-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathday20.py
executable file
·169 lines (123 loc) · 3.64 KB
/
day20.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3
import sys
import heapq
from functools import lru_cache
from collections import deque, defaultdict, namedtuple
from itertools import combinations
from math import inf as INFINITY
def neighbors4(grid, r, c):
for dr, dc in ((1, 0), (-1, 0), (0, 1), (0, -1)):
rr, cc = (r + dr, c + dc)
if 0 <= rr < len(grid) and 0 <= cc < len(grid[rr]):
if grid[rr][cc] not in '# ':
yield (rr, cc)
@lru_cache(2**20)
def portal_from_grid(grid, r, c):
if grid[r][c] != '.':
return None
valid = False
for n1r, n1c in neighbors4(grid, r, c):
letter1 = grid[n1r][n1c]
if 'A' <= letter1 <= 'Z':
valid = True
break
if not valid:
return None
for n2r, n2c in neighbors4(grid, n1r, n1c):
letter2 = grid[n2r][n2c]
if 'A' <= letter2 <= 'Z':
break
if n2r > n1r or n2c > n1c:
key = letter1 + letter2
else:
key = letter2 + letter1
if n2r == 0 or n2c == 0 or n2r == MAXROW or n2c == MAXCOLUMN:
return Portal(key, 'out', 0)
return Portal(key, 'in', 0)
@lru_cache(2**20)
def recursive_neighbors(portal):
depth0_portal = Portal(portal.label, portal.side, 0)
depth0_neighbors = G[depth0_portal]
neighbors = []
if portal.side == 'in':
n = Portal(portal.label, 'out', portal.depth + 1)
neighbors.append((n, 1))
if portal.depth == 0:
for n, d in depth0_neighbors:
if n.side == 'in' or n == ENTRANCE or n == EXIT:
neighbors.append((n, d))
else:
if portal.side == 'out':
n = Portal(portal.label, 'in', portal.depth - 1)
neighbors.append((n, 1))
for n, d in depth0_neighbors:
if n != ENTRANCE and n != EXIT:
n = Portal(n.label, n.side, portal.depth)
neighbors.append((n, d))
return tuple(neighbors)
def dijkstra(G, src, dst, get_neighbors=None):
if get_neighbors is None:
get_neighbors = G.get
distance = defaultdict(lambda: INFINITY)
queue = [(0, src)]
visited = set()
distance[src] = 0
while queue:
dist, node = heapq.heappop(queue)
if node == dst:
return dist
if node not in visited:
visited.add(node)
neighbors = get_neighbors(node)
for neighbor, weight in filter(lambda n: n[0] not in visited, neighbors):
new_dist = dist + weight
if new_dist < distance[neighbor]:
distance[neighbor] = new_dist
heapq.heappush(queue, (new_dist, neighbor))
return INFINITY
def find_adjacent(grid, src):
visited = {src}
queue = deque()
found = []
for n in neighbors4(grid, *src):
queue.append((1, n))
while queue:
dist, node = queue.popleft()
if node not in visited:
visited.add(node)
portal = portal_from_grid(grid, *node)
if portal is not None:
found.append((portal, dist))
continue
for neighbor in filter(lambda n: n not in visited, neighbors4(grid, *node)):
queue.append((dist + 1, neighbor))
return found
def build_graph(grid):
graph = {}
for r, row in enumerate(grid):
for c in range(len(row)):
key = portal_from_grid(grid, r, c)
if key is not None:
graph[key] = find_adjacent(grid, (r, c))
return graph
Portal = namedtuple('Portal', ['label', 'side', 'depth'])
# Open the first argument as input or use stdin if no arguments were given
fin = open(sys.argv[1]) if len(sys.argv) > 1 else sys.stdin
grid = tuple(l.strip('\n') for l in fin)
MAXROW = len(grid) - 1
MAXCOLUMN = len(grid[0]) - 1
G = build_graph(grid)
for p in G:
if p.label.startswith('AA'):
ENTRANCE = p
if p.label.startswith('ZZ'):
EXIT = p
for p1, p2 in combinations(G, 2):
if p1.label == p2.label:
G[p1].append((p2, 1))
G[p2].append((p1, 1))
min_steps = dijkstra(G, ENTRANCE, EXIT)
print('Part 1:', min_steps)
G = build_graph(grid)
min_steps = dijkstra(G, ENTRANCE, EXIT, get_neighbors=recursive_neighbors)
print('Part 2:', min_steps)