-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathdataset.py
executable file
·238 lines (203 loc) · 7.88 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
from collections import OrderedDict
from functools import partial
import os
import os.path as osp
from pathlib import Path
import random
import tempfile
from typing import Dict, List
import numpy as np
from PIL import Image
from torch.utils.data import DataLoader
from torchvision.transforms import transforms as T
from .bbox import TrackingBbox
from .opts import opts
from .references.fairmot.datasets.dataset.jde import JointDataset
from ..common.gpu import db_num_workers
from ..detection.dataset import parse_pascal_voc_anno
from ..detection.plot import plot_detections, plot_grid
class TrackingDataset:
"""A multi-object tracking dataset."""
def __init__(
self,
root: str,
name: str = "default",
batch_size: int = 12,
im_dir: str = "images",
anno_dir: str = "annotations",
) -> None:
"""
Args:
data_root: root data directory containing image and annotation subdirectories
name: user-friendly name for the dataset
batch_size: batch size
anno_dir: the name of the annotation subfolder under the root directory
im_dir: the name of the image subfolder under the root directory.
"""
self.root = root
self.name = name
self.batch_size = batch_size
self.im_dir = Path(im_dir)
self.anno_dir = Path(anno_dir)
# set these to None so taht can use the 'plot_detections' function
self.keypoints = None
self.mask_paths = None
# Init FairMOT opt object with all parameter settings
opt = opts()
# Read annotations
self._read_annos()
# Save annotation in FairMOT format
self._write_fairMOT_format()
# Create FairMOT dataset object
transforms = T.Compose([T.ToTensor()])
self.train_data = JointDataset(
opt,
self.root,
{name: self.fairmot_imlist_path},
(opt.input_w, opt.input_h),
augment=True,
transforms=transforms,
)
self._init_dataloaders()
def _init_dataloaders(self) -> None:
""" Create training dataloader """
self.train_dl = DataLoader(
self.train_data,
batch_size=self.batch_size,
shuffle=True,
num_workers=db_num_workers(),
pin_memory=True,
drop_last=True,
)
def _read_annos(self) -> None:
""" Parses all Pascal VOC formatted annotation files to extract all
possible labels. """
# All annotation files are assumed to be in the anno_dir directory,
# and images in the im_dir directory
self.im_filenames = sorted(os.listdir(self.root / self.im_dir))
im_paths = [
os.path.join(self.root / self.im_dir, s) for s in self.im_filenames
]
anno_filenames = [
os.path.splitext(s)[0] + ".xml" for s in self.im_filenames
]
# Read all annotations
self.im_paths = []
self.anno_paths = []
self.anno_bboxes = []
for anno_idx, anno_filename in enumerate(anno_filenames):
anno_path = self.root / self.anno_dir / str(anno_filename)
# Parse annotation file
anno_bboxes, _, _ = parse_pascal_voc_anno(anno_path)
# Store annotation info
self.im_paths.append(im_paths[anno_idx])
self.anno_paths.append(anno_path)
self.anno_bboxes.append(anno_bboxes)
assert len(self.im_paths) == len(self.anno_paths)
# Get list of all labels
labels = []
for anno_bboxes in self.anno_bboxes:
for anno_bbox in anno_bboxes:
if anno_bbox.label_name is not None:
labels.append(anno_bbox.label_name)
self.labels = list(set(labels))
# Set for each bounding box label name also what its integer representation is
for anno_bboxes in self.anno_bboxes:
for anno_bbox in anno_bboxes:
if anno_bbox.label_name is None:
# background rectangle is assigned id 0 by design
anno_bbox.label_idx = 0
else:
label = self.labels.index(anno_bbox.label_name) + 1
anno_bbox.label_idx = label
# Get image sizes. Note that Image.open() only loads the image header,
# not the full images and is hence fast.
self.im_sizes = np.array([Image.open(p).size for p in self.im_paths])
def _write_fairMOT_format(self) -> None:
""" Write bounding box information in the format FairMOT expects for training."""
fairmot_annos_dir = os.path.join(self.root, "labels_with_ids")
os.makedirs(fairmot_annos_dir, exist_ok=True)
# Create for each image a annotation .txt file in FairMOT format
for filename, bboxes, im_size in zip(
self.im_filenames, self.anno_bboxes, self.im_sizes
):
im_width = float(im_size[0])
im_height = float(im_size[1])
fairmot_anno_path = os.path.join(
fairmot_annos_dir, filename[:-4] + ".txt"
)
with open(fairmot_anno_path, "w") as f:
for bbox in bboxes:
tid_curr = bbox.label_idx - 1
x = round(bbox.left + bbox.width() / 2.0)
y = round(bbox.top + bbox.height() / 2.0)
w = bbox.width()
h = bbox.height()
label_str = "0 {:d} {:.6f} {:.6f} {:.6f} {:.6f}\n".format(
tid_curr,
x / im_width,
y / im_height,
w / im_width,
h / im_height,
)
f.write(label_str)
# write all image filenames into a <name>.train file required by FairMOT
self.fairmot_imlist_path = osp.join(
self.root, "{}.train".format(self.name)
)
with open(self.fairmot_imlist_path, "w") as f:
for im_filename in sorted(self.im_filenames):
f.write(osp.join(self.im_dir, im_filename) + "\n")
def show_ims(self, rows: int = 1, cols: int = 3, seed: int = None) -> None:
""" Show a set of images.
Args:
rows: the number of rows images to display
cols: cols to display, NOTE: use 3 for best looking grid
seed: random seed for selecting images
Returns None but displays a grid of annotated images.
"""
if seed:
random.seed(seed or self.seed)
def helper(im_paths):
idx = random.randrange(len(im_paths))
detection = {
"idx": idx,
"im_path": im_paths[idx],
"det_bboxes": [],
}
return detection, self, None, None
plot_grid(
plot_detections,
partial(helper, self.im_paths),
rows=rows,
cols=cols,
)
def boxes_to_mot(results: Dict[int, List[TrackingBbox]]) -> None:
"""
Save the predicted tracks to csv file in MOT challenge format ["frame", "id", "left", "top", "width", "height",]
Args:
results: dictionary mapping frame id to a list of predicted TrackingBboxes
txt_path: path to which results are saved in csv file
"""
# convert results to dataframe in MOT challenge format
preds = OrderedDict(sorted(results.items()))
bboxes = [
[
bb.frame_id + 1,
bb.track_id,
bb.left,
bb.top,
bb.right - bb.left,
bb.bottom - bb.top,
1,
-1,
-1,
-1,
]
for _, v in preds.items()
for bb in v
]
bboxes_formatted = np.array(bboxes)
return bboxes_formatted