-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathmodel.py
417 lines (349 loc) · 13.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
from time import time
from typing import Any, Callable, List, Optional
import fastai.basic_train
from fastai.basic_train import _loss_func2activ, LearnerCallback
from fastai.torch_core import TensorOrNumList
from fastai.basic_data import DatasetType
from fastai.vision import (
CallbackHandler,
DataLoader,
Learner,
nn,
ImageDataBunch,
imagenet_stats,
PBar,
)
from fastprogress.fastprogress import format_time
from IPython.display import display
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import torch
from torch import Tensor
import numpy as np
from utils_cv.classification.data import imagenet_labels
# Default ImageNet models image size
IMAGENET_IM_SIZE = 224
def hamming_accuracy(
y_pred: Tensor,
y_true: Tensor,
threshold: float = 0.2,
sigmoid: bool = False,
) -> Tensor:
""" Callback for using hamming accuracy as a evaluation metric.
Hamming accuracy is one minus the fraction of wrong labels to the total
number of labels.
Args:
y_pred: prediction output
y_true: true class labels
threshold: the threshold to consider a positive classification
sigmoid: whether to apply the sigmoid activation
Returns:
The hamming accuracy function as a tensor of dtype float
"""
if sigmoid:
y_pred = y_pred.sigmoid()
if threshold:
y_pred = y_pred > threshold
return 1 - (
(y_pred.float() != y_true).sum() / torch.ones(y_pred.shape).sum()
)
def zero_one_accuracy(
y_pred: Tensor,
y_true: Tensor,
threshold: float = 0.2,
sigmoid: bool = False,
) -> Tensor:
""" Callback for using zero-one accuracy as a evaluation metric.
The zero-one accuracy will classify an entire set of labels for a given
sample incorrect if it does not entirely match the true set of labels.
Args:
y_pred: prediction output
y_true: true class labels
threshold: the threshold to consider a positive classification
sigmoid: whether to apply the sigmoid activation
Returns:
The zero-one accuracy function as a tensor with dtype float
"""
if sigmoid:
y_pred = y_pred.sigmoid()
if threshold:
y_pred = y_pred > threshold
zero_one_preds = (y_pred.float() != y_true).sum(dim=1)
zero_one_preds[zero_one_preds >= 1] = 1
num_labels = y_pred.shape[-1]
return 1 - (
zero_one_preds.sum().float() / len(y_pred.reshape(-1, num_labels))
)
def get_optimal_threshold(
metric_function: Callable[[Tensor, Tensor, float], Tensor],
y_pred: Tensor,
y_true: Tensor,
thresholds: List[float] = np.linspace(0, 1, 21),
) -> float:
""" Gets the best threshold to use for the provided metric function.
This method samples the metric function at evenly distributed threshold
intervals to find the best threshold.
Args:
metric_function: The metric function
y_pred: predicted probabilities.
y_true: True class indices.
samples: The number of samples.
Returns:
The threshold that optimizes the metric function.
"""
optimal_threshold = None
metric_max = -np.inf
for threshold in thresholds:
metric = metric_function(y_pred, y_true, threshold=threshold)
if metric > metric_max:
metric_max = metric
optimal_threshold = threshold
return optimal_threshold
def model_to_learner(
model: nn.Module, im_size: int = IMAGENET_IM_SIZE
) -> Learner:
"""Create Learner based on pyTorch ImageNet model.
Args:
model (nn.Module): Base ImageNet model. E.g. models.resnet18()
im_size (int): Image size the model will expect to have.
Returns:
Learner: a model trainer for prediction
"""
# Currently, fast.ai api requires to pass a DataBunch to create a model trainer (learner).
# To use the learner for prediction tasks without retraining, we have to pass an empty DataBunch.
# single_from_classes is deprecated, but this is the easiest go-around method.
# Create ImageNet data spec as an empty DataBunch.
# Related thread: https://forums.fast.ai/t/solved-get-prediction-from-the-imagenet-model-without-creating-a-databunch/36197/5
empty_data = ImageDataBunch.single_from_classes(
"", classes=imagenet_labels(), size=im_size
).normalize(imagenet_stats)
return Learner(empty_data, model)
def get_preds(
learn: Learner,
dl: DataLoader,
with_loss: bool = False,
n_batch: Optional[int] = None,
pbar: Optional[PBar] = None,
) -> List[Tensor]:
"""Return predictions and targets on `dl` dataset.
This function is the same as fastai's Learner.get_preds except this allows an external DataLoader.
For more details about Learner.get_preds, see:
https://github.com/fastai/fastai/blob/master/fastai/basic_train.py
Args:
learn: Learner object that will be used for prediction
dl: DataLoader the model will use to load samples
with_loss: If True, it will also return the loss on each prediction
n_batch: Number of batches to predict. If not specified, it will run the predictions for n batches
where n = sample size // BATCH_SIZE
pbar: ProgressBar object
"""
# Note: In Fastai, for DatasetType.Train, only the output of complete minibatches is computed. Ie if one has 101 images,
# and uses a minibatch size of 16, then len(feats) is 96 and not 101. For DatasetType.Valid this is not the case,
# and len(feats) is as expected 101. A way around this is to use DatasetType.Fix instead when referring to the training set.
# See e.g. issue: https://forums.fast.ai/t/get-preds-returning-less-results-than-length-of-original-dataset/34148
if dl == DatasetType.Train:
dl = DatasetType.Fix
lf = learn.loss_func if with_loss else None
return fastai.basic_train.get_preds(
learn.model,
dl,
cb_handler=CallbackHandler(learn.callbacks),
activ=_loss_func2activ(learn.loss_func),
loss_func=lf,
n_batch=n_batch,
pbar=pbar,
)
class TrainMetricsRecorder(LearnerCallback):
_order = -20 # Needs to run before the recorder
def __init__(
self, learn: Learner, n_batch: int = None, show_graph: bool = False
):
"""Fastai Train hook to evaluate metrics on train and validation set for every epoch.
This class works with the metrics functions whose signature is fn(input:Tensor, targs:Tensor),
e.g. fastai.metrics.accuracy and error_rate.
For custom metrics, see https://docs.fast.ai/metrics.html#Creating-your-own-metric
Note, Learner's Recorder callback tracks the metrics and loss on the validation set and
ShowGraph callback plots the loss on train and validation sets while training.
TrainMetricsRecorder, on the other hand, records the metrics on the training set and plot them as well.
Arguments:
n_batch (int): Number of train batches to use when evaluate metrics on the training set.
If None, use all the training set which will take longer time.
show_graph (bool): If True, draw metrics after each epoch. If multiple metrics have set,
it draws only the first metrics graph.
Examples:
>>> learn = cnn_learner(data, model, metrics=[accuracy])
>>> train_metrics_cb = TrainMetricsRecorder(learn, n_batch=1)
>>> learn.callbacks.append(train_metrics_cb)
>>> learn.fit(epochs=10, lr=0.001)
>>> train_metrics_cb.plot()
or
>>> learn = cnn_learner(data, model, metrics=[accuracy, error_rate],
... callback_fns=[partial(
... TrainMetricsRecorder,
... n_batch=len(data.valid_ds)//BATCH_SIZE,
... show_graph=True
... )]
... )
)])
"""
super().__init__(learn)
# Check number of batches we will evaluate on with the metrics.
if n_batch:
assert n_batch > 0
self.n_batch = n_batch
self.show_graph = show_graph
def on_train_begin(
self, pbar: PBar, metrics: List, n_epochs: int, **kwargs: Any
):
self.has_metrics = metrics and len(metrics) > 0
self.has_val = hasattr(self.learn.data, "valid_ds")
# Result table and graph variables
self.learn.recorder.silent = (
True
) # Mute recorder. This callback will printout results instead.
self.pbar = pbar
self.names = ["epoch", "train_loss"]
if self.has_val:
self.names.append("valid_loss")
# Add metrics names
self.metrics_names = [m_fn.__name__ for m_fn in metrics]
for m in self.metrics_names:
self.names.append("train_" + m)
if self.has_val:
self.names.append("valid_" + m)
self.names.append("time")
self.pbar.write(self.names, table=True)
self.n_epochs = n_epochs
self.valid_metrics = []
self.train_metrics = []
# Reset graph
self._fig = None
self._axes = None
self._display = None
def on_epoch_begin(self, **kwargs: Any):
self.start_epoch = time()
self.y = [] # Target class labels from the last epoch
self.out = [] # Outputs from the last epoch
def on_batch_end(
self,
train: bool,
num_batch: int,
last_target: Tensor,
last_output: Tensor,
**kwargs: Any,
):
if (
train
and (self.n_batch is None or self.n_batch > num_batch)
and self.has_metrics
):
self.y.append(last_target.cpu())
self.out.append(last_output.cpu())
def on_epoch_end(
self,
epoch: int,
smooth_loss: Tensor,
metrics: List,
last_metrics: List,
pbar: PBar,
**kwargs: Any,
):
stats = [epoch, smooth_loss]
if self.has_val:
stats.append(last_metrics[0]) # validation loss
if self.has_metrics:
# Evaluate metrics on the training set
tr_lm = [
m_fn(torch.stack(self.out), torch.stack(self.y))
for m_fn in metrics
]
self.train_metrics.append(tr_lm)
# Get evaluation metrics on the validation set (computed by learner)
if self.has_val:
vl_lm = last_metrics[1:]
self.valid_metrics.append(vl_lm)
# Prepare result table values
for i in range(len(metrics)):
stats.append(tr_lm[i])
if self.has_val:
stats.append(vl_lm[i])
# Write to result table
self._format_stats(stats)
# Plot (update) metrics for every end of epoch
if self.show_graph and len(self.train_metrics) > 0:
self._plot(True)
def _format_stats(self, stats: TensorOrNumList) -> None:
"""Format stats before printing. Note, this does the same thing as Recorder's"""
str_stats = []
for name, stat in zip(self.names, stats):
str_stats.append(
"#na#"
if stat is None
else str(stat)
if isinstance(stat, int)
else f"{stat:.6f}"
)
str_stats.append(format_time(time() - self.start_epoch))
self.pbar.write(str_stats, table=True)
def _plot(self, update=False):
if not self._fig:
# init graph
self._fig, self._axes = plt.subplots(
len(self.train_metrics[0]),
1,
figsize=(6, 4 * len(self.train_metrics[0])),
)
self._axes = (
self._axes.flatten()
if len(self.train_metrics[0]) > 1
else [self._axes]
)
plt.close(self._fig)
# Plot each metrics as a subplot
for i, ax in enumerate(self._axes):
ax.clear()
# Plot training set results
tr_m = [met[i] for met in self.train_metrics]
x_axis = [i for i in range(len(tr_m))]
ax.plot(x_axis, tr_m, label="Train")
# Plot validation set results
maybe_y_bounds = [
-0.05,
1.05,
min(Tensor(tr_m)),
max(Tensor(tr_m)),
]
if len(self.valid_metrics) > 0:
vl_m = [met[i] for met in self.valid_metrics]
ax.plot(x_axis, vl_m, label="Validation")
maybe_y_bounds.extend([min(Tensor(vl_m)), max(Tensor(vl_m))])
x_bounds = (-0.05, self.n_epochs - 0.95)
y_bounds = (min(maybe_y_bounds) - 0.05, max(maybe_y_bounds) + 0.05)
ax.set_xlim(x_bounds)
ax.set_ylim(y_bounds)
ax.set_ylabel(self.metrics_names[i])
ax.set_xlabel("Epochs")
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.legend(loc="upper right")
if update:
if not self._display:
self._display = display(self._fig, display_id=True)
else:
self._display.update(self._fig)
def plot(self):
"""Plot metrics graph"""
if len(self.train_metrics) == 0:
raise ValueError("No records to plot.")
# Number of metrics on training set and validation set should be the same
if len(self.valid_metrics) > 0:
assert len(self.train_metrics[0]) == len(self.valid_metrics[0])
self._plot()
display(self._fig)
def last_train_metrics(self):
"""Train set metrics from the last epoch"""
return self.train_metrics[-1]
def last_valid_metrics(self):
"""Validation set metrics from the last epoch"""
return self.valid_metrics[-1]