-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathutils.py
1097 lines (898 loc) · 43.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import scipy.misc
import os
import shutil
import zipfile
import numpy as np
from itertools import product
import pywt
import matplotlib.pyplot as plt
import mpl_toolkits.axes_grid1
import warnings
import tensorflow as tf
def is_array_str(obj):
"""
Check if obj is a list of strings or a tuple of strings or a set of strings
:param obj: an object
:return: flag: True or False
"""
# TODO: modify the use of is_array_str(obj) in the code to is_array_of(obj, classinfo)
flag = False
if isinstance(obj, str):
pass
elif all(isinstance(item, str) for item in obj):
flag = True
return flag
def is_array_of(obj, classinfo):
"""
Check if obj is a list of classinfo or a tuple of classinfo or a set of classinfo
:param obj: an object
:param classinfo: type of class (or subclass). See isinstance() build in function for more info
:return: flag: True or False
"""
flag = False
if isinstance(obj, classinfo):
pass
elif all(isinstance(item, classinfo) for item in obj):
flag = True
return flag
def check_and_convert_to_list_str(obj):
"""
Check if obj is a string or an array like of strings and return a list of strings
:param obj: and object
:return: list_str: a list of strings
"""
if isinstance(obj, str):
list_str = [obj] # put in a list to avoid iterating on characters
elif is_array_str(obj):
list_str = []
for item in obj:
list_str.append(item)
else:
raise TypeError('Input must be a string or an array like of strings.')
return list_str
def load_images(path, file_ext='.png'):
"""
Load images in grayscale from the path
:param path: path to folder
:param file_ext: a string or a list of strings (even an array like of strings)
:return: image_list, image_name_list
"""
# Check file_ext type
file_ext = check_and_convert_to_list_str(file_ext)
image_list = []
image_name_list = []
for file in os.listdir(path):
file_name, ext = os.path.splitext(file)
if ext.lower() not in file_ext:
continue
# Import image and convert it to 8-bit pixels, black and white (using mode='L')
image_list.append(scipy.misc.imread(os.path.join(path, file), mode='L'))
image_name_list.append(file_name)
return image_list, image_name_list
def extract_zip_archive(zip_file_path, extract_path, file_ext=''):
"""
Extract zip archive. If file_ext is specified, only extracts files with specified extension
:param zip_file_path: path to zip archive
:param extract_path: path to export folder
:param file_ext: a string or a list of strings (even an array like of strings)
:return:
"""
# Check file_ext type
file_ext = check_and_convert_to_list_str(file_ext)
# Check if export_path already contains the files with a valid extension
valid_files_in_extract_path = [os.path.join(root, name)
for root, dirs, files in os.walk(extract_path)
for name in files
if name.endswith(tuple(file_ext))]
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
files_to_extract = [name for name in zip_ref.namelist()
if name.endswith(tuple(file_ext))
and os.path.join(extract_path, name) not in valid_files_in_extract_path]
# Only extracts files if not already extracted
# TODO: load directly the images without extracting them
for file in files_to_extract:
print(file)
zip_ref.extract(file, path=extract_path)
return
def export_image_list(image_list, image_name_list, export_name_list=True, path='', file_ext='.png'):
"""
Export images export_name_list of (image_list, image_name_list) in path as image_name.ext
:param image_list: list of array
:param image_name_list: list of strings
:param export_name_list: True, False, None, string or list of strings
:param path: path to export folder
:param file_ext: file extension
:return:
"""
# Check if file_ext is a string
if not isinstance(file_ext, str):
raise TypeError('File extension must be a string')
# Check if image_name_list is list of string or simple string
image_name_list = check_and_convert_to_list_str(image_name_list)
# Check export_name_list type
# if is True, i.e. will export all images
# Otherwise check if export_name_list is list of strings or simple string
if isinstance(export_name_list, bool):
if export_name_list: # True case
export_name_list = image_name_list
else: # False case
export_name_list = ['']
elif export_name_list is None:
export_name_list = ['']
else:
export_name_list = check_and_convert_to_list_str(export_name_list)
# Check if folder already exists
if os.path.exists(path): # never True if path = ''
# Check if folder content is exactly the same as what will be exported
if not sorted(os.listdir(path)) == [item + file_ext for item in sorted(export_name_list)]:
shutil.rmtree(path)
print('Folder {} has been removed'.format(path))
else:
return
# Check if folder doesn't exist and if path not empty to create the folder
if not os.path.exists(path) and path:
os.makedirs(path)
print('Folder {} has been created'.format(path))
# Save images
for i, image_name in enumerate(image_name_list):
if image_name not in export_name_list:
continue
scipy.misc.imsave(os.path.join(path, image_name + file_ext), image_list[i])
print('Saved {} {} as {}'.format(image_name, image_list[i].shape, os.path.join(path, image_name + file_ext)))
return
def get_data_paths(dataset_name):
"""
Generate and return data paths
:param dataset_name: string
:return: data_paths: dict
"""
if not isinstance(dataset_name, str):
raise TypeError('Data set name must be a string')
keys = ['sources_base', 'source', 'source_archive', 'dataset', 'orig', 'train', 'test']
data_paths = dict.fromkeys(keys)
data_paths['sources_base'] = os.path.join('datasets', 'sources')
data_paths['source'] = os.path.join(data_paths['sources_base'], dataset_name)
data_paths['source_archive'] = data_paths['source'] + '.zip'
data_paths['dataset'] = os.path.join('datasets', dataset_name)
data_paths['orig'] = os.path.join(data_paths['dataset'], 'orig')
data_paths['train'] = os.path.join(data_paths['dataset'], 'train')
data_paths['test'] = os.path.join(data_paths['dataset'], 'test')
return data_paths
def generate_original_images(dataset_name):
"""
Generate original images
:param dataset_name: name of the dataset such that dataset.zip exists
:return:
"""
# TODO: download from the web so it doesn't have to be hosted on github
# Parameters
data_sources_main_path = os.path.join('datasets', 'sources')
data_source_path = os.path.join(data_sources_main_path, dataset_name)
data_source_zip_path = data_source_path + '.zip'
valid_ext = ['.jpg', '.tif', '.tiff', '.png', '.bmp']
export_path = os.path.join('datasets', dataset_name, 'orig')
# Unzip archive
extract_zip_archive(data_source_zip_path, data_sources_main_path, file_ext=valid_ext)
# Loading valid image in grayscale
image_list, image_name_list = load_images(data_source_path, file_ext=valid_ext)
# Export original images
export_image_list(image_list, image_name_list, path=export_path, file_ext='.png')
return
def export_set_from_orig(dataset_name, set_name, name_list):
"""
Export a set from the original set based on the name list provided
:param dataset_name: string, name of the dataset such that dataset.zip exists
:param set_name: string, name of the set (yet only 'train' and 'test')
:param name_list: image name list to extract from the 'orig' set
:return:
"""
# Get paths
data_paths = get_data_paths(dataset_name)
# Load original images
orig_image_list, orig_name_list = load_images(data_paths['orig'], file_ext='.png')
export_image_list(orig_image_list, orig_name_list, export_name_list=name_list,
path=data_paths[set_name], file_ext='.png')
return
def generate_train_images(dataset_name, name_list=None):
"""
Generate training image set from original set
:param dataset_name: string, name of the dataset such that dataset.zip exists
:param name_list: (optional) image name list to extract from the 'orig' set
:return:
"""
# TODO: generalize for different datasets
if name_list is None:
name_list = ['airplane', 'arctichare', 'baboon', 'barbara', 'boat', 'cameraman', 'cat', 'goldhill', 'zelda']
export_set_from_orig(dataset_name, set_name='train', name_list=name_list)
return
def generate_test_images(dataset_name, name_list=None):
"""
Generate testing image set from original set
:param dataset_name: string, name of the dataset such that dataset.zip exists
:param name_list: (optional) image name list to extract from the 'orig' set
:return:
"""
# TODO: generalize for different datasets
if name_list is None:
name_list = ['fruits', 'frymire', 'girl', 'monarch', 'mountain', 'peppers', 'pool', 'sails', 'tulips', 'watch']
export_set_from_orig(dataset_name, set_name='test', name_list=name_list)
return
def extract_2d_patches_old_as_list(image, patch_size):
"""
Extract non-overlapping patches of size patch_height x patch_width
:param image: array, shape = (image_height, image_width)
:param patch_size: tuple of ints (patch_height, patch_width)
:return: patches: list of patches
"""
image_size = np.asarray(image.shape) # convert to numpy array to allow array computations
patch_size = np.asarray(patch_size) # convert to numpy array to allow array computations
if patch_size[0] > image_size[0]:
raise ValueError("Height of the patch should be less than the height"
" of the image.")
if patch_size[1] > image_size[1]:
raise ValueError("Width of the patch should be less than the width"
" of the image.")
# Patches number: floor might lead to missing parts if patch_size is a int multiplier of image_size
patches_number = np.floor(image_size / patch_size).astype(int)
patches = []
# Cartesian iteration using itertools.product()
# Equivalent to the nested for loop
# for r in range(patches_number[0]):
# for c in range(patches_number[1]):
for r, c in product(range(patches_number[0]), range(patches_number[1])):
rr = r * patch_size[0]
cc = c * patch_size[1]
patches.append(image[rr:rr + patch_size[0], cc:cc + patch_size[1]])
return patches
def extract_2d_patches(image, patch_size):
"""
Extract non-overlapping patches of size patch_height x patch_width
:param image: array, shape = (image_height, image_width)
:param patch_size: tuple of ints (patch_height, patch_width)
:return: patches: array, shape = (patch_height, patch_width, patches_number)
"""
image_size = np.asarray(image.shape) # convert to numpy array to allow array computations
patch_size = np.asarray(patch_size) # convert to numpy array to allow array computations
if patch_size[0] > image_size[0]:
raise ValueError("Height of the patch should be less than the height"
" of the image.")
if patch_size[1] > image_size[1]:
raise ValueError("Width of the patch should be less than the width"
" of the image.")
# Patches number: floor might lead to missing parts if patch_size is a int multiplier of image_size
patches_number = np.floor(image_size / patch_size).astype(int)
# patches = np.zeros([np.prod(patches_number), patch_size[0], patch_size[1]])
patches = np.zeros([patch_size[0], patch_size[1], np.prod(patches_number)])
# Cartesian iteration using itertools.product()
# Equivalent to the nested for loop
# for r in range(patches_number[0]):
# for c in range(patches_number[1]):
for k, (r, c) in zip(range(np.prod(patches_number)), product(range(patches_number[0]), range(patches_number[1]))):
rr = r * patch_size[0]
cc = c * patch_size[1]
# patches[k, :, :] += image[rr:rr + patch_size[0], cc:cc + patch_size[1]]
patches[:, :, k] += image[rr:rr + patch_size[0], cc:cc + patch_size[1]] # TODO: use [..., k]
return patches
def reconstruct_from_2d_patches_old_as_list(patches, image_size):
"""
Reconstruct image from patches of size patch_height x patch_width
:param patches: list of patches
:param image_size: tuple of ints (image_height, image_width)
:return: rec_image: array of shape (rec_image_height, rec_image_width)
"""
image_size = np.asarray(image_size) # convert to numpy array to allow array computations
patch_size = np.asarray(patches[0].shape) # convert to numpy array to allow array computations
if patch_size[0] > image_size[0]:
raise ValueError("Height of the patch should be less than the height"
" of the image.")
if patch_size[1] > image_size[1]:
raise ValueError("Width of the patch should be less than the width"
" of the image.")
# Patches number: floor might lead to missing parts if patch_size is a int multiplier of image_size
patches_number = np.floor(image_size / patch_size).astype(int)
rec_image_size = patches_number * patch_size
rec_image = np.zeros(rec_image_size)
# Cartesian iteration using itertools.product()
for patch, (r, c) in zip(patches, product(range(patches_number[0]), range(patches_number[1]))):
rr = r * patch_size[0]
cc = c * patch_size[1]
rec_image[rr:rr + patch_size[0], cc:cc + patch_size[1]] += patch
return rec_image
def reconstruct_from_2d_patches(patches, image_size):
"""
Reconstruct image from patches of size patch_height x patch_width
:param patches: array, shape = (patch_height, patch_width, patches_number)
:param image_size: tuple of ints (image_height, image_width)
:return: rec_image: array of shape (rec_image_height, rec_image_width)
"""
image_size = np.asarray(image_size) # convert to numpy array to allow array computations
# patch_size = np.asarray(patches[0].shape) # convert to numpy array to allow array computations
patch_size = np.asarray(patches[:, :, 0].shape) # convert to numpy array to allow array computations
if patch_size[0] > image_size[0]:
raise ValueError("Height of the patch should be less than the height"
" of the image.")
if patch_size[1] > image_size[1]:
raise ValueError("Width of the patch should be less than the width"
" of the image.")
# Patches number: floor might lead to missing parts if patch_size is a int multiplier of image_size
patches_number = np.floor(image_size / patch_size).astype(int)
rec_image_size = patches_number * patch_size
rec_image = np.zeros(rec_image_size)
# Cartesian iteration using itertools.product()
for k, (r, c) in zip(range(np.prod(patches_number)), product(range(patches_number[0]), range(patches_number[1]))):
rr = r * patch_size[0]
cc = c * patch_size[1]
# rec_image[rr:rr + patch_size[0], cc:cc + patch_size[1]] += patches[k, :, :]
rec_image[rr:rr + patch_size[0], cc:cc + patch_size[1]] += patches[:, :, k] # TODO: use [..., k]
return rec_image
def reshape_patch_in_vec(patches):
"""
:param patches: array, shape = (patch_height, patch_width, patches_number)
:return: vec_patches: array, shape = (patch_height * patch_width, patches_number)
"""
# Check if only a single patch (i.e. ndim = 2) or multiple patches (i.e. ndim = 3)
if patches.ndim == 2:
vec_patches = patches.reshape((patches.shape[0]*patches.shape[1]))
elif patches.ndim == 3:
vec_patches = patches.reshape((patches.shape[0]*patches.shape[1], patches.shape[-1]))
else:
raise TypeError('Patches cannot have more than 3 dimensions (i.e. only grayscale for now)')
return vec_patches
def reshape_vec_in_patch(vec_patches, patch_size):
"""
:param vec_patches: array, shape = (patch_height * patch_width, patches_number)
:param patch_size: tuple of ints (patch_height, patch_width)
:return patches: array, shape = (patch_height, patch_width, patches_number)
"""
# Check if vec_patches is 1D (i.e. only one patch) or 2D (i.e. multiple patches)
if vec_patches.ndim == 1:
patches = vec_patches.reshape((patch_size[0], patch_size[1]))
elif vec_patches.ndim == 2:
patches = vec_patches.reshape((patch_size[0], patch_size[1], vec_patches.shape[-1]))
else:
raise TypeError('Vectorized patches array cannot be more than 2D')
return patches
def generate_vec_set(image_list, patch_size):
"""
Generate vectorized set of image based on patch_size
:param image_list: list of array
:param patch_size: tuple of ints (patch_height, patch_width)
:return: vec_set: array, shape = (patch_height * patch_width, n_patches)
"""
patch_list = []
for _, image in enumerate(image_list):
patch_list.append(extract_2d_patches(image, patch_size))
patches = np.concatenate(patch_list, axis=-1)
vec_set = reshape_patch_in_vec(patches)
return vec_set
def generate_cross_validation_sets(full_set, fold_number=5, fold_combination=1):
"""
Generate cross validations sets (i.e train and validation sets) w.r.t. a total fold number and the fold combination
:param full_set: array, shape = (set_dim, set_size)
:param fold_number: positive int
:param fold_combination: int
:return: train_set, val_set
"""
if not isinstance(fold_combination, int):
raise TypeError('Fold combination must be an integer')
if not isinstance(fold_number, int):
raise TypeError('Fold number must be an integer')
if fold_number < 1:
raise ValueError('Fold number must be a postive integer')
if fold_combination > fold_number:
raise ValueError('Fold combination must be smaller or equal to fold number')
if not isinstance(full_set, np.ndarray):
raise TypeError('Full set must be a numpy array')
if full_set.ndim is not 2:
raise TypeError('Full set must be a 2 dimensional array')
patch_number = full_set.shape[1]
fold_len = int(patch_number / fold_number) # int -> floor
val_set_start = (fold_combination - 1) * fold_len
val_set_range = range(val_set_start, val_set_start + fold_len)
train_set_list = [idx for idx in range(fold_number * fold_len) if idx not in val_set_range]
train_set = full_set[:, val_set_range]
val_set = full_set[:, train_set_list]
return train_set, val_set
def create_gaussian_rip_matrix(size=None, seed=None):
"""
Create a Gaussian matrix satisfying the Restricted Isometry Property (RIP).
See: H. Rauhut - Compressive Sensing and Structured Random Matrices
:param size: int or tuple of ints, optional. Default is None
:param seed: int or array_like, optional
:return: matrix: array, shape = (m, n)
"""
m, n = size
mean = 0.0
stdev = 1 / np.sqrt(m)
prng = np.random.RandomState(seed=seed)
matrix = prng.normal(loc=mean, scale=stdev, size=size)
return matrix
def create_bernoulli_rip_matrix(size=None, seed=None):
"""
Create a Bernoulli matrix satisfying the Restricted Isometry Property (RIP).
See: H. Rauhut - Compressive Sensing and Structured Random Matrices
:param size: int or tuple of ints, optional. Default is None
:param seed: int or array_like, optional
:return: matrix: array, shape = (m, n)
"""
m, n = size
prng = np.random.RandomState(seed=seed)
matrix = prng.randint(low=0, high=2, size=size).astype('float') # gen 0, +1 sequence
# astype('float') required to use the true divide (/=) which follows
matrix *= 2
matrix -= 1
matrix /= np.sqrt(m)
return matrix
def create_measurement_model(mm_type, patch_size, compression_percent):
"""
Create measurement model depending on
:param mm_type: string defining the measurement model type
:param patch_size: tuple of ints (patch_height, patch_width)
:param compression_percent: int
:return: measurement_model: array, shape = (m, n)
"""
# TODO: check if seed should be in a file rather than hardcoded
seed = 1234567890
patch_height, patch_width = patch_size
n = patch_height * patch_width
m = round((1 - compression_percent / 100) * n)
if mm_type.lower() == 'gaussian-rip':
measurement_model = create_gaussian_rip_matrix(size=(m, n), seed=seed)
elif mm_type.lower() == 'bernoulli-rip':
measurement_model = create_bernoulli_rip_matrix(size=(m, n), seed=seed)
else:
raise NameError('Undefined measurement model type')
return measurement_model
def generate_transform_dict(patch_size, name, **kwargs):
"""
Create a transform dictionary based on the name and various parameters (kwargs)
:param patch_size: tuple of ints (patch_height, patch_width)
:param name: string
:param kwargs:
:return: transform_dict: dictionary
"""
# TODO: check how to properly document **kwargs
transform_dict = dict()
transform_dict['name'] = name.lower()
transform_dict['patch_size'] = patch_size
if transform_dict['name'] == 'dirac':
transform_dict['level'] = kwargs.get('level')
if transform_dict['level'] is not 0:
warnings.warn('Level of \'dirac\' transform automatically set to 0')
transform_dict['level'] = 0
elif transform_dict['name'] == 'wavelet':
transform_dict['name'] = name
# Wavelet (default = 'db4)
transform_dict['wavelet_type'] = kwargs.get('wavelet', 'db4')
# TODO: check if good idea to add the wavelet object from pywt in the transform dict
transform_dict['wavelet'] = pywt.Wavelet(transform_dict['wavelet_type'])
# Wavelet decomposition level (default = 2)
transform_dict['level'] = kwargs.get('level', 1)
if not isinstance(transform_dict['level'], int):
raise TypeError('Must be an int')
# Check decomposition level if not above max level
check_wavelet_level(size=min(patch_size), dec_len=transform_dict['wavelet'].dec_len,
level=transform_dict['level'])
if transform_dict['level'] < 0:
raise ValueError(
"Level value of %d is too low . Minimum level is 0." % transform_dict['level'])
else:
max_level = pywt.dwt_max_level(min(patch_size), transform_dict['wavelet'].dec_len)
if transform_dict['level'] > max_level:
raise ValueError(
"Level value of %d is too high. Maximum allowed is %d." % (
transform_dict['level'], max_level))
# Wavelet boundaries mode (default = 'symmetric')
transform_dict['mode'] = kwargs.get('mode', 'symmetric')
if not isinstance(transform_dict['mode'], str):
raise TypeError('Must be a string')
else:
raise NotImplementedError('Only supports \'dirac\' or \'wavelet\'')
# Compute transform coefficient number
transform_dict['coeff_number'] = get_transform_coeff_number(transform_dict)
return transform_dict
def check_wavelet_level(size, dec_len, level):
# (see pywt._multilevel._check_level())
if level < 0:
raise ValueError('Level value of {} is too low . Minimum level is 0.'.format(level))
else:
max_level = pywt.dwt_max_level(size, dec_len)
if level > max_level:
raise ValueError('Level value of {} is too high. Maximum allowed is {}.'.format(level, max_level))
return
def generate_transform_list(patch_size, name_list, type_list, level_list, mode_list):
"""
Generate transform list based on name, type, level and mode lists
:param patch_size: tuple of ints (patch_height, patch_width)
:param name_list: list, len = transform_number
:param type_list: list, len = transform_number
:param level_list: list, len = transform_number
:param mode_list: list, len = transform_number
:return: transform_list: list of transform dict, len = transform_number
"""
# Check that input are of type list and are of the same size
input_lists = [name_list, type_list, level_list, mode_list]
input_len = []
input_type_flag = []
for lst in input_lists:
input_len.append(len(lst))
input_type_flag.append(isinstance(lst, list))
if input_type_flag.count(True) is not len(input_type_flag):
raise TypeError('Name, type, level and mode must be lists')
if input_len.count(input_len[0]) is not len(input_len):
raise ValueError('Name, type, level and mode lists must have the same length')
transform_list = []
for nm, wt, lvl, mode in zip(name_list, type_list, level_list, mode_list):
transform_list.append(generate_transform_dict(patch_size, name=nm, wavelet=wt, level=lvl, mode=mode))
return transform_list
def get_transform_coeff_number(transform_dict):
"""
Get transform coefficient number
:param transform_dict: transform dictionary
:return: coeff_number: int
"""
coeff_number = None
# Dirac transform
if transform_dict['name'] == 'dirac':
coeff_number = np.prod(transform_dict['patch_size'])
# Wavelet transform
elif transform_dict['name'] == 'wavelet':
# Wavelet mode: symmetric
# TODO: check documentation which claims to have the same modes as Matlab:
# [link](http://pywavelets.readthedocs.io/en/latest/ref/signal-extension-modes.html)
if transform_dict['mode'] == 'symmetric':
lvl_patch_size = np.asarray(transform_dict['patch_size'], dtype=float)
coeff_number = 0
lvl_coeff_number = lvl_patch_size # for the level=0 case
for lvl in range(transform_dict['level']):
# TODO: make sure that the level patch size used has to be "floored"
lvl_patch_size = np.floor(0.5 * (lvl_patch_size + float(transform_dict['wavelet'].dec_len)))
lvl_coeff_number = lvl_patch_size - 1 # bookkeeping_mat can be deduced here
# print('level coeff number:', lvl_coeff_number)
coeff_number += 3 * np.prod(lvl_coeff_number).astype(int)
# Last (approximated) level, i.e. cAn which has the same size as (cHn, cVn, cDn)
coeff_number += np.prod(lvl_coeff_number).astype(int)
# Wavelet mode: periodization
elif transform_dict['mode'] == 'periodization':
coeff_number = np.prod(transform_dict['patch_size'])
else:
raise NotImplementedError('Only supports \'symmetric\' and \'perdiodization\'')
else:
raise NotImplementedError('Only supports \'dirac\' and \'wavelet\' transform')
return coeff_number
def wavelet_decomposition(patch_vec, transform_dict):
"""
Compute 2D wavelet decomposition of a vectorized patch with respect to the transform parameters (transform_dict)
See Matlab wavedec2 documentation for more information
:param patch_vec: array, shape = (patch_height * patch_width,)
:param transform_dict: transform dictionary
:return: coeffs_vec, bookkeeping_mat: vectorized wavelet coefficients and bookkeeping matrix
"""
patch_mat = reshape_vec_in_patch(patch_vec, transform_dict['patch_size'])
# coeffs are in the shape [cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)] with n the level of the decomposition
coeffs = pywt.wavedec2(patch_mat, wavelet=transform_dict['wavelet'], mode=transform_dict['mode'],
level=transform_dict['level'])
# Vectorize coeffs and compute the corresponding bookkeeping matrix S (see wavedec2 Matlab documentation)
# Initialization
bookkeeping_mat = np.zeros((transform_dict['level'] + 2, 2), dtype=int)
# Approximated level n, i.e. cAn
cAn = coeffs[0]
bookkeeping_mat[0, :] = cAn.shape
coeffs_vec = cAn.reshape(np.prod(cAn.shape))
# From level n to 1, i.e. (cHn, cVn, cDn) -> (cH1, cV1, cD1)
for i, c_lvl in enumerate(coeffs[1:]):
cHn, cVn, cDn = c_lvl
bookkeeping_mat[i + 1, :] = cHn.shape # cHn, cVn and cDn have the same shape
# TODO: check if the concatenation could be safely avoided by pre-computing the final number of coefficients
# Check utils.get_transform_coeff_number()
coeffs_vec = np.concatenate((coeffs_vec, cHn.reshape(np.prod(cHn.shape)))) # tf.concat
coeffs_vec = np.concatenate((coeffs_vec, cVn.reshape(np.prod(cVn.shape))))
coeffs_vec = np.concatenate((coeffs_vec, cDn.reshape(np.prod(cDn.shape))))
# Data shape
bookkeeping_mat[-1, :] = patch_mat.shape
return coeffs_vec, bookkeeping_mat
def wavelet_reconstruction(coeffs_vec, bookkeeping_mat, transform_dict):
"""
Compute 2D wavelet reconstruction of a vectorized set of wavelet coefficients and its corresponding bookkeeping
matrix and the transform parameters (transform_dict)
See Matlab waverec2 documentation for more information
:param coeffs_vec: vectorized wavelet coefficients
:param bookkeeping_mat: bookkeeping matrix
:param transform_dict: transform dictionary
:return: patch_vec: array, shape = (patch_height * patch_width,)
"""
# Recover the coeffs in the shape [cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)] with n the level of the decomposition
coeffs = []
# Approximated level n, i.e. cAn
s_lvl = bookkeeping_mat[0, :]
start_index = 0
coeffs.append(coeffs_vec[start_index: start_index + np.prod(s_lvl)].reshape(s_lvl))
start_index += np.prod(s_lvl)
# From level n to 1, i.e. (cHn, cVn, cDn) -> (cH1, cV1, cD1)
for s_lvl in bookkeeping_mat[1:-1, :]:
cHn = coeffs_vec[start_index: start_index + np.prod(s_lvl)].reshape(s_lvl)
start_index += np.prod(s_lvl)
cVn = coeffs_vec[start_index: start_index + np.prod(s_lvl)].reshape(s_lvl)
start_index += np.prod(s_lvl)
cDn = coeffs_vec[start_index: start_index + np.prod(s_lvl)].reshape(s_lvl)
start_index += np.prod(s_lvl)
coeffs.append((cHn, cVn, cDn))
patch_vec = reshape_patch_in_vec(pywt.waverec2(coeffs, wavelet=transform_dict['wavelet'],
mode=transform_dict['mode']))
return patch_vec
def multiple_transform_decomposition(patch_vec, transform_list):
"""
Perform the decomposition of a patch in a concatenation of transforms
:param patch_vec: array, shape = (patch_height * patch_width,)
:param transform_list: list of transform dict
:return: decomposition_coeff, bookkeeping_mat: list of arrays
see Matlab wavedec2 documentation for more information)
"""
# Check if transform_list is a list of dict
if not is_array_of(transform_list, dict):
raise ValueError('Transform list must be a list of dict')
# Each transform must have the same patch_size
patch_size_list = [tl['patch_size'] for tl in transform_list]
if patch_size_list.count(patch_size_list[0]) is not len(transform_list):
raise ValueError('Incoherent patch size in the concatenation of transforms.'
'Each transform must have the same patch size')
# TODO: Check if patch_vec is a numpy array or tf??
# Since multiple transforms are performed, it has to be scaled
scale_factor = np.sqrt(len(transform_list))
decomposition_coeff = []
bookkeeping_mat = []
for transform in transform_list:
if transform['name'].lower() == 'dirac':
decomposition_coeff.append(patch_vec/scale_factor)
bookkeeping_mat.append(np.array((transform['patch_size'], transform['patch_size']))) # twice to fit Matlab definition
elif transform['name'].lower() == 'wavelet':
cv, bk = wavelet_decomposition(patch_vec/scale_factor, transform)
decomposition_coeff.append(cv)
bookkeeping_mat.append(bk)
else:
raise NotImplementedError('Only supports \'dirac\' and \'wavelet\' transform')
return decomposition_coeff, bookkeeping_mat
def multiple_transform_reconstruction(decomposition_coeff, bookkeeping_mat, transform_list):
"""
Perform the reconstruction of patch by a concatenation of transforms
:param decomposition_coeff: list of array
:param bookkeeping_mat: list of array
:param transform_list: list of transform dict
:return: patch_vec: array, shape = (patch_height * patch_width,)
"""
# TODO: tf
if not is_array_of(decomposition_coeff, np.ndarray):
raise ValueError('Decomposition coefficient list must be a list of np.ndarray')
if not is_array_of(bookkeeping_mat, np.ndarray):
raise ValueError('Bookkeeping matrix list must be a list of np.ndarray')
# Check if transform_list is a list of dict
if not is_array_of(transform_list, dict):
raise ValueError('Transform list must be a list of dict')
# Each transform must have the same patch_size
patch_size_list = [tl['patch_size'] for tl in transform_list]
if patch_size_list.count(patch_size_list[0]) is not len(transform_list):
raise ValueError('Incoherent patch size in the concatenation of transforms. '
'Each transform must have the same patch size')
patch_size = transform_list[0]['patch_size']
patch_vec = np.zeros((np.prod(patch_size)))
scale_factor = np.sqrt(len(transform_list))
for cv, bk, transform in zip(decomposition_coeff, bookkeeping_mat, transform_list):
if transform['name'].lower() == 'dirac':
patch_vec += cv / scale_factor
elif transform['name'].lower() == 'wavelet':
patch_vec += wavelet_reconstruction(cv, bk, transform) / scale_factor
else:
raise NotImplementedError('Only supports \'dirac\' and \'wavelet\' transform')
return patch_vec
def plot_image_set(image_list, name_list, fig=None, sub_plt_n_w=4):
"""
Plot an image set given as a list
:param image_list: list of images
:param name_list: list of names
:param fig: figure obj
:param sub_plt_n_w: int, number of subplot spaning the width
:return:
"""
# TODO: align images 'top'
if fig is None:
fig = plt.figure()
sub_plt_n_h = int(np.ceil(len(image_list) / sub_plt_n_w))
ax = []
for i, (im, im_name) in enumerate(zip(image_list, name_list)):
ax.append(fig.add_subplot(sub_plt_n_h, sub_plt_n_w, i + 1))
ax[i].imshow(im, cmap='gray', vmin=im.min(), vmax=im.max())
ax[i].set_axis_off()
ax[i].set_title('{}\n({}, {})'.format(im_name, im.shape[0], im.shape[1]), fontsize=10)
def plot_image_with_cbar(image, title=None, cmap='gray', vmin=None, vmax=None, ax=None):
"""
Plot an image with it's colorbar
:param image: array, shape = (image_height, image_width)
:param title: option title
:param cmap: optional cmap
:param vmin: optional vmin
:param vmax: optional vmax
:param ax: optional axis
:return:
"""
if ax is None:
ax = plt.gca()
im = ax.imshow(image, cmap=cmap, vmin=vmin, vmax=vmax)
ax.set_axis_off()
if title is not None:
ax.set_title('{}'.format(title), fontsize=12)
divider = mpl_toolkits.axes_grid1.make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
cbar = plt.colorbar(im, cax=cax)
def plot_decomposition_coeffs(coeffs_vec, title=None, ax=None, theta=None, theta_same_col=False):
"""
Plot decomposition coefficients and the corresponding threshold (theta) if given
:param coeffs_vec: array, shape = (patch_height * patch_width,)
:param title: optional title
:param ax: optional axis
:param theta: optional threshold
:param theta_same_col: optional color flag
:return:
"""
if ax is None:
ax = plt.gca()
base_line, = ax.plot(coeffs_vec)
if title is not None:
ax.set_title('{}'.format(title), fontsize=12)
if theta is not None:
# If theta is a scalar, i.e. same threshold applied to each coefficients, a vector of theta is created
theta_plt = theta*np.ones(coeffs_vec.shape)
if theta_same_col:
ax.plot(theta_plt, '--', color=base_line.get_color())
else:
ax.plot(theta_plt, '--')
def convert_transform_dict_to_tf(transform_dict):
"""
Transform dictionary conversion to tensorflow
:param transform_dict:
:return: tf_transform_dict
"""
tf_transform_dict = dict()
tf_transform_dict['name'] = tf.constant(transform_dict['name'], tf.string)
tf_transform_dict['patch_size'] = transform_dict['patch_size']
# tf_transform_dict['tf_patch_size'] = tf.TensorShape(dims=transform_dict['patch_size'])
tf_transform_dict['coeff_number'] = tf.constant(transform_dict['coeff_number'], tf.int64)
tf_transform_dict['level'] = tf.constant(transform_dict['level'], tf.int32)
if transform_dict['name'] == 'dirac':
pass
elif transform_dict['name'] == 'wavelet':
tf_transform_dict['mode'] = tf.constant(transform_dict['mode'], tf.string)
tf_transform_dict['wavelet_type'] = tf.constant(transform_dict['wavelet_type'], tf.string)
return tf_transform_dict
def convert_transform_list_to_tf(transform_list):
"""
List of transform dictionary conversion to tensorflow
:param transform_list:
:return: tf_transform_list
"""
tf_transform_list = [convert_transform_dict_to_tf(transform_dict) for transform_dict in transform_list]
return tf_transform_list
def tf_pywt_wavelet_decomposition(patch_vec, patch_size, name, wavelet_type, level, mode):
"""
:param patch_vec:
:param patch_size:
:param name:
:param wavelet_type:
:param level:
:param mode:
:return:
"""
# TODO: docstring
# Convert input values for pywt
wavelet_type = wavelet_type.decode('utf-8')
mode = mode.decode('utf-8')
level = int(level)
patch_size = tuple(patch_size)
name = name.decode('utf-8')
# print('wavelet_type: {}, {}'.format(wavelet_type, type(wavelet_type)))
# print('mode: {}, {}'.format(mode, type(mode)))
# print('level: {}, {}'.format(level, type(level)))
# print('patch_vec: {}, {}'.format(patch_vec, type(patch_vec)))
# print('patch_size: {}, {}'.format(patch_size, type(patch_size)))
# print('name: {}, {}'.format(name, type(name)))
# Rebuild transform_dict from unpacked inputs
transform_dict = generate_transform_dict(patch_size, name, wavelet=wavelet_type, level=level, mode=mode)
# print(transform_dict)
# Decomposition
coeffs_vec, bookkeeping_mat = wavelet_decomposition(patch_vec, transform_dict)
return coeffs_vec.astype(np.float32), bookkeeping_mat.astype(np.int32)
def tf_pywt_wavelet_reconstruction(coeffs_vec, bookkeeping_mat, patch_size, name, wavelet_type, level, mode):
"""
:param coeffs_vec:
:param bookkeeping_mat:
:param patch_size:
:param name:
:param wavelet_type:
:param level:
:param mode:
:return:
"""
# TODO: docstring
# Convert input values for pywt
# print(coeffs_vec, type(coeffs_vec))
# print(bookkeeping_mat, type(bookkeeping_mat))
wavelet_type = wavelet_type.decode('utf-8')
mode = mode.decode('utf-8')
level = int(level)
patch_size = tuple(patch_size)
name = name.decode('utf-8')
# print('wavelet_type: {}, {}'.format(wavelet_type, type(wavelet_type)))
# print('mode: {}, {}'.format(mode, type(mode)))
# print('level: {}, {}'.format(level, type(level)))
# print('patch_vec: {}, {}'.format(patch_vec, type(patch_vec)))
# print('patch_size: {}, {}'.format(patch_size, type(patch_size)))
# print('name: {}, {}'.format(name, type(name)))