-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathdata.py
154 lines (117 loc) · 4.72 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import os
import requests
import pandas as pd
from pathlib import Path
from typing import List, Union
from urllib.parse import urljoin
from fastai.vision import ItemList
from PIL import Image
from tqdm import tqdm
class Urls:
# for now hardcoding base url into Urls class
base = "https://cvbp-secondary.z19.web.core.windows.net/datasets/image_classification/"
# ImageNet labels Keras is using
imagenet_labels_json = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
# traditional datasets
fridge_objects_path = urljoin(base, "fridgeObjects.zip")
fridge_objects_watermark_path = urljoin(base, "fridgeObjectsWatermark.zip")
fridge_objects_tiny_path = urljoin(base, "fridgeObjectsTiny.zip")
fridge_objects_watermark_tiny_path = urljoin(
base, "fridgeObjectsWatermarkTiny.zip"
)
fridge_objects_negatives_path = urljoin(base, "fridgeObjectsNegative.zip")
fridge_objects_negatives_tiny_path = urljoin(
base, "fridgeObjectsNegativeTiny.zip"
)
# multilabel datasets
multilabel_fridge_objects_path = urljoin(
base, "multilabelFridgeObjects.zip"
)
multilabel_fridge_objects_watermark_path = urljoin(
base, "multilabelFridgeObjectsWatermark.zip"
)
multilabel_fridge_objects_tiny_path = urljoin(
base, "multilabelFridgeObjectsTiny.zip"
)
multilabel_fridge_objects_watermark_tiny_path = urljoin(
base, "multilabelFridgeObjectsWatermarkTiny.zip"
)
@classmethod
def all(cls) -> List[str]:
return [v for k, v in cls.__dict__.items() if k.endswith("_path")]
def imagenet_labels() -> list:
"""List of ImageNet labels with the original index.
Returns:
list: ImageNet labels
"""
labels = requests.get(Urls.imagenet_labels_json).json()
return [labels[str(k)][1] for k in range(len(labels))]
def downsize_imagelist(
im_list: ItemList, out_dir: Union[Path, str], dim: int = 500
):
"""Aspect-ratio preserving down-sizing of each image in the ImageList {im_list}
so that min(width,height) is at most {dim} pixels.
Writes each image to the directory {out_dir} while preserving the original
subdirectory structure.
Args:
im_list: Fastai ItemList object containing image paths.
out_dir: Output root location.
dim: maximum image dimension (width/height) after resize
"""
assert (
len(im_list.items) > 0
), "Input ImageList does not contain any images."
# Find parent directory which all images have in common
im_paths = [str(s) for s in im_list.items]
src_root_dir = os.path.commonprefix(im_paths)
# Loop over all images
for src_path in tqdm(im_list.items):
# Load and optionally down-size image
im = Image.open(src_path).convert("RGB")
scale = float(dim) / min(im.size)
if scale < 1.0:
new_size = [int(round(f * scale)) for f in im.size]
im = im.resize(new_size, resample=Image.LANCZOS)
# Write image
src_rel_path = os.path.relpath(src_path, src_root_dir)
dst_path = os.path.join(out_dir, src_rel_path)
assert os.path.normpath(src_rel_path) != os.path.normpath(
dst_path
), "Image source and destination path should not be the same: {src_rel_path}"
os.makedirs(os.path.dirname(dst_path), exist_ok=True)
im.save(dst_path)
class LabelCsvNotFound(Exception):
""" Exception if no csv named 'label.csv' is found in the path. """
pass
class LabelColumnNotFound(Exception):
""" Exception if label column not found in the CSV file. """
pass
def is_data_multilabel(path: Union[Path, str]) -> bool:
""" Checks if dataset is a multilabel dataset.
A dataset is considered multilabel if it meets the following conditions:
- a csv titled 'labels.csv' is located in the path
- the column of the labels is titled 'labels'
- the labels are delimited by spaces or commas
- there exists at least one image that maps to 2 or more labels
Args:
path: path to the dataset
Raises:
MultipleCsvsFound if multiple csv files are present
Returns:
Whether or not the dataset is multilabel.
"""
files = Path(path).glob("*.csv")
if len([f for f in files]) == 0:
return False
csv_file_path = Path(path) / "labels.csv"
if not csv_file_path.is_file():
raise LabelCsvNotFound
df = pd.read_csv(csv_file_path)
if "labels" not in df.columns:
raise LabelColumnNotFound
labels = df["labels"].str.split(" ", n=1, expand=True)
if len(labels.columns) <= 1:
return False
return True