-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestextension.ts
73 lines (68 loc) · 2.33 KB
/
testextension.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
//% fixedInstances
//% blockNamespace=ml
class MlEvent {
eventValue: number;
eventLabel: string;
lastDuration: number;
onStartHandler: () => void;
onStopHandler: () => void;
onStopDetailedHandler: (duration: number) => void;
constructor(value: number, label: string) {
this.eventValue = value;
this.eventLabel = label;
this.lastDuration = 0;
}
}
const enum MlRunnerIds {
MlRunnerInference = 71,
TMlRunnerTimer = 72,
}
//% color=#2b64c3 weight=100 icon="\uf108" block="ML Runner" advanced=false
namespace testrunner {
//% blockNamespace=ml
export namespace event {
//% fixedInstance block="unknown"
export const Unknown = new MlEvent(1, "unknown");
}
export let events = [event.Unknown];
export let getModelBlob: () => Buffer;
export function maybeUpdateEventStats(currentEvent: MlEvent) { }
export function simulatorSendData(): void { }
/**
* Run this code when the model detects the input label has been predicted.
*
* This automatically starts running the ML model in the background.
* When the model predicts the indicated label, an event is raised to
* trigger this handler.
*
* @param mlEvent The label event that triggers this code to run.
* @param body The code to run when the model predicts the label.
*/
//% blockId=testrunner_on_ml_event
//% block="on ML event %value"
export function onMlEvent(mlEvent: MlEvent, body: () => void): void {
startRunning();
control.onEvent(MlRunnerIds.MlRunnerInference, mlEvent.eventValue, body, EventFlags.DropIfBusy)
}
/**
* TS shim for C++ function init(), which initialize the ML model with
* an address to a model blob.
*
* @param modelBlob The model blob to initialize the ML model with.
*/
//% shim=testrunner::init
function initRunner(modelBlob: Buffer): void {
return;
}
/**
* Configure the ML model, start capturing accelerometer data, and run
* the model in the background.
*/
//% blockId=testrunner_run_model_background
//% block="run ML model in background"
export function startRunning(): void {
// The model blob should be re-generated by the MakeCode extension
const modelBlob = getModelBlob() || hex``;
initRunner(modelBlob);
}
}