|
1 | 1 | Tutorials
|
2 | 2 | ===============
|
3 | 3 |
|
4 |
| -#. *Classify cancer using simulated data (Logistic Regression)* |
5 |
| - CNTK 101: `Logistic Regression`_ with NumPy |
6 |
| - |
| 4 | +#. *Classify cancer using simulated data (Logistic Regression)* |
| 5 | + CNTK 101: `Logistic Regression`_ with NumPy |
| 6 | + |
7 | 7 | #. *Classify cancer using simulated data (Feed Forward)*
|
8 | 8 | CNTK 102: `Feed Forward network`_ with NumPy
|
9 |
| - |
| 9 | + |
10 | 10 | #. *Recognize hand written digits (OCR) with MNIST data*
|
11 |
| - CNTK 103 Part A: `Data preparation <https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward classifier`_ |
12 |
| - |
| 11 | + CNTK 103 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward classifier`_ |
| 12 | + |
13 | 13 | #. *Learn how to predict the stock market*
|
14 | 14 | CNTK 104: `Time Series basics`_ with finance data
|
15 |
| - |
16 |
| -#. *Compress (using autoencoder) hand written digits from MNIST data with no human input (unsupervised learning)* |
17 |
| - CNTK 105 Part A: `Data preparation <https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward autoencoder`_ |
18 | 15 |
|
19 |
| -#. *Forecasting using data from an IOT device* |
| 16 | +#. *Compress (using autoencoder) hand written digits from MNIST data with no human input (unsupervised learning)* |
| 17 | + CNTK 105 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward autoencoder`_ |
| 18 | + |
| 19 | +#. *Forecasting using data from an IOT device* |
20 | 20 | CNTK 106: LSTM based forecasting - Part A: `with simulated data <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_106A_LSTM_Timeseries_with_Simulated_Data.ipynb>`_
|
21 | 21 |
|
22 | 22 | #. *Recognize objects in images from CIFAR-10 data*
|
23 |
| - CNTK 201 Part A: `Data preparation <https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb>`_, Part B: `VGG and ResNet classifiers`_ |
24 |
| - |
| 23 | + CNTK 201 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb>`_, Part B: `VGG and ResNet classifiers`_ |
| 24 | + |
25 | 25 | #. *Infer meaning from text snippets using LSTMs and word embeddings*
|
26 | 26 | CNTK 202: `Language understanding`_ with ATIS3 text data
|
27 |
| - |
| 27 | + |
28 | 28 | #. *Train a computer to perform tasks optimally (e.g., win games) in a simulated environment*
|
29 | 29 | CNTK 203: `Reinforcement learning basics`_ with OpenAI Gym data
|
30 | 30 |
|
31 | 31 | #. *Translate text from one domain (grapheme) to other (phoneme)*
|
32 | 32 | CNTK 204: `Sequence to sequence basics`_ with CMU pronouncing dictionary
|
33 |
| - |
| 33 | + |
34 | 34 | #. *Teach a computer to paint like Piccasso or van Gogh*
|
35 | 35 | CNTK 205: `Artistic Style Transfer`_
|
36 |
| - |
| 36 | + |
37 | 37 | #. *Produce realistic data (MNIST images) with no human input (unsupervised learning)*
|
38 |
| - CNTK 206 Part A: `Data preparation <https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Basic Generative Adversarial Networks (GAN)`_ |
| 38 | + CNTK 206 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Basic Generative Adversarial Networks (GAN)`_ |
| 39 | + |
| 40 | +#. *Training with Sampled Softmax* |
| 41 | + CNTK 207: `Training with Sampled Softmax`_ |
39 | 42 |
|
40 | 43 | For our Japanese users, you can find some of the `tutorials in Japanese`_.
|
41 | 44 |
|
42 |
| -.. _`Logistic Regression`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_101_LogisticRegression.ipynb |
43 |
| -.. _`Feed Forward network`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_102_FeedForward.ipynb |
44 |
| -.. _`Data preparation`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb |
45 |
| -.. _`Feed Forward classifier`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb |
46 |
| -.. _`Time Series basics`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb |
47 |
| -.. _`Feed Forward autoencoder`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_105_Basic_Autoencoder_for_Dimensionality_Reduction.ipynb |
| 45 | +.. _`Logistic Regression`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_101_LogisticRegression.ipynb |
| 46 | +.. _`Feed Forward network`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_102_FeedForward.ipynb |
| 47 | +.. _`Data preparation`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb |
| 48 | +.. _`Feed Forward classifier`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb |
| 49 | +.. _`Time Series basics`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb |
| 50 | +.. _`Feed Forward autoencoder`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_105_Basic_Autoencoder_for_Dimensionality_Reduction.ipynb |
48 | 51 | .. _`Basic LSTM based time series`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_106A_LSTM_Timeseries_with_Simulated_Data.ipynb
|
49 |
| -.. _`data preparation`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb |
50 |
| -.. _`VGG and ResNet classifiers`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_201B_CIFAR-10_ImageHandsOn.ipynb |
| 52 | +.. _`data preparation`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb |
| 53 | +.. _`VGG and ResNet classifiers`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_201B_CIFAR-10_ImageHandsOn.ipynb |
51 | 54 | .. _`Language understanding`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_202_Language_Understanding.ipynb
|
52 | 55 | .. _`Reinforcement learning basics`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_203_Reinforcement_Learning_Basics.ipynb
|
53 | 56 | .. _`Sequence to sequence basics`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_204_Sequence_To_Sequence.ipynb
|
54 | 57 | .. _`Artistic Style Transfer`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_205_Artistic_Style_Transfer.ipynb
|
55 | 58 | .. _`Basic Generative Adversarial Networks (GAN)`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_206_Basic_GAN.ipynb
|
| 59 | +.. _`Training with Sampled Softmax`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/Tutorials/CNTK_207_Training_with_Sampled_Softmax.ipynb |
| 60 | + |
56 | 61 | .. _`tutorials in Japanese`: https://notebooks.azure.com/library/cntkbeta2_ja
|
0 commit comments