
id2einsum_indices[id].append(idx)
id = right.split(".")[0]
id2einsum_indices[id].append(idx)
einsum_args = []
for id in id2sketch.keys():
einsum_args.append(id2sketch[id])
einsum_args.append(id2einsum_indices[id])
# Add ellipses to keep the batch dimension intact
einsum_args.append([...])
return torch.einsum(*einsum_args)
def exact_estimate(
id2table: Dict[str, Table], id2mask: Dict[str, torch.Tensor], query: Query
) -> torch.Tensor:
visited: Set[str] = set()
to_visit: deque[str] = deque()
# Select a random table to start with
id = random.choice(list(id2table.keys()))
table = id2table[id]
to_visit.append(id)
# Mapping from nodes to their column in tmp_data
node2idx: Dict[str, int] = {}
attr_idxs = []
for attr in query.id2joined_attrs[id]:
attr_idxs.append(table.attribute2idx[attr])
node2idx[f"{id}.{attr}"] = len(node2idx)
tmp_data = table.data[:, attr_idxs]
mask = id2mask.get(id, None)
if mask != None:
tmp_data = tmp_data[mask]
tmp_data = tmp_data.tolist()
# Traverse the join graph in a breath-first fashion
while len(to_visit) > 0:
id = to_visit.popleft()
visited.add(id)
for join in query.joins_of(id):
left, _, right = join
id, joined_attr = right.split(".")
if id in visited:
continue
table = id2table[id]
to_visit.append(id)
attr_idxs = []
for attr in query.id2joined_attrs[id]:
attr_idxs.append(table.attribute2idx[attr])
node2idx[f"{id}.{attr}"] = len(node2idx)
# Keep track of the column of table_data to join
if attr == joined_attr:
joined_idx = len(attr_idxs) - 1
table_data = table.data[:, attr_idxs]
mask = id2mask.get(id, None)
if mask != None:
table_data = table_data[mask]
table_data = table_data.tolist()
tmp_data = hash_join(tmp_data, node2idx[left], table_data, joined_idx)
count = 0
for _ in tqdm(tmp_data):
count += 1
return torch.tensor([count], dtype=torch.long)
def median_trick(estimates: torch.Tensor, medians: int) -> torch.Tensor:
"""Takes a tensor of iid estimates and returns the median among groups"""
if medians == 1:
return estimates
estimates = estimates.view(-1, medians)
return torch.median(estimates, dim=1).values