-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
158 lines (118 loc) · 4.53 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import io
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def create_insert_statements(cur, conn):
"""
Description: This function can be used to create the prepared statements for the sql inserts.
Arguments:
cur: the cursor object.
filepath: log data file path.
Returns:
None
"""
for query in prepared_statements:
cur.execute(query)
conn.commit()
def process_song_file(cur, filepath):
"""
Description: This function can be used to read the file in the filepath (data/song_data)
to get the using and artist info and used to populate them into the dim tables.
Arguments:
cur: the cursor object.
filepath: log data file path.
Returns:
None
"""
# open song file
df = pd.read_json(filepath, lines = True)
# insert artist record
artist_data = df[['artist_id','artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']].values[0].tolist()
cur.execute(artist_table_insert, artist_data)
# insert song record
song_data = df[['song_id','title','artist_id','year', 'duration']].values[0].tolist()
cur.execute(song_table_insert, song_data)
def process_log_file(cur, filepath):
"""
Description: This function can be used to read the file in the filepath (data/log_data)
to get the user and time info and used to populate the users and time dim tables.
Arguments:
cur: the cursor object.
filepath: log data file path.
Returns:
None
"""
# open log file
df = pd.read_json(filepath, lines = True)
# filter by NextSong action
df = df[df['page']=='NextSong']
# convert timestamp column to datetime
t = pd.to_datetime(df['ts'], unit = 'ms').to_frame()
# insert time data records
t['hour'] = t['ts'].dt.hour
t['day'] = t['ts'].dt.day
t['week'] = t['ts'].dt.week
t['month'] = t['ts'].dt.month
t['year'] = t['ts'].dt.year
t['weekday'] = t['ts'].dt.weekday
time_df = t
for i, row in time_df.iterrows():
cur.execute(time_table_insert, row)
# load user table
user_df = df[['userId',"firstName", "lastName", "gender", "level"]].drop_duplicates(subset='userId')
# insert user records ensuring level column is updated
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (pd.to_datetime(row.ts, unit = 'ms'), int(row.userId), row.level, songid, artistid, row.sessionId, row.location, row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""
Description: This function can be used obtain a list of paths within a directiry, and execute a function
to each of the files.
Arguments:
cur: the cursor object.
conn: the connexion to the database
filepath: log data file path.
func: function to executed on each of the files.
Returns:
None
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
"""
Connexts to soarkifydb, then creates the insert statements and then process all the files in both data/song_data directory,
and data/log_data directory.
"""
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
create_insert_statements(cur,conn)
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()