forked from tdamdouni/Pythonista
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc3plot.py
95 lines (77 loc) · 2.32 KB
/
c3plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# https://github.com/jiayiliu/c3d
"""
Plot circle in 3D
"""
from __future__ import print_function
__author__ = 'jiayiliu'
from math import pi, cos, sin
import numpy as np
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import axes3d
def rotate_x(theta):
"""
create the rotation matrix around x-axis
"""
c = cos(theta)
s = sin(theta)
return np.matrix([[1,0,0],[0,c,-s],[0,s,c]])
def rotate_y(theta):
"""
create the rotation matrix around y-axis
"""
c = cos(theta)
s = sin(theta)
return np.matrix([[c,0,s],[0,1,0],[-s,0,c]])
def rotate_z(theta):
"""
create the rotation matrix around z-axis
"""
c = cos(theta)
s = sin(theta)
return np.matrix([[c,-s,0],[s,c,0],[0,0,1]])
def draw_circle(ax, x0, phi, r0, **args):
"""
draw a circle in 3D space
:param ax: axis to plot
:param x0: 3D position [x,y,z]
:param phi: direction of circle
:param r0: radius
:param args: other parameters to control plotting
"""
# assign initial matrix of circle on x-y plane
theta = np.linspace(0, 2*pi, num=int(r0/0.01))
xyz = np.zeros((len(theta),3))
xyz[:,0] = np.cos(theta)*r0
xyz[:,1] = np.sin(theta)*r0
# rotate around
#rotation_matrix = rotate_x(phi[0])*rotate_y(phi[1])*rotate_z(phi[2])
xyz = np.matrix(xyz) * rotate_x(phi[0])*rotate_y(phi[1])*rotate_z(phi[2])
# convert back to array
xyz = np.squeeze(np.asarray(xyz)) + x0
ax.plot(xyz[:,0], xyz[:,1], xyz[:,2], **args)
return xyz
def draw_circle_direction(ax, x0, phi, length=1):
"""
draw the direction of circle in 3D space
:param ax: axis to plot
:param x0: 3D position [x,y,z]
:param phi: direction of circle
"""
di = np.matrix([[0,0,-length],[0,0,length]])
di = di*rotate_x(phi[0])*rotate_y(phi[1])*rotate_z(phi[2])
di = np.squeeze(np.asarray(di)) + x0
ax.plot(di[:,0],di[:,1],di[:,2])
return di
def test1(ax):
rr = draw_circle(ax, [1,3,1], [0,1.,1.], 1)
p = draw_circle_direction(ax,[1,3,1],[0,1.,1.])
print(np.sum((p[0]-rr)**2,axis=1))
print(np.sum((p[1]-rr)**2,axis=1))
def test2(ax):
for i in range(10):
draw_circle(ax,np.random.random(3), np.random.random(3), 1)
if __name__ == "__main__":
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
test2(ax)
plt.show()