-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathplot.py
253 lines (207 loc) · 7.31 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""
Helper module for visualizations
"""
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.metrics import (
precision_recall_curve,
average_precision_score,
roc_curve,
auc,
)
from sklearn.preprocessing import label_binarize
from torch import Tensor
from typing import Callable
def plot_thresholds(
metric_function: Callable[[Tensor, Tensor, float], Tensor],
y_pred: Tensor,
y_true: Tensor,
samples: int = 21,
figsize: tuple = (12, 6),
) -> None:
""" Plot the evaluation metric of the model at different thresholds.
This function will plot the metric for every 0.05 increments of the
threshold. This means that there will be a total of 20 increments.
Args:
metric_function: The metric function
y_pred: predicted probabilities.
y_true: True class indices.
samples: Number of threshold samples
figsize: Figure size (w, h)
"""
metric_name = metric_function.__name__
metrics = []
for threshold in np.linspace(0, 1, samples):
metric = metric_function(y_pred, y_true, threshold=threshold)
metrics.append(metric)
ax = pd.DataFrame(metrics).plot(figsize=figsize)
ax.set_title(f"{metric_name} at different thresholds")
ax.set_ylabel(f"{metric_name}")
ax.set_xlabel("threshold")
ax.set_xticks(np.linspace(0, 20, 11))
ax.set_xticklabels(np.around(np.linspace(0, 1, 11), decimals=2))
def plot_pr_roc_curves(
y_true: np.ndarray,
y_score: np.ndarray,
classes: iter,
show: bool = True,
figsize: tuple = (12, 6),
):
"""Plot precision-recall and ROC curves .
Currently, plots precision-recall and ROC curves.
Args:
y_true (np.ndarray): True class indices.
y_score (np.ndarray): Estimated probabilities.
classes (iterable): Class labels.
show (bool): Show plot. Use False if want to manually show the plot later.
figsize (tuple): Figure size (w, h).
"""
plt.subplots(2, 2, figsize=figsize)
plt.subplot(1, 2, 1)
plot_precision_recall_curve(y_true, y_score, classes, False)
plt.subplot(1, 2, 2)
plot_roc_curve(y_true, y_score, classes, False)
if show:
plt.show()
def plot_roc_curve(
y_true: np.ndarray, y_score: np.ndarray, classes: iter, show: bool = True
):
"""Plot receiver operating characteristic (ROC) curves and ROC areas.
If the given class labels are multi-label, it binarizes the classes and plots each ROC along with an averaged ROC.
For the averaged ROC, micro-average is used.
See details from: https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
Args:
y_true (np.ndarray): True class indices.
y_score (np.ndarray): Estimated probabilities.
classes (iterable): Class labels.
show (bool): Show plot. Use False if want to manually show the plot later.
"""
assert (
len(classes) == y_score.shape[1]
if len(y_score.shape) == 2
else len(classes) == 2
)
# Set random colors seed for reproducibility.
np.random.seed(123)
# Reference line
plt.plot([0, 1], [0, 1], color="gray", lw=1, linestyle="--")
# Plot ROC curve
if len(classes) == 2:
# If y_score is soft-max output from a binary-class problem, we use the second node's output only.
if len(y_score.shape) == 2:
y_score = y_score[:, 1]
_plot_roc_curve(y_true, y_score)
else:
y_true = label_binarize(y_true, classes=list(range(len(classes))))
_plot_multi_roc_curve(y_true, y_score, classes)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curves")
plt.legend(loc="lower left")
if show:
plt.show()
def _plot_multi_roc_curve(y_true, y_score, classes):
# Plot ROC for each class
if len(classes) > 2:
for i in range(len(classes)):
_plot_roc_curve(y_true[:, i], y_score[:, i], classes[i])
# Compute micro-average ROC curve and ROC area
_plot_roc_curve(y_true.ravel(), y_score.ravel(), "avg")
def _plot_roc_curve(y_true, y_score, label=None):
fpr, tpr, _ = roc_curve(y_true, y_score)
roc_auc = auc(fpr, tpr)
if label == "avg":
lw = 2
prefix = "Averaged ROC"
else:
lw = 1
prefix = "ROC" if label is None else f"ROC for {label}"
plt.plot(
fpr,
tpr,
color=_generate_color(),
label=f"{prefix} (area = {roc_auc:0.2f})",
lw=lw,
)
def plot_precision_recall_curve(
y_true: np.ndarray, y_score: np.ndarray, classes: iter, show: bool = True
):
"""Plot precision-recall (PR) curves.
If the given class labels are multi-label, it binarizes the classes and plots each PR along with an averaged PR.
For the averaged PR, micro-average is used.
See details from: https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
Args:
y_true (np.ndarray): True class indices.
y_score (np.ndarray): Estimated probabilities.
classes (iterable): Class labels.
show (bool): Show plot. Use False if want to manually show the plot later.
"""
assert (
len(classes) == y_score.shape[1]
if len(y_score.shape) == 2
else len(classes) == 2
)
# Set random colors seed for reproducibility.
np.random.seed(123)
# Plot ROC curve
if len(classes) == 2:
# If y_score is soft-max output from a binary-class problem, we use the second node's output only.
if len(y_score.shape) == 2:
y_score = y_score[:, 1]
_plot_precision_recall_curve(
y_true, y_score, average_precision_score(y_true, y_score)
)
else:
y_true = label_binarize(y_true, classes=list(range(len(classes))))
_plot_multi_precision_recall_curve(y_true, y_score, classes)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curves")
plt.legend(loc="lower left")
if show:
plt.show()
def _plot_multi_precision_recall_curve(y_true, y_score, classes):
# Plot PR for each class
if len(classes) > 2:
for i in range(len(classes)):
_plot_precision_recall_curve(
y_true[:, i],
y_score[:, i],
average_precision_score(y_true[:, i], y_score[:, i]),
classes[i],
)
# Plot averaged PR. A micro-average is used
_plot_precision_recall_curve(
y_true.ravel(),
y_score.ravel(),
average_precision_score(y_true, y_score, average="micro"),
"avg",
)
def _plot_precision_recall_curve(y_true, y_score, ap, label=None):
precision, recall, _ = precision_recall_curve(y_true, y_score)
if label == "avg":
lw = 2
prefix = "Averaged precision-recall"
else:
lw = 1
prefix = (
"Precision-recall"
if label is None
else f"Precision-recall for {label}"
)
plt.plot(
recall,
precision,
color=_generate_color(),
label=f"{prefix} (area = {ap:0.2f})",
lw=lw,
)
def _generate_color():
return np.random.rand(3)