Skip to content

Commit edc0c7e

Browse files
committed
Tools/samples.json, bindings/python/doc/tutorials.rst: updated
1 parent 0849ad0 commit edc0c7e

File tree

2 files changed

+38
-25
lines changed

2 files changed

+38
-25
lines changed

Tools/samples.json

+9-1
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@
130130
{
131131
"category": ["Image"],
132132
"name": "Generative Adversarial Networks (GAN)",
133-
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_205_Basic_GAN.ipynb",
133+
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_206_Basic_GAN.ipynb",
134134
"description": "This tutorial is a basic implementation of GAN networks. This allows us generate realistic looking MNIST images.",
135135
"language": ["Python"],
136136
"type": ["Tutorial", "Recipe"]
@@ -239,6 +239,14 @@
239239
"language": ["Python"],
240240
"type": ["Tutorial", "Recipe"]
241241
},
242+
{
243+
"category": ["Numeric"],
244+
"name": "Training with Sampled Softmax",
245+
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_207_Training_with_Sampled_Softmax.ipynb",
246+
"description": "Training with Sampled Softmax",
247+
"language": ["Python"],
248+
"type": ["Tutorial", "Recipe"]
249+
},
242250
{
243251
"category": ["Speech"],
244252
"name": "AN4 Speech DNN",

bindings/python/doc/tutorials.rst

+29-24
Original file line numberDiff line numberDiff line change
@@ -1,56 +1,61 @@
11
Tutorials
22
===============
33

4-
#. *Classify cancer using simulated data (Logistic Regression)*
5-
CNTK 101: `Logistic Regression`_ with NumPy
6-
4+
#. *Classify cancer using simulated data (Logistic Regression)*
5+
CNTK 101: `Logistic Regression`_ with NumPy
6+
77
#. *Classify cancer using simulated data (Feed Forward)*
88
CNTK 102: `Feed Forward network`_ with NumPy
9-
9+
1010
#. *Recognize hand written digits (OCR) with MNIST data*
11-
CNTK 103 Part A: `Data preparation <https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward classifier`_
12-
11+
CNTK 103 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward classifier`_
12+
1313
#. *Learn how to predict the stock market*
1414
CNTK 104: `Time Series basics`_ with finance data
15-
16-
#. *Compress (using autoencoder) hand written digits from MNIST data with no human input (unsupervised learning)*
17-
CNTK 105 Part A: `Data preparation <https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward autoencoder`_
1815

19-
#. *Forecasting using data from an IOT device*
16+
#. *Compress (using autoencoder) hand written digits from MNIST data with no human input (unsupervised learning)*
17+
CNTK 105 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward autoencoder`_
18+
19+
#. *Forecasting using data from an IOT device*
2020
CNTK 106: LSTM based forecasting - Part A: `with simulated data <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_106A_LSTM_Timeseries_with_Simulated_Data.ipynb>`_
2121

2222
#. *Recognize objects in images from CIFAR-10 data*
23-
CNTK 201 Part A: `Data preparation <https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb>`_, Part B: `VGG and ResNet classifiers`_
24-
23+
CNTK 201 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb>`_, Part B: `VGG and ResNet classifiers`_
24+
2525
#. *Infer meaning from text snippets using LSTMs and word embeddings*
2626
CNTK 202: `Language understanding`_ with ATIS3 text data
27-
27+
2828
#. *Train a computer to perform tasks optimally (e.g., win games) in a simulated environment*
2929
CNTK 203: `Reinforcement learning basics`_ with OpenAI Gym data
3030

3131
#. *Translate text from one domain (grapheme) to other (phoneme)*
3232
CNTK 204: `Sequence to sequence basics`_ with CMU pronouncing dictionary
33-
33+
3434
#. *Teach a computer to paint like Piccasso or van Gogh*
3535
CNTK 205: `Artistic Style Transfer`_
36-
36+
3737
#. *Produce realistic data (MNIST images) with no human input (unsupervised learning)*
38-
CNTK 206 Part A: `Data preparation <https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Basic Generative Adversarial Networks (GAN)`_
38+
CNTK 206 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Basic Generative Adversarial Networks (GAN)`_
39+
40+
#. *Training with Sampled Softmax*
41+
CNTK 207: `Training with Sampled Softmax`_
3942

4043
For our Japanese users, you can find some of the `tutorials in Japanese`_.
4144

42-
.. _`Logistic Regression`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_101_LogisticRegression.ipynb
43-
.. _`Feed Forward network`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_102_FeedForward.ipynb
44-
.. _`Data preparation`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb
45-
.. _`Feed Forward classifier`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb
46-
.. _`Time Series basics`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb
47-
.. _`Feed Forward autoencoder`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_105_Basic_Autoencoder_for_Dimensionality_Reduction.ipynb
45+
.. _`Logistic Regression`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_101_LogisticRegression.ipynb
46+
.. _`Feed Forward network`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_102_FeedForward.ipynb
47+
.. _`Data preparation`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb
48+
.. _`Feed Forward classifier`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb
49+
.. _`Time Series basics`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_104_Finance_Timeseries_Basic_with_Pandas_Numpy.ipynb
50+
.. _`Feed Forward autoencoder`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_105_Basic_Autoencoder_for_Dimensionality_Reduction.ipynb
4851
.. _`Basic LSTM based time series`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_106A_LSTM_Timeseries_with_Simulated_Data.ipynb
49-
.. _`data preparation`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb
50-
.. _`VGG and ResNet classifiers`: https://github.com/Microsoft/CNTK/tree/v2.0.beta10.0/Tutorials/CNTK_201B_CIFAR-10_ImageHandsOn.ipynb
52+
.. _`data preparation`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb
53+
.. _`VGG and ResNet classifiers`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_201B_CIFAR-10_ImageHandsOn.ipynb
5154
.. _`Language understanding`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_202_Language_Understanding.ipynb
5255
.. _`Reinforcement learning basics`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_203_Reinforcement_Learning_Basics.ipynb
5356
.. _`Sequence to sequence basics`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_204_Sequence_To_Sequence.ipynb
5457
.. _`Artistic Style Transfer`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_205_Artistic_Style_Transfer.ipynb
5558
.. _`Basic Generative Adversarial Networks (GAN)`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_206_Basic_GAN.ipynb
59+
.. _`Training with Sampled Softmax`: https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/Tutorials/CNTK_207_Training_with_Sampled_Softmax.ipynb
60+
5661
.. _`tutorials in Japanese`: https://notebooks.azure.com/library/cntkbeta2_ja

0 commit comments

Comments
 (0)