forked from mitchellh/go-z3
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathz3_examples_test.go
191 lines (153 loc) · 3.44 KB
/
z3_examples_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
package z3
import (
"fmt"
)
// This example is a basic mathematical example
func ExampleBasicMath() {
// Create the context
config := NewConfig()
ctx := NewContext(config)
config.Close()
defer ctx.Close()
// Logic:
// x + y + z > 4
// x + y < 2
// z > 0
// x != y != z
// x, y, z != 0
// x + y = -3
// Create the solver
s := ctx.NewSolver()
defer s.Close()
// Vars
x := ctx.Const(ctx.Symbol("x"), ctx.IntSort())
y := ctx.Const(ctx.Symbol("y"), ctx.IntSort())
z := ctx.Const(ctx.Symbol("z"), ctx.IntSort())
zero := ctx.Int(0, ctx.IntSort()) // To save repeats
// x + y + z > 4
s.Assert(x.Add(y, z).Gt(ctx.Int(4, ctx.IntSort())))
// x + y < 2
s.Assert(x.Add(y).Lt(ctx.Int(2, ctx.IntSort())))
// z > 0
s.Assert(z.Gt(zero))
// x != y != z
s.Assert(x.Distinct(y, z))
// x, y, z != 0
s.Assert(x.Eq(zero).Not())
s.Assert(y.Eq(zero).Not())
s.Assert(z.Eq(zero).Not())
// x + y = -3
s.Assert(x.Add(y).Eq(ctx.Int(-3, ctx.IntSort())))
if v := s.Check(); v != True {
fmt.Println("Unsolveable")
return
}
// Get the resulting model:
m := s.Model()
assignments := m.Assignments()
m.Close()
fmt.Printf("x = %s\n", assignments["x"])
fmt.Printf("y = %s\n", assignments["y"])
fmt.Printf("z = %s\n", assignments["z"])
// Output:
// x = (- 2)
// y = (- 1)
// z = 8
}
// From C examples: demorgan
func ExampleDemorgan() {
// Create the context
config := NewConfig()
ctx := NewContext(config)
config.Close()
defer ctx.Close()
// Create a couple variables
x := ctx.Const(ctx.Symbol("x"), ctx.BoolSort())
y := ctx.Const(ctx.Symbol("y"), ctx.BoolSort())
// Final goal: !(x && y) == (!x || !y)
// Built incrementally so its clearer
// !(x && y)
not_x_and_y := x.And(y).Not()
// (!x || !y)
not_x_or_not_y := x.Not().Or(y.Not())
// Conjecture and negated
conj := not_x_and_y.Iff(not_x_or_not_y)
negConj := conj.Not()
// Create the solver
s := ctx.NewSolver()
defer s.Close()
// Assert the constraints
s.Assert(negConj)
if v := s.Check(); v == False {
fmt.Println("DeMorgan is valid")
return
}
// Output:
// DeMorgan is valid
}
// From C examples: find_model_example2
func ExampleFindModel2() {
// Create the context
config := NewConfig()
defer config.Close()
ctx := NewContext(config)
defer ctx.Close()
// Create the solver
s := ctx.NewSolver()
defer s.Close()
// Create a couple variables
x := ctx.Const(ctx.Symbol("x"), ctx.IntSort())
y := ctx.Const(ctx.Symbol("y"), ctx.IntSort())
// Create a couple integers
v1 := ctx.Int(1, ctx.IntSort())
v2 := ctx.Int(2, ctx.IntSort())
// y + 1
y_plus_one := y.Add(v1)
// x < y + 1 && x > 2
c1 := x.Lt(y_plus_one)
c2 := x.Gt(v2)
// Assert the constraints
s.Assert(c1)
s.Assert(c2)
{
// Solve
fmt.Println("Solving part 1")
if v := s.Check(); v != True {
fmt.Println("unsatisfied!")
return
}
// Get the resulting model:
m := s.Model()
assignments := m.Assignments()
m.Close()
fmt.Printf("x = %s\n", assignments["x"])
fmt.Printf("y = %s\n", assignments["y"])
}
// Create some new assertions
//
// !(x == y)
c3 := x.Eq(y).Not()
s.Assert(c3)
{
// Solve
fmt.Println("\nSolving part 2")
if v := s.Check(); v != True {
fmt.Println("unsatisfied!")
return
}
// Get the resulting model:
m := s.Model()
assignments := m.Assignments()
m.Close()
fmt.Printf("x = %s\n", assignments["x"])
fmt.Printf("y = %s", assignments["y"])
}
// Output:
// Solving part 1
// x = 3
// y = 3
//
// Solving part 2
// x = 3
// y = 4
}