-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLotka_Volterra_pp.py
37 lines (31 loc) · 1.17 KB
/
Lotka_Volterra_pp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
# Define the Lotka-Volterra equations
def predator_prey_system(y, t, alpha, beta, delta, gamma):
x, z = y
dxdt = alpha * x - beta * x * z
dzdt = delta * x * z - gamma * z
return [dxdt, dzdt]
# Set the initial conditions and parameters
initial_conditions = [40, 9] # Initial prey and predator populations
alpha = 0.1 # Prey birth rate
beta = 0.02 # Rate at which predators kill prey
delta = 0.01 # Rate at which predators increase by consuming prey
gamma = 0.1 # Predator death rate
# Set the time points for integration
t = np.linspace(0, 200, 1000)
# Solve the system of differential equations
solution = odeint(predator_prey_system, initial_conditions, t, args=(alpha, beta, delta, gamma))
# Extract the prey and predator populations from the solution
prey_population, predator_population = solution.T
# Plot the results
plt.figure(figsize=(10, 6))
plt.plot(t, prey_population, label='Prey (x)')
plt.plot(t, predator_population, label='Predator (y)')
plt.title('Lotka-Volterra Predator-Prey Model')
plt.xlabel('Time')
plt.ylabel('Population')
plt.legend()
plt.grid(True)
plt.show()